DA-STATS

Topic 05: Univariate Sampling

Shan E Ahmed Raza

Department of Computer Science
University of Warwick
WARWICK

Outline

- Distributions
- Probability Density Function (PDF)
- Cumulative Distribution Function (CDF)
- Sampling from Univariate Distribution
\rightarrow Inverse CDF Sampling
\rightarrow Reject Sampling
\rightarrow Monte-Carlo Simulation

Sampling from univariate distributions

- How do we draw random numbers from a given distribution?
- What are distributions?

Distributions

- Mathematical function that gives the probabilities of occurrence of different possible outcomes for a random phenomenon
- Examples
\rightarrow Coin Toss
\rightarrow Dice
\rightarrow Someone getting sick from viral infection

Distribution Examples

- Uniform Distribution

$$
-p(x)=\frac{1}{b-a} \text { for } x \in[a, b] \text { else } 0.0
$$

- Normal Distribution

- Gaussian Distribution
- Characterization of distributions

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(x-\frac{\mu}{\sigma}\right)^{2}}
$$

Distribution Examples

Distribution Examples

Central Limit Theorem

- Given a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement
- The distribution of the sample means will be approximately normally distributed.
- Holds true regardless of whether the source population is normal or skewed, provided the sample size is sufficiently large.
- If the population is normal, then the theorem holds true even for samples smaller than 30 .

Sampling from a univariate distribution

- How to generate random numbers that follow a distribution?
- Implementation
\rightarrow np.random.unform(0, 1, N)
\rightarrow np.random.gaussian
\rightarrow More in lab exercises

How are these Random Numbers Generated?

- How to sample from an arbitrary distribution?
- Let's say, you are required to generate random samples from a distribution like this on the right.
- Why would someone ask you to generate random samples that follow a distribution?

Application Example

- Let's say, we want to simulate how a virus transmits between two people given that one of them is infected.


```
*
```


http://arxiv.org/abs/2011.11381

Inverse Transform Sampling

- Also known as: Inverse CDF Sampling

- What is a CDF?

\rightarrow PDF (or PMF) Formally, probability density (mass) function
$\rightarrow p_{X}(x)$: probability of observing the random variable X with value x
\rightarrow CDF (Cumulative Distribution Function)
\rightarrow The cumulative probability

$$
F_{X}(x)=p_{X}(X \leq x)=\int_{-\infty}^{x} p_{X}(x)
$$

CDF Example

WARWICK

Inverse CDF Sampling

- Generate a random number u from the standard uniform distribution in the interval [0, 1], e.g., from U~Unif $[0,1]$.
- Find the inverse of the desired CDF, e.g., $F_{X}^{-1}(x)$.
- Compute $X=F_{X}^{-1}(u)$. The computed random variable X has distribution $F_{X}(x)$.

Exercise

WARWICK

Sampling: Reject Sampling

- Keep samples that follow the distribution and reject others

Finding the value of $\boldsymbol{\pi}$

- $r=1.0 \Rightarrow A_{\text {square }}=(2 r)^{2}=4.0, A_{\text {circle }}=\pi r^{2}=\pi$
- $\frac{A_{\text {circle }}}{A_{\text {square }}}=\frac{\pi}{4.0} \Rightarrow \pi=4\left(\frac{A_{\text {circle }}}{A_{\text {square }}}\right)$
- If we throw darts at random at an object, the percentage of darts that land inside it is proportional to its area relative.
- Throw darts at random within the square and calculate the percentage of darts that land inside the circle. This gives an approximate value of the ratio

$$
\frac{A_{\text {circle }}}{A_{\text {square }}}=\frac{N_{\text {circle }}}{N_{\text {square }}}
$$

- Use the above equation to calculate π

Throwing darts

- Generate coordinates using "random" module
$\rightarrow x=$ random.random
$\rightarrow y=$ random.random
- How would you check if (x, y) is inside the circle?
\rightarrow If $x^{2}+y^{2}<r^{2}$
- Throw a large number of darts and test what proportion lands inside. You can use it to estimate the value of π
- Further details in the lab session

Monte Carlo Simulation

- What you did is a monte carlo simulation of estimating the value of π
- It can be used for arbitrary simulation of systems
- Can be used for integrating arbitrary functions
- Finding risks, robustness, etc.

Central Limit Theorem

- Consider a Poisson distribution with $\mu=3$ and $\sigma=1.73$

Central Limit Theorem

- This population is not normally distributed, but the Central Limit Theorem will apply if $n>30$.
- If we take samples of size $n=30$, we obtain samples distributed as shown in the graph with a $\mu=3$ and $\sigma=0.32$

https://sphweb.bumc.bu.edu/otlt/mph-
modules/bs/bs704 probability/BS704 Probability12.html

Central Limit Theorem

- In contrast, with small samples of $n=10$, we obtain samples distributed as shown in the graph.

https://sphweb.bumc.bu.edu/otlt/mph-
modules/bs/bs704 probability/BS704 Probability12.html

