∇

 WARWICK THE UNIVERSITY OF WARWICK
Multivariate Analysis with PCA
 CS1D6: Introduction to data and statistics
 Dr. Fayyaz Minhas

Department of Computer Science
University of Warwick

Contents

- What is the relationship between the following?
- Distance
- Norm
- Dot product
- Correlation
- Covariance
- Basics
- Vectors
- Matrices
- Dot Product and Projection
- Eigen Vectors
- Correlation
- Covariance
- Covariance Matrix
- Principal Component Analysis (PCA)

Vectors

- We can measure single quantities
- But to represent multiple quantities associated with an object, we use vectors
- Example
- We can represent an individual by their weight and height as a vector
- Or a position on a map
- A direction
- $\boldsymbol{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$

Determining Similarity

- Using distance
$-d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}}$
- Measures how far away one vector is "from" another
- Norm/Magnitude

$$
\text { - Length of a vector: } d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|=\|\boldsymbol{u}\|=\sqrt{u_{1}{ }^{2}+u_{2}{ }^{2}}
$$

- Using dot product
$-\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=\langle\boldsymbol{u}, \boldsymbol{v}\rangle=u_{1} v_{1}+u_{2} v_{2}$
- Measures how much one vector is "along" another
- Relationship between the two?

$$
\begin{aligned}
& \|\boldsymbol{u}-\boldsymbol{v}\|^{2}=\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}=u_{1}^{2}+v_{1}^{2}-2 u_{1} v_{1}+ \\
& u_{2}^{2}+v_{2}^{2}-2 u_{2} v_{2}=u_{1}^{2}+u_{2}^{2}+v_{1}^{2}+v_{2}^{2}-2\left(u_{1} v_{1}+\right. \\
& \left.u_{2} v_{2}\right)=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}-2 \boldsymbol{u}^{T} \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{u}+\boldsymbol{v}^{T} \boldsymbol{v}-2 \boldsymbol{u}^{T} \boldsymbol{v}
\end{aligned}
$$

Dot Products and Projections

- One vector can be projected onto a vector by taking its dot-product
- $z=\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}$
- Projection of x in the direction of w

Some notes on representations

- Preliminaries

- Love dot products (and learn to spot them!)

$$
\begin{gathered}
a b+c d+e f=\left[\begin{array}{lll}
a & c & e
\end{array}\right]\left[\begin{array}{l}
b \\
d \\
d
\end{array}\right]=\boldsymbol{p}^{T} \boldsymbol{q}=\boldsymbol{q}^{\boldsymbol{T}} \boldsymbol{p}=\boldsymbol{q} \cdot \boldsymbol{p} \\
a^{2}+c^{2}+e^{2}=\boldsymbol{p}^{\boldsymbol{T}} \boldsymbol{p}=\|\boldsymbol{p}\|^{2}
\end{gathered}
$$

$$
\begin{aligned}
\boldsymbol{q} & =\left[\begin{array}{l}
b \\
d \\
f
\end{array}\right] \\
\boldsymbol{p} & =\left[\begin{array}{l}
a \\
c \\
e
\end{array}\right]
\end{aligned}
$$

- Love matrix-vector products (and learn to spot them)

$$
\begin{aligned}
& a b+c d+e f=u \\
& a g+c h+e k=v
\end{aligned} \quad\left[\begin{array}{lll}
b & d & f \\
g & h & k
\end{array}\right]\left[\begin{array}{l}
a \\
c \\
e
\end{array}\right]=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

- Love derivatives (and learn to solve them!)
- Allow us to find minima or maxima

Operations on Vectors

- Using matrices
- One way of thinking about matrices is that they are collection of vectors
- For example, we can represent the data set for a given problem as a data matrix
- Each row is a vector representation of a single example or data point
- Matrices as operators

Multiplication of a vector by a matrix

- Multiplication of a vector with a matrix can be viewed as a geometric transformation of the vector

$$
\begin{gathered}
\boldsymbol{T}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\boldsymbol{y}=\boldsymbol{T} \boldsymbol{x}=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{gathered}
$$

