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Vectors

• We can measure single quantities

• But to represent multiple quantities associated with 
an object, we use vectors

• Example

– We can represent an individual by their weight and height 
as a vector

– Or a position on a map

– A direction 

• 𝒗 =

𝑣1
𝑣2
𝑣3
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Determining Similarity

• Using distance

– 𝑑 𝒖, 𝒗 = 𝒖 − 𝒗 = 𝑢1 − 𝑣1
2 + 𝑢2 − 𝑣2
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• Measures how far away one vector is “from” another
• Norm/Magnitude

– Length of a vector: 𝑑 𝒖, 𝒗 = 𝒖 − 𝒗 = 𝒖 = 𝑢1
2 + 𝑢2
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• Using dot product

– 𝒖 ∙ 𝒗 = 𝒖𝑇𝒗 = 𝒖, 𝒗 = 𝑢1𝑣1 + 𝑢2𝑣2
• Measures how much one vector is “along” another

• Relationship between the two?
𝒖 − 𝒗 2 = 𝑢1 − 𝑣1

2 + 𝑢2 − 𝑣2
2 = 𝑢1

2 + 𝑣1
2 − 2𝑢1𝑣1 +

𝑢2
2 + 𝑣2

2 − 2𝑢2𝑣2 = 𝑢1
2 + 𝑢2

2 + 𝑣1
2 + 𝑣2

2 − 2ሺ
ሻ

𝑢1𝑣1 +
𝑢2𝑣2 = 𝒖 2 + 𝒗 2 − 2𝒖𝑇𝒗 = 𝒖𝑇𝒖+ 𝒗𝑇𝒗 − 2𝒖𝑇𝒗
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Dot Products and Projections

• One vector can be projected onto a vector by 
taking its dot-product

• z = wTx

– Projection of x in the direction of w

5
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Some notes on representations

• Preliminaries

– Love dot products (and learn to spot them!)

– Love matrix-vector products (and learn to spot them)

– Love derivatives (and learn to solve them!)
• Allow us to find minima or maxima
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𝑎𝑏 + 𝑐𝑑 + 𝑒𝑓 = 𝑎 𝑐 𝑒
𝑏
𝑑
𝑓

= 𝒑𝑻𝒒 = 𝒒𝑻𝒑 = 𝒒 ∙ 𝒑

𝑎2+ 𝑐2+ 𝑒2 = 𝒑𝑻𝒑 = 𝒑 𝟐

𝒒 =
𝑏
𝑑
𝑓

𝒑 =
𝑎
𝑐
𝑒

𝑎𝑏 + 𝑐𝑑 + 𝑒𝑓 = 𝑢
𝑎𝑔 + 𝑐ℎ + 𝑒𝑘 = 𝑣

𝑏 𝑑 𝑓
𝑔 ℎ 𝑘

𝑎
𝑐
𝑒

=
𝑢
𝑣
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Operations on Vectors

• Using matrices

– One way of thinking about matrices is that they 
are collection of vectors

– For example, we can represent the data set for a 
given problem as a data matrix

• Each row is a vector representation of a single example 
or data point

• Matrices as operators
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Multiplication of a vector by a matrix

– Multiplication of a vector with a matrix can be 
viewed as a geometric transformation of the 
vector
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𝑻 =
2 0
0 2

, 𝒙 =
0
1

𝒚 = 𝑻𝒙 =
0
2

𝑻
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Eigen Vectors

• Those points that are characteristic to a given matrix that undergo 
only a change in scale are called Eigen vectors 𝒘 = 𝑻𝒗 = 𝜆𝒗

• How to find them: 𝑻 − 𝜆𝑰 𝒗 = 0 implies 𝑻 − 𝜆𝑰 = 0

• See: https://github.com/foxtrotmike/PCA-
Tutorial/blob/master/Eigen.ipynb
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𝑻 =
2 0
0 2

, 𝒙 =
0
1

𝒚 = 𝑻𝒙 =
0
2

𝑻

https://github.com/foxtrotmike/PCA-Tutorial/blob/master/Eigen.ipynb
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• 𝑻 =
3 1
0 2

