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Vectors

* We can measure single quantities

e But to represent multiple quantities associated with
an object, we use vectors

 Example
— We can represent an individual by their weight and height
as a vector
— Or a position on a map oo
— A direction 2
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Determining Similarity
e Using distance

—du,v) =|lu-v| = \/(U1 —v1)% + (up — v;)?
* Measures how far away one vector is “from” another
* Norm/Magnitude

— Length of avector: d(u,v) = |lu —v|| = ||ul|| = \/ulz + u,?
e Using dot product

—u-v=u'v=Wuv)=uv +uv,
* Measures how much one vector is “along” another

e Relationship between the two?

lu — vil = (uq — vl) + (u, — v2)2 = u? + vé — 2uyv, +
u§+v2—2u +u2+v1+v2—2(u1v1+
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Dot Products and Projections

* One vector can be projected onto a vector by
taking its dot-product

e z=wlx

— Projection of x in the direction of w
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Some notes on representations

Preliminaries
— Love dot products (and learn to spot them!) b
b q=|4
ab+cd+ef=1[a c e]ld =plgq=q'p=q-p S
f a]
a’+c2+e?=p'p=|pll* p=|c
| €]
— Love matrix-vector products (and learn to spot them)
ab+cd+ef =u b d f l]
ag+ch+ek=v 9 h k

— Love derivatives (and learn to solve them!)

* Allow us to find minima or maxima

TN Saddle Point
/ &Loccﬂ Minimum

X
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Operations on Vectors

* Using matrices

— One way of thinking about matrices is that they
are collection of vectors

— For example, we can represent the data set for a
given problem as a data matrix

* Each row is a vector representation of a single example
or data point

* Matrices as operators
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Multiplication of a vector by a matrix

— Multiplication of a vector with a matrix can be
viewed as a geometric transformation of the

vector
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Eigen Vectors

 Those points that are characteristic to a given matrix that undergo
only a change in scale are called Eigen vectors w = Tv = Av

* How to find them: (T — AI)v = 0 implies |T — AI| =0

20 1
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y=Tx= [(2)] .
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* See: https://github.com/foxtrotmike/PCA-
Tutorial/blob/master/Eigen.ipynb
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https://github.com/foxtrotmike/PCA-Tutorial/blob/master/Eigen.ipynb

Original and Transformed Eigen Vectors

r=[; 4l oS
0.8 1 . ,

R -

1 Z.(ZJ: \—gev‘a )v o Wp

Eigen Vector: [O]’ Eigen Value: 3 R 0 1 2 3
o 2l lol=1o1=30

Eigen Vector: [_00770077]

— Note scaling only

, Eigen Value: 2

_ [70707
1.414 0.707

o ollo707 1= ey
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Variance

 Mean of the spread of a variable around its mean

+ var(z) = <3N (2 - 1)? = < (2= 1) (2 — )

— zis an N-dimensional vector composed of the values of all data points in the

sample
* If meanis zero then var(z) = %ZTZ = %IIZII2 o
e var(z) = E[(z - u,)?] . ' = o

 Variance as an information measure

— How is variance related to information content? 100

o
<0 0 10 20 30 40 50 &0 70 80 A0 100110 120130 140 150 160 170 180 190 200 210 220 230+

https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-
deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance
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Covariance

* (Co-Variance
— Given two random variables, to what extent are they linearly related to each other

— COU(X, }’) = % £V=1(xi - ﬂx)(yi - .uy) =%(x - ﬂx)T(y — 'UY)

* Covariance is positive if, on average,
—  When one variable is above its mean then the other variable is above its mean too
—  When one variable is below its mean then the other variable is below its mean too

* Covariance is negative if, on average,
—  When one variable is above the mean, the other is below its mean

1
— Assume that the means are zero: cov(x,y) = ExTy

* Maximum when the vectors are co-linear or parallel
~ cov(x,y) = E[(y - 1t,) (x — i1)]
— Thus,var(z) = cov(z,z)

Positive
covariance
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Correlation

e What is the association between two random
variables?

— Example: How are height and weight associated
with each other?