Eigen Vectors

- Those points that are characteristic to a given matrix that undergo only a change in scale are called Eigen vectors $\boldsymbol{w}=\boldsymbol{T} \boldsymbol{v}=\lambda \boldsymbol{v}$
- How to find them: $(\boldsymbol{T}-\lambda \boldsymbol{I}) \boldsymbol{v}=0$ implies $|\boldsymbol{T}-\lambda \boldsymbol{I}|=0$

$$
\begin{gathered}
\boldsymbol{T}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\boldsymbol{y}=\boldsymbol{T} \boldsymbol{x}=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{gathered}
$$

- See: https://github.com/foxtrotmike/PCA-

Tutorial/blob/master/Eigen.ipynb

- $\boldsymbol{T}=\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$
- Eigen Vector: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, Eigen Value: 3

$$
\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Note scaling only
- Eigen Vector: $\left[\begin{array}{c}-0.707 \\ 0.707\end{array}\right]$, Eigen Value: 2

$$
\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
-0.707 \\
0.707
\end{array}\right]=\left[\begin{array}{c}
-1.414 \\
1.414
\end{array}\right]=2\left[\begin{array}{c}
-0.707 \\
0.707
\end{array}\right]
$$

Variance

- Mean of the spread of a variable around its mean
- $\operatorname{var}(z)=\frac{1}{N} \sum_{i=1}^{N}\left(z_{i}-\mu_{z}\right)^{2}=\frac{1}{N}\left(\boldsymbol{z}-\mu_{z}\right)^{T}\left(z-\mu_{z}\right)$
$-\mathbf{z}$ is an N -dimensional vector composed of the values of all data points in the sample
- If mean is zero then $\operatorname{var}(z)=\frac{1}{N} \boldsymbol{z}^{T} \boldsymbol{z}=\frac{1}{N}\|\boldsymbol{z}\|^{2}$
- $\operatorname{var}(z)=E\left[\left(z-\mu_{z}\right)^{2}\right]$
- Variance as an information measure
- How is variance related to information content?

Covariance

- Co-Variance

- Given two random variables, to what extent are they linearly related to each other
$-\operatorname{cov}(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)=\frac{1}{N}\left(\boldsymbol{x}-\mu_{x}\right)^{T}\left(\boldsymbol{y}-\mu_{y}\right)$
- Covariance is positive if, on average,
- When one variable is above its mean then the other variable is above its mean too
- When one variable is below its mean then the other variable is below its mean too
- Covariance is negative if, on average,
- When one variable is above the mean, the other is below its mean
- Assume that the means are zero: $\operatorname{cov}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{N} \boldsymbol{x}^{T} \boldsymbol{y}$
- Maximum when the vectors are co-linear or parallel
$-\operatorname{cov}(\boldsymbol{x}, \boldsymbol{y})=E\left[\left(y-\mu_{y}\right)\left(x-\mu_{x}\right)\right]$
$-\quad$ Thus, $\operatorname{var}(z)=\operatorname{cov}(z, z)$

Positive
covariance

Negative
covariance

Correlation

- What is the association between two random variables?
- Example: How are height and weight associated with each other?

Quantifying Correlation

- We can quantify the degree of linear association between two random variables through correlation coefficient

$$
\begin{aligned}
& \text { covariance } \operatorname{cov}_{X Y}=\sigma_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& \text { correlation } \operatorname{corr}_{X Y}=\rho_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] /\left(\sigma_{X} \sigma_{Y}\right)
\end{aligned}
$$

- Pearson correlation

Covariance Matrix of a dataset

- Matrix of all pairwise covariances of all variables
- $\boldsymbol{C}=\left[\begin{array}{ll}\operatorname{cov}(y, y) & \operatorname{cov}(z, y) \\ \operatorname{cov}(y, z) & \operatorname{cov}(z, z)\end{array}\right]$

Covariance Matrix Example

The mean is [67.46 85.31]
The standard deviation is: [8.8610 .06]
The variance is: [78.56 101.14]
The co-variance matrix is: $\left[\begin{array}{cc}78.56 & 85.55 \\ 85.55 & 101.14\end{array}\right]$

The mean is [0 0]
The standard deviation is: [$\left.\begin{array}{lll}1 & 1\end{array}\right]$ The variance is: [1 1]
Total variance: $1+1=2.0$
The co-variance matrix is: $\left[\begin{array}{cc}1 & 0.96 \\ 0.96 & 1\end{array}\right]$