• Eigen Vector: 
1
0

, Eigen Value: 3

3 1
0 2

1
0

=
3
0

= 3
1
0

– Note scaling only

• Eigen Vector: 
−0.707
0.707

, Eigen Value: 2

3 1
0 2

−0.707
0.707

=
−1.414
1.414

= 2
−0.707
0.707
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Variance

• Mean of the spread of a variable around its mean

• 𝑣𝑎𝑟 𝑧 =
1

𝑁
σ𝑖=1
𝑁 𝑧𝑖 − 𝜇𝑧

2 =
1

𝑁
𝒛 − 𝜇𝑧

𝑇 𝒛 − 𝜇𝑧

– 𝒛 is an N-dimensional vector composed of the values of all data points in the 
sample

• If mean is zero then 𝑣𝑎𝑟 𝑧 =
1

𝑁
𝒛𝑇𝒛 =

1

𝑁
𝒛 2

• 𝑣𝑎𝑟ሺ𝑧ሻ = 𝐸 𝑧 − 𝜇𝑧
2

• Variance as an information measure

– How is variance related to information content?
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https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-
deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance

https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance
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Covariance

• Co-Variance
– Given two random variables, to what extent are they linearly related to each other

– 𝑐𝑜𝑣 𝑥, 𝑦 =
1

𝑁
σ𝑖=1
𝑁 𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦 =

1

𝑁
𝒙 − 𝜇𝑥

𝑇 𝒚 − 𝜇𝑦
• Covariance is positive if, on average,

– When one variable is above its mean then the other variable is above its mean too 

– When one variable is below its mean then the other variable is below its mean too

• Covariance is negative if, on average,
– When one variable is above the mean, the other is below its mean

– Assume that the means are zero: 𝑐𝑜𝑣 𝒙, 𝒚 =
1

𝑁
𝒙𝑇𝒚

• Maximum when the vectors are co-linear or parallel

– 𝑐𝑜𝑣 𝒙, 𝒚 = 𝐸 𝑦 − 𝜇𝑦 𝑥 − 𝜇𝑥

– Thus,𝑣𝑎𝑟 𝑧 = 𝑐𝑜𝑣 𝑧, 𝑧
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Correlation

• What is the association between two random 
variables?

– Example: How are height and weight associated 
with each other?
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Quantifying Correlation

• We can quantify the degree of linear 
association between two random variables 
through correlation coefficient

– Pearson correlation
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https://en.wikipedia.org/wiki/Covariance_and_correlation

https://en.wikipedia.org/wiki/Covariance_and_correlation
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Covariance Matrix of a dataset

• Matrix of all pairwise covariances of all variables

• 𝑪 =
𝑐𝑜𝑣 𝑦, 𝑦 𝑐𝑜𝑣 𝑧, 𝑦

𝑐𝑜𝑣 𝑦, 𝑧 𝑐𝑜𝑣 𝑧, 𝑧
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Covariance Matrix Example
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The mean is [67.46 85.31]

The standard deviation is: [ 8.86 10.06 ] 

The variance is: [ 78.56 101.14] 

The co-variance matrix is:  
𝟕𝟖. 𝟓𝟔 𝟖𝟓. 𝟓𝟓
𝟖𝟓. 𝟓𝟓 𝟏𝟎𝟏. 𝟏𝟒

The mean is [0 0]

The standard deviation is: [ 1 1 ] 

The variance is: [ 1 1] 

Total variance: 1+1 = 2.0

The co-variance matrix is:  
𝟏 𝟎. 𝟗𝟔

𝟎. 𝟗𝟔 𝟏

ℎ − 𝜇ℎ
𝜎ℎ

𝑤 − 𝜇𝑤
𝜎𝑤

Standardization
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Other Correlation Coefficient

• Spearman Rank Correlation

– Perform a rank transform and then calculate the 
correlation based on the ranks

• Ignores the raw values

• Kendall Correlation
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https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
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Data Dimensionality Reduction

• How can we reduce dimensions?