60 -

40 -

weight

20 A

100 120 140

160 180
height
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Quantifying Correlation

* We can quantify the degree of linear
association between two random variables
through correlation coefficient

covariance COvyy = Oxy = E[(X — NX) (Y — MY)]

correlation corrxy = pxy = E[(X —ux) (Y — py)|/(oxoy)

— Pearson correlation

https://en.wikipedia.org/wiki/Covariance and correlation
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Covariance Matrix of a dataset

* Matrix of all pairwise covariances of all variables

_|cov(y,y) cov(z,y)
~|cov(y,z) cov(z, z)

e C

University of Warwick 15



weight

Covariance Matrix Example

* .
100 - 15
95 s © 10 1 = =
h — Un .
90 4 ° P » 0.5 L] L X J
Op £
[ ] [
b W — Uy -05
O-W
° -1.0 e
» . . ® *
. o Standardization -15 {
1 ® T T T T T T T T
T T T -15 -1.0 -05 00 05 10 15 20
60 70 80 height
height
The mean is [67.46 85.31] The mean is [0 0]
The standard deviation is: [ 8.86 10.06 ] The standard deviation is: [ 1 1 ]
The variance is: [ 78.56 101.14] The variance is: [ 1 1]
The co-variance matrix is: 78.56  85.55 Total variance: 141 = 2.0
85.55 101.14 The co-variance matrix is: [O }36 0'36]

University of Warwick
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Other Correlation Coefficient

 Spearman Rank Correlation

— Perform a rank transform and then calculate the
correlation based on the ranks

* Ignores the raw values

e Kendall Correlation

https://en.wikipedia.org/wiki/Spearman%27s rank correlation coefficient
https://en.wikipedia.org/wiki/Kendall rank correlation coefficient



https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient

Data Dimensionality Reduction

* How can we reduce dimensions?
— Drop features?

* Equivalent to projecting data onto canonical axes
* Loss in variance
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Dimensionality Reduction as Projections

* Projections can be used for
reducing dimensions

— However, projecting data onto a
vector loses information

— We want to reduce the amount
of information loss

— Solution: Find and project along
a direction along which

information loss is minimum - .

e Adirection along which most of the
variance is captured

— How to do it?
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How to do it: Naive Implementation

Setp=0
For p from O to i in steps

— Calculate projection vector

B lcos(p)
P [sin(p)
— Project your data onto z; = W;Tgxi

— Find the variance of the projected
data

Plot the variance across p

Find the p that gives maximum
variance

Issues?

variance along p

p'

Qr—

45
angle of p (degrees)

University of Warwick
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Using the naive implementation

Variance in Various Directions

[ 2.00 1
| 175 -
10 A 150 -1
5 05 - u 125 A
) s 100 -
g 0.0 A E
0.75 -
-0.5
0.50 -
0.25 -
—15 i 000 1 T T T T T T T
T T T T =150 -100 =50 0 50 100 150
-1 0 1 2 theta

height

Direction of Maximum Variance: [0.70, 0.71]

University of Warwick
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So what is PCA?

A method for transforming the data

— Projecting the data onto orthogonal vectors such
that the variance of the projected data is
maximum

— Projection of x on the direction of w: z= w'x
— Find w such that Var(z) is maximized

University of Warwick 22



Principal Component Analysis

e Relation between variance of projection and
covariance matrix

Var(z) = Var(w'x) = E[(w'x — w'u)?]
= E[(w'x — w'u)(w'x — w')]
= E[w'(x — p)(x — p)'w]
=w'E[(x — u)(x—u)" lw=w'Cw
where Cov(x)=E[(x — u)(x —u)"] = C

* |f we know w, we can calculate the variance of
the projected data along that direction

I — University of Warwick 23



Principal Component Analysis

We want to find a unit vector w that maximizes the variance
along the projection

Maximize Var(z,)
subjecttow{w; = 1
Using the method to
max w1 Cw; — a(wiw; — 1)

Taking the derivative of this with respect to w and
substituting to zero, we get Method of Lagrange Multipliers

Constrained Optimization Problem

max f(u) s.t.g(u) =0
CW1 = aw, u ﬁ

max f(u) —ag(u)

Unconstrained Optimization Problem
https://en.wikipedia.org/wiki/Lagrange multiplier
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Principal Component Analysis

* The direction of maximum variance is wy,
given by:

CW1 — awl

* W, is the Eigen Vector Corresponding to the
covariance matrix € with Eigen value

University of Warwick
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An algorithmic view of how PCA Works

* Input: Xy «4
* OQOutput: A transformation matrix W which can be used for dimensionality
reduction
* Parameters: Selection of principal components
— Proportion of variance
— Number of principal components (k)
— Which principal components to retain