Other Correlation Coefficient

- Spearman Rank Correlation
- Perform a rank transform and then calculate the correlation based on the ranks
- Ignores the raw values
- Kendall Correlation

Data Dimensionality Reduction

- How can we reduce dimensions?
- Drop features?
- Equivalent to projecting data onto canonical axes
- Loss in variance

$$
z=\boldsymbol{w}^{T} \boldsymbol{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T} \boldsymbol{x}
$$

Dimensionality Reduction as Projections

- Projections can be used for reducing dimensions
- However, projecting data onto a vector loses information
- We want to reduce the amount of information loss
- Solution: Find and project along a direction along which information loss is minimum

- A direction along which most of the variance is captured
- How to do it?

How to do it: Naïve Implementation

- Set $p=0$
- For p from 0 to π in steps
- Calculate projection vector
- $\boldsymbol{w}_{\boldsymbol{p}}=\left[\begin{array}{c}\cos (p) \\ \sin (p)\end{array}\right]$
- Project your data onto $z_{i}=\boldsymbol{w}_{p}^{T} \boldsymbol{x}_{i}$
- Find the variance of the projected data
- Plot the variance across p
- Find the p that gives maximum variance
- Issues?

Using the naïve implementation

So what is PCA?

- A method for transforming the data
- Projecting the data onto orthogonal vectors such that the variance of the projected data is maximum
- Projection of x on the direction of $w: z=w^{\top} x$
- Find w such that $\operatorname{Var}(z)$ is maximized

Principal Component Analysis

- Relation between variance of projection and covariance matrix

$$
\begin{aligned}
\operatorname{Var}(\mathrm{z}) & =\operatorname{Var}\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)=\mathrm{E}\left[\left(\boldsymbol{w}^{\top} \boldsymbol{x}-\boldsymbol{w}^{\top} \boldsymbol{\mu}\right)^{2}\right] \\
& =\mathrm{E}\left[\left(\boldsymbol{w}^{\top} \boldsymbol{x}-\boldsymbol{w}^{\top} \boldsymbol{\mu}\right)\left(\boldsymbol{w}^{\top} \boldsymbol{x}-\boldsymbol{w}^{\top} \boldsymbol{\mu}\right)\right] \\
& =\mathrm{E}\left[\boldsymbol{w}^{\top}(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{w}\right] \\
& =\boldsymbol{w}^{\top} \mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{T}\right] \boldsymbol{w}=\boldsymbol{w}^{\top} \mathbf{C} \boldsymbol{w}
\end{aligned}
$$

where $\operatorname{Cov}(x)=\mathrm{E}\left[(x-\mu)(x-\mu)^{T}\right]=C$

- If we know w, we can calculate the variance of the projected data along that direction

Principal Component Analysis

- We want to find a unit vector \mathbf{w} that maximizes the variance along the projection
- Maximize $\operatorname{Var}\left(z_{1}\right)$
- subject to $\mathbf{w}_{1}^{T} \mathbf{w}_{1}=1$
- Using the method to

$$
\max _{\mathbf{w}_{1}} \mathbf{w}_{1}^{T} \boldsymbol{C} \mathbf{w}_{1}-\alpha\left(\mathbf{w}_{1}^{T} \mathbf{w}_{1}-1\right)
$$

- Taking the derivative of this with respect to w and substituting to zero, we get

Method of Lagrange Multipliers
Constrained Optimization Problem

$$
\mathbf{C} \mathbf{w}_{1}=\alpha \mathbf{w}_{1}
$$

$$
\begin{gathered}
\max _{\mathbf{u}} f(u) \text { s.t. } g(u)=0 \\
\max _{\hat{u}, \alpha} f(u)-\alpha g(u)
\end{gathered}
$$

Unconstrained Optimization Problem
https://en.wikipedia.org/wiki/Lagrange multiplier

Principal Component Analysis

- The direction of maximum variance is \mathbf{w}_{1}, given by:

$$
\boldsymbol{C} \mathbf{w}_{1}=\alpha \mathbf{w}_{1}
$$

- \mathbf{w}_{1} is the Eigen Vector Corresponding to the covariance matrix \boldsymbol{C} with Eigen value α