– Drop features?

• Equivalent to projecting data onto canonical axes

• Loss in variance
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𝑧 = 𝒘𝑇𝒙 =
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Dimensionality Reduction as Projections

• Projections can be used for 
reducing dimensions
– However, projecting data onto a 

vector loses information

– We want to reduce the amount 
of information loss

– Solution: Find and project along 
a direction along which 
information loss is minimum 
• A direction along which most of the 

variance is captured

– How to do it?

19
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How to do it: Naïve Implementation

• Set p = 0

• For p from 0 to 𝜋 in steps
– Calculate projection vector

• 𝒘𝒑 =
cosሺ𝑝ሻ
sinሺ𝑝ሻ

– Project your data onto 𝑧𝑖 = 𝒘𝑝
𝑇𝒙𝑖

– Find the variance of the projected 
data

• Plot the variance across p

• Find the p that gives maximum 
variance

• Issues?

20
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Using the naïve implementation

21

Direction of Maximum Variance: [0.70, 0.71]
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So what is PCA?

• A method for transforming the data 

– Projecting the data onto orthogonal vectors such 
that the variance of the projected data is 
maximum

– Projection of x on the direction of w: z = wTx

– Find w such that Var(z) is maximized
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Principal Component Analysis

• Relation between variance of projection and 
covariance matrix

Var(z) = Var(wTx) = E[(wTx – wTμ)2] 
= E[(wTx – wTμ)(wTx – wTμ)]
= E[wT(x – μ)(x – μ)Tw]
= wT E[(x – μ)(x –μ)T]w = wT C w

where Cov(x)= E[(x – μ)(x –μ)T] = C

• If we know w, we can calculate the variance of 
the projected data along that direction
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Principal Component Analysis

• We want to find a unit vector w that maximizes the variance 
along the projection

• Maximize Var(z1) 

• subject to 𝐰1
𝑇𝐰1 = 1

• Using the method to 

• Taking the derivative of this with respect to w and 
substituting to zero, we get

24

max
𝐰1

𝐰1
𝑇𝑪𝐰1 − 𝛼 𝐰1

𝑇𝐰1 − 1

𝑪𝐰1 = 𝛼𝐰1

max
u

𝑓 𝑢 𝑠. 𝑡. 𝑔 𝑢 = 0

max
u,𝛼

𝑓 𝑢 − 𝛼𝑔 𝑢

Method of Lagrange Multipliers

Constrained Optimization Problem

Unconstrained Optimization Problem
https://en.wikipedia.org/wiki/Lagrange_multiplier

https://en.wikipedia.org/wiki/Lagrange_multiplier
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Principal Component Analysis

• The direction of maximum variance is 𝐰1, 
given by: 

• 𝐰1 is the Eigen Vector Corresponding to the 
covariance matrix 𝑪 with Eigen value 𝛼

25

𝑪𝐰1 = 𝛼𝐰1
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An algorithmic view of how PCA Works
• Input: 𝑿𝑁×𝑑

• Output: A transformation matrix W which can be used for dimensionality 
reduction

• Parameters: Selection of principal components
– Proportion of variance
– Number of principal components (k)
– Which principal components to retain

• Internal Working
– Normalize data

• Calculate feature wise mean and standard deviation and normalize data to zero mean 
and unit standard deviation

– Find Covariance Matrix
– Find Principal Components (Eigen Value Problem)
– Select Principal Components

• Using Scree Graph
• Intuition

– Reduce dimensionality by Projection along selected components
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Let’s see for our data
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The co-variance matrix is:  
𝟏 𝟎. 𝟗𝟔

𝟎. 𝟗𝟔 𝟏
Eigen vector 1:

𝒘𝟏 =
𝟎. 𝟕𝟎𝟕𝟏
𝟎. 𝟕𝟎𝟕𝟏

, 𝜶𝟏 = 𝟏. 𝟗𝟔

Variance of data after projecting along 𝒘𝟏: 1.96

Eigen vector 2:

𝒘𝟐 =
−𝟎. 𝟕𝟎𝟕𝟏
𝟎. 𝟕𝟎𝟕𝟏

, 𝜶𝟐 = 𝟎. 𝟎𝟒

Variance of data after projecting along 𝒘𝟏: 0.04

Fraction of variance captured along each PC:

Using PC-1: 1.96/2 = 0.98

Using PC-1 and PC-2: (1.96+0.04)/2 = 1.0

The two PC vectors are orthogonal to each other 𝒘𝟏
𝑻𝒘𝟐 = 𝟎

The PC Matrix is 𝐖 =
𝟎. 𝟕𝟎𝟕𝟏 −𝟎. 𝟕𝟎𝟕𝟏
𝟎. 𝟕𝟎𝟕𝟏 𝟎. 𝟕𝟎𝟕𝟏

The inverse of W is: 𝐖−𝟏 =
𝟎. 𝟕𝟎𝟕𝟏 𝟎. 𝟕𝟎𝟕𝟏
−𝟎. 𝟕𝟎𝟕𝟏 𝟎. 𝟕𝟎𝟕𝟏

= 𝑾𝑻

Thus, 𝐖𝐓𝐖 = 𝐈
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Things to note

• There are two principal components: The one with the largest variance (eigen value) 
is called the first principal component whereas the other one is called the second 
principal component. 

• The variance along the first principal component is higher in comparison to the 
second.

• The variance along the first projected direction is higher than the variance along 
original features which is 1.0 after normalization. Thus, the principal component is a 
direction that captures more information than any of the original features alone.

• The norm of each of the principal components is 1.0.
• The two principal components are orthogonal to each other. 
• The principle component matrix and its transpose are inverses of each other, i.e., 

𝐖𝐓𝐖 = 𝐈
• The eigen values correspond to the amount of captured variance: The fraction of 

variance captured along a direction is exactly equal to the fraction of eigen values. 
Thus, the first principal component corresponds to the largest eigen value and so on.

• The plot of the fraction of captured variance up to k principal components (called the 
scree plot) can be used to select how many principal components to retain when 
reducing dimensionality. For the original data used in this example, upto 98% 
variance is along the first principal component. Therefore, if the second principal 
component is dropped, the loss of information will be only ~2%.
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Quiz Time: Find Principal Components

• What are the principal components for each 
data set below?

29
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How many principal components? 

• Scree Graph

– Plot the proportion of variance that is captured by 
incorporating more and more principal 
components

30
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Example

• MNIST visualization

• X: 1797x64

31
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Visualization

32
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How to code?
• Fitting PCA to training data

– from sklearn.decomposition import PCA

– pca = PCA(n_components=4)

– pca.fit(X) #rows are samples, columns are features

• Projection

– Z = pca.transform(X)

• Visualization

• Screen Graph

– plt.plot(np.cumsum(pca.explained_variance_ratio_),'o-’)

• Reconstruction

– Xr = pca.inverse_transform(Z)
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Important Conceptual Note

• A number of variables can be 
correlated in real datasets

• Thus, the effective 
dimensionality of the dataset 
can be lower than what you see 
in terms of number of features

• Thus, data lives on a “manifold”

• That is why dimensionality 
reduction models help

• Sometimes these manifolds 
may not be linear
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Other ways of dimensionality reduction

• Multi-dimensional scaling

– Reduce the number of dimensions in the data 
while preserving pairwise distances between 
points

• t-distributed Stochastic Neighbor Embedding 
(t-SNE)

– Reduce data dimensionality while preserving the 
local probability distribution of the data

• Used for visualization

• UMAP

35

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold
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Notes and Exercise

• https://github.com/foxtrotmike/PCA-
Tutorial/blob/master/Eigen.ipynb

• https://github.com/foxtrotmike/PCA-
Tutorial/blob/master/pca-lagrange.ipynb

36

https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
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End of Lecture

We want to make a machine that will be 
proud of us.

- Danny Hillis