* Internal Working

— Normalize data

e C(Calculate feature wise mean and standard deviation and normalize data to zero mean
and unit standard deviation

— Find Covariance Matrix
— Find Principal Components (Eigen Value Problem)

— Select Principal Components
* Using Scree Graph
* Intuition

— Reduce dimensionality by Projection along selected components

26



Let’s see for our data

. . . 1 0.96
The co-variance matrix is: L196 1 ]
Eigen vector 1:
_[0.7071 .
wy = 0_7071], a; =1.96

Variance of data after projecting along w;: 1.96

Eigen vector 2:
_[-0.7071 _
wa = | 0.7071 |, ax=0.04

Variance of data after projecting along w;: 0.04

Fraction of variance captured along each PC:
Using PC-1: 1.96/2 = 0.98
Using PC-1 and PC-2: (1.96+0.04)/2 = 1.0

The two PC vectors are orthogonal to each other M{MQ =0

0.7071 -0.7071
0.7071 0.7071

The inverse of W is: W 1= [_007,;)(;7711 g;g;i

The PC Matrix is W=

|- w

Thus, WIW =1

weight

15 1

10 1

05 A

0.0 1

=05 4

-1.0

_lS 4

Principal Components

-1 0 1
height

Data in PC Space
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Things to note

* There are two principal components: The one with the largest variance (eigen value)
is called the first principal component whereas the other one is called the second
principal component.

e The variance along the first principal component is higher in comparison to the
second.

* The variance along the first projected direction is higher than the variance along
original features which is 1.0 after normalization. Thus, the principal component is a
direction that captures more information than any of the original features alone.

* The norm of each of the principal components is 1.0.

* The two principal components are orthogonal to each other.

* The principle component matrix and its transpose are inverses of each other, i.e.,
wiw =1

* The eigen values correspond to the amount of captured variance: The fraction of

variance captured along a direction is exactly equal to the fraction of eigen values.
Thus, the first principal component corresponds to the largest eigen value and so on.

* The plot of the fraction of captured variance up to k principal components (called the
scree plot) can be used to select how many principal components to retain when
reducing dimensionality. For the original data used in this example, upto 98%
variance is along the first principal component. Therefore, if the second principal
component is dropped, the loss of information will be only ~2%.



Quiz Time: Find Principal Components

 What are the principal components for each
data set below?
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How many principal components?

* Scree Graph

— Plot the proportion of variance that is captured by
incorporating more and more principal
components

Scree Graph
10

o o o
= h (o]
'

cumulative explained variance

(=]
%]

(=]
o

10 20 30 40 50 60
number of components



Example

 MINIST visualization
e X:1797x64

Scree Graph
10

After PCA

b=
(=]
L

- 20

- 15

=]
(=]

(=]
.
A

cumulative explained variance

o
%]
A
-

0.0

10 20 30 40 50 60
number of components




Visualization

32
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How to code?

* Fitting PCA to training data

— from sklearn.decomposition import PCA

— pca = PCA(n_ components=4)

— pca.fit(X) #rows are samples, columns are features
* Projection

— Z = pca.transform(X)
e Visualization

* Screen Graph

— plt.plot (np.cumsum(pca.explained variance ratio ),'o-")

e Reconstruction

— Xr = pca.inverse transform(Z)
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Important Conceptual Note

A number of variables can be
correlated in real datasets

Thus, the effective
dimensionality of the dataset
can be lower than what you see
in terms of number of features

Thus, data lives on a “manifold”

That is why dimensionality
reduction models help

Sometimes these manifolds
may not be linear

University of Warwick
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Other ways of dimensionality reduction

* Multi-dimensional scaling

— Reduce the number of dimensions in the data
while preserving pairwise distances between
points

 t-distributed Stochastic Neighbor Embedding
(t-SNE)

— Reduce data dimensionality while preserving the
local probability distribution of the data

* Used for visualization

* UMAP

https://scikit-learn.org/stable/modules/classes.html#tmodule-sklearn.manifold
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Notes and Exercise

e https://github.com/foxtrotmike/PCA-
Tutorial/blob/master/Eigen.ipynb

e https://github.com/foxtrotmike/PCA-
Tutorial/blob/master/pca-lagrange.ipynb

University of Warwick
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End of Lecture

We want to make a machine that will be
proud of us.

- Danny Hillis
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