An algorithmic view of how PCA Works

- Input: $X_{N \times d}$
- Output: A transformation matrix \mathbf{W} which can be used for dimensionality reduction
- Parameters: Selection of principal components
- Proportion of variance
- Number of principal components (k)
- Which principal components to retain
- Internal Working
- Normalize data
- Calculate feature wise mean and standard deviation and normalize data to zero mean and unit standard deviation
- Find Covariance Matrix
- Find Principal Components (Eigen Value Problem)
- Select Principal Components
- Using Scree Graph
- Intuition
- Reduce dimensionality by Projection along selected components

Let's see for our data

The co-variance matrix is: $\left[\begin{array}{cc}1 & 0.96 \\ 0.96 & 1\end{array}\right]$
Eigen vector 1:

$$
w_{1}=\left[\begin{array}{l}
0.7071 \\
0.7071
\end{array}\right], \quad \alpha_{1}=1.96
$$

Variance of data after projecting along $w_{1}: 1.96$
Eigen vector 2:

$$
w_{2}=\left[\begin{array}{c}
-0.7071 \\
0.7071
\end{array}\right], \quad \alpha_{2}=0.04
$$

Variance of data after projecting along $w_{1}: 0.04$
Fraction of variance captured along each PC:
Using $\mathrm{PC}-1: 1.96 / 2=0.98$
Using PC-1 and PC-2: (1.96+0.04)/2 = 1.0
The two PC vectors are orthogonal to each other $w_{1}^{T} w_{2}=0$
The PC Matrix is $W=\left[\begin{array}{cc}0.7071 & -0.7071 \\ 0.7071 & 0.7071\end{array}\right]$
The inverse of W is: $W^{-1}=\left[\begin{array}{cc}0.7071 & 0.7071 \\ -0.7071 & 0.7071\end{array}\right]=W^{T}$
Thus, $\mathbf{W}^{\mathbf{T}} \mathbf{W}=\mathbf{I}$

Things to note

- There are two principal components: The one with the largest variance (eigen value) is called the first principal component whereas the other one is called the second principal component.
- The variance along the first principal component is higher in comparison to the second.
- The variance along the first projected direction is higher than the variance along original features which is 1.0 after normalization. Thus, the principal component is a direction that captures more information than any of the original features alone.
- The norm of each of the principal components is 1.0.
- The two principal components are orthogonal to each other.
- The principle component matrix and its transpose are inverses of each other, i.e., $\mathbf{W}^{\mathbf{T}} \mathbf{W}=\mathbf{I}$
- The eigen values correspond to the amount of captured variance: The fraction of variance captured along a direction is exactly equal to the fraction of eigen values. Thus, the first principal component corresponds to the largest eigen value and so on.
- The plot of the fraction of captured variance up to k principal components (called the scree plot) can be used to select how many principal components to retain when reducing dimensionality. For the original data used in this example, upto 98\% variance is along the first principal component. Therefore, if the second principal component is dropped, the loss of information will be only $\sim 2 \%$.

Quiz Time: Find Principal Components

- What are the principal components for each data set below?

How many principal components?

- Scree Graph
- Plot the proportion of variance that is captured by incorporating more and more principal components

Example

- MNIST visualization
- X: 1797x64

Visualization

How to code?

- Fitting PCA to training data
- from sklearn.decomposition import PCA
- pca = PCA(n_components=4)
- pca.fit(X) \#rows are samples, columns are features
- Projection
- Z = pca.transform(X)
- Visualization
- Screen Graph
- plt.plot(np.cumsum(pca.explained_variance_ratio_),'o-')
- Reconstruction
- Xr = pca.inverse_transform(Z)

Important Conceptual Note

- A number of variables can be correlated in real datasets
- Thus, the effective dimensionality of the dataset can be lower than what you see in terms of number of features

- Thus, data lives on a "manifold"
- That is why dimensionality reduction models help
- Sometimes these manifolds may not be linear

Other ways of dimensionality reduction

- Multi-dimensional scaling
- Reduce the number of dimensions in the data while preserving pairwise distances between points
- t-distributed Stochastic Neighbor Embedding (t-SNE)
- Reduce data dimensionality while preserving the local probability distribution of the data
- Used for visualization
- UMAP

Notes and Exercise

- https://github.com/foxtrotmike/PCATutorial/blob/master/Eigen.ipynb
- https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb

End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis

