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Types of variables

e Based on the nature of a variable
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https://towardsdatascience.com/data-types-in-statistics-347e152e8bee
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Categorical Variables

e Qualitative Data

— Nominal

e Qualitative variables without any ordering defined on
them
— Male, Female
— Football, Cricket, Tennis

— Ordinal

* Qualitative variables without some ordering defined on
them

— High, Medium, Low

— More examples?



Numerical Variables

e Numbers

* |nterval

— When the value of the variable is assigned based
on the interval (out of an ordering of equal
intervals) in which the phenomenon that the
variable is measuring falls in

* With no concept of a natural zero
* For example: Temperature in Celsius

 Ratio

— With a concept of a natural zero or nothing
* For example: (Temp in K) OK, (weight) OKg, height (Om)



Other concepts

* Independent Variables

* Dependent Variables

INDEPENDENT
VARIABLE

DEPENDENT

Influences VARIABLE
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Preprocessing: Encoding

* Encoding: Converting to numbers

— Indicator Variables (One-Hot Encoding)

* Nominal

— A single nominal variable will need to be converted to
multiple indicator variables

— Your Favourite Game
» Football: (1,0,0)
» Cricket: (0,1,0)
» Tennis: (0,0,1)

— Ordinal

* Since there is an ordering, we can use numbers
directly):
— (Low, Med, High): (0,1,2)



Data Transformations

* Transforming a variable

https://en.wikipedia.org/wiki/Data transformation (statistics)

Binarization
Binning/Discretization
Min-Max Scaling
Standardization (Mean-Stdev Scaling)
Log-transformation
Power-law transformation
Rank-transformation
Smoothing

Normalization
Logit/Sigmoid mapping
Detrending

Whitening

output

input

General Form: x’ = ¢(x)
Can be for a single variable
Or a single sample

Or even multiple samples

Typically: Invertible
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https://en.wikipedia.org/wiki/Data_transformation_(statistics)

Why Data Transformations?

Scale matching
Improve Interpretation
Visualization

Pre-processing

University of Warwick
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Discretization

e Convert a continuous variable into discrete
values

 Example: Divide people based on their heights
into short, medium, tall
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Standardization

e Make the mean of the variable zero and scale
it by its standard deviation

— Common requirement for a number of pattern
recognition models esp. when using multiple
variables

;X T Hx
X =
Ox

— Example: Heights of all people in a class can be
scaled or standardized using the above approach
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Min-Max Scaling

* When you want the transformed variable to
be in the range [0,1]
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Rank Transformation

* When only the rank, rather than the true
value, of a variable matters we may want to
do a rank transform

 Example: Assign an ordering to individuals in a
class based on their heights

x" = Rank(x; X)

University of Warwick
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Log transformation

x' =log(x)

Example: Suppose we have a scatterplot in which the points
are the countries of the world, and the data values being
plotted are the land area and population of each country. If
the plot is made using untransformed data (e.g. square
kilometers for area and the number of people for
population), most of the countries would be plotted in tight
cluster of points in the lower left corner of the graph. The few
countries with very large areas and/or populations would be
spread thinly around most of the graph's area. Simply
rescaling units (e.g., to thousand square kilometers, or to
millions of people) will not change this. However, following
logarithmic transformations of both area and population, the
points will be spread more uniformly in the graph.
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https://en.wikipedia.org/wiki/Data transformation (statistics)
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Data Detrending

e |dentification and removal of the trend in a
time series or other data
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https://uk.mathworks.com/help/matlab/data analysis/detrending-data.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html
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“Baseline” Detrending in ECG
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Data Denoising
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Data Denoising

* Typically some form of smoothing or
averaging is used

— For example: replace the current value with the
average of 3 samples
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Understanding and Identifying Outliers

e An outlier is an observation that lies an
abnormal distance from other values in a
random sample from a population.
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Example Application

* Quality Analysis of Pathology Images

HistoQc Table Chart Image
filename T comments levels
TCGA-D8-ALI-01Z-00-DX2.E688E270-26C9-43EC-BC26-868FBB74A31D.5vs 4
TCGA-D8-AL))-01Z-00-DX1.2986b48f-b295-4073-b778-ce829cdfIc38.5vs 4
TCGA-D8-A1J)-01Z-00-DX2.7D20F 308-7DC6-4367-9459-3AC4CE54E7F 7 .svs 4
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https://github.com/choosehappy/HistoQC
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Handling Missing Data: Imputation

* [mputation is the process of replacing missing
data with substituted values.

— Let’s say we collect the height and weight of a
group of individuals. However, for some samples,
we observe that one of the two variables have
been “missed”

— What do we do?

University of Warwick
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Data Imputation

* Mean Imputation: Replace with the mean of
other samples

— Within Class Mean Imputation

* For example: impute the weight of a male based on the
average weight of the male samples in the group

* Pick the unknown value for a given variable for a
given sample based on its most similar other
sample

— Can also use weighted average of its neighbours

— For example: impute the weight of a male based on
the weighted of the male samples that are closest in
height
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Data Imputation

 Multiple imputation by chained equations
(MICE)

Imputed «| Estimates from
data set 1 = analysis 1
Estimat: : :
Incomplete data set —=< > c:amtgust::jz »| ES :::I ;Sisfrgm Combined results
\ 3 Imputed «| Estimates from
data set m analysis m

Azur, Melissa J., Elizabeth A. Stuart, Constantine Frangakis, and Philip J. Leaf. “Multiple
Imputation by Chained Equations: What Is It and How Does It Work?” International
Journal of Methods in Psychiatric Research 20, no. 1 (February 24, 2011): 40-49.
https://doi.org/10.1002/mpr.329.

https://github.com/venkateshavula/Data-Imputation-Strategies

22


https://github.com/venkateshavula/Data-Imputation-Strategies
https://doi.org/10.1002/mpr.329

Data Imputation

* Non-negative matrix factorization
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Exercise

* Observe the impact of different types of data
transformations on the distribution
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End of Lecture

We want to make a machine that will be
proud of us.

- Danny Hillis
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