


GENERATIVE MACHINE LEARNING

Creating noise from data is easy; creating data from noise is generative modeling.*

[*] Song, Yang, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. “Score-Based Generative
Modeling through Stochastic Differential Equations.” arXiv, February 10, 2021. https://doi.org/10.48550/arXiv.2011.13456.
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https://doi.org/10.48550/arXiv.2011.13456

Background: Introduction to Sampling

* Empirical distribution Modelling: Making a distribution from
observations (Density Estimation)
— Example:
e Observations: {H,T,H,T,H}
e P(H)=3/5=0.6, P(T) =2/5=0.4
* Shown as probability distribution (normalized histogram)

 Sampling from a distribution

— Assume you are given a probability distribution p(x), then if you “sample”
from it, you will be generating samples x which when observed will give

p(x)

H,T,H,T,T,H

you p(x)
— Example p(x)
e Given: P(H)=0.6,P(T)=0.4 > H,TH,HTHHHTTH
* Generated Samples: {H,T,H,T,H,T,H,H,T,H} R
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Background: Generating samples

* Can we generate samples of a target distribution using
samples from a source distribution as input?

f(x)

5 |
x~S(x) z~T(z) X
O[ é b X g [).Il"l/n3 i LZ L | | 2'| z.ll%
x~U(a=0,b=1) z~N(u = 0.5,0 = 1)
X = np.random.rand(N) Z = np.random.randn(N)+0.5
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A generative look at Machine Learning

Learning Machine

Training input

Fundamental aim of a discriminative model Fundamental aim of a Generative Model
Learn a model of p(y|x) from observations Learn a model of p(x) or p(x|y) from observations to generate
samples from random noise input

Training Samples Predictio i .
S D I Discriminative Model eaion 5 Training Samples

Label: 9 Label: 1 Label: 2 Label: 0

ESET/] N o
Label: 4 Label: 2 Label: 9 Label: 3 I ¢

2l P 2 9
Label: 1 Label: 1 Label: 7 Label: 7

VARmVAnt Ir]
Label: 6 Label: 6 Label: 6 Label: 0 5

0l bl 6 &l O

Lex Fridman. Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series, 2020.
https://www.youtube.com/watch?v=0w25mjFjSmg.
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Generating data with machine learning

* Can we generate examples that
follow the same distribution as a
given set of examples using noise
as input?

* Sampling from the multi-
dimensional distribution of data

e How?

— Density Modelling

* Modelling the Probability of observing
a given point p(x)

* Once | have an explicit or implicit p(x),
| can sample from that distribution to
generate an example
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Generating Data with Autoencoders

As close as possible
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Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb
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Generative Models

* Can we build a model to approximate a data distribution

U

Real image (training data) ~ pg,.(X) Generated samples ™~ p,.,gei(X)

Want to learn p . 4e(X) similar to p.(x)
Density estimation: a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for p_. . (X)
- Algorithms: Gaussian Mixture Models, Kernel Density Estimation, Variational Autoencoders
- Implicit density estimation: learn model that can sample from p_,.(X) w/o explicitly defining it
- Algorithms: Vanilla autoencoder, Generative adversarial networks (GANs), Diffusion Models, Normalizing Flows
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A Simple Generative Machine Learning Example

* Nature
— A coin with p(x=H)=0.7 and p(x=T)=0.3
— Generates data Training Samples Generated Sample

> (Generative Model
{H,H,H,T,T,H,T,H,HT}

* Given Data
— {H,H,H,T,T,H,T,H,H,T}
* Goal of Generative Learning

— Make a machine learning model that can generate data (heads or tails)
that follows the same distribution as data from the real world or natural
process.

— The difference between the probability distributions of real and generated
samples should be small

Input

Noise
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REO for Generative Models

Goal f(z:0)
L ) . i ici Generated Sampl
(kﬁrz\gev\r:na set of real-world examples: x~p(x). p(x) is not explicitly Generative Model enerated Sample

— Learn parameters 6 of the model f(z; 0) so that the examples
generated by the model follow the same distribution as the real- Input
world examples x~p(x)
z~N(0,I)
Representation: x = f(z; ) with z~Noise N -
— Let’s denote the distribution of examples generated by this model A Vesrist

as g (x). J

— Note that the model may not have an explicit internal formula for
this distribution.

Evaluation:

— Differences between the probability distribution of x in nature
p(x) and of the generated samples pgy(x) from f(z; 0)

* Thatis, if | sample from p(x) or if | sample frompg (x), the real and
generated samples are similar

'.71 \- ) ,_

. . . e 5 "-" | Zaan 5"‘?,\»:". . "
Optimization i X T

. o Real image (training data) ~ p(x) Generated samples ~ pg (x)
— Use gradient descent to optimize for 6 p(x) is not given. pe (x) may be implicit.
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Generative Adversarial Networks

e Use “Adversarial Training” to train a generator and
discriminator simultaneously

* Generator: Generate samples from noise
* Discriminator: Detect “fake” or generated samples

Training set V / Discriminator
/ N\
Random — I B {Fa ke
noise
Generator /Fake image

University of Warwick 11
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Adversarial Training in a GAN

* GAN Training the goal is to:

— Train the discriminator to be good at detecting fakes

» Simple classification: Discriminator should produce 1 for real and O

for generated
" minYyerl(D(xi;0p), 1) + Xz U(D(G (2j;0¢4); 0p),0)

— Train the generator to be so good that the discriminator
labels generated samples as “Real”

* The generator exploits the discriminator’s ability or knowledge to
distinguish between real and generated samples to its advantage

* The generator is optimized such that the discriminator produces 1
for generated examples

. r%in YN I(D(G(zj;6¢); 0p), 1)

= OR equivalently, the generator is optimized such that the
discriminator generates errors in classifying generated examples
(note the max below)

" max YN I(D(G(z;;0¢);0p),0)

= Can also add additional loss terms for quality/realism etc.
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GAN Tutorial

ZC Open in Colab

A Barebones GAN in PyTorch for generating coin flips

By Fayyaz Minhas

Let's consider a very simple coing toss as a process that generates coin flips with a probability of 0.3 of producing heads. We can describe the underlying probability
distribution for this generative process (coin toss) as p(z) where z € {H = 1,T = 0} is sampled from p(z), i.e, z « p(z). We would like to use a Generative Adversarial
Network (GAN) to model this process using a number of data samples or observations from the original process for training. Specifically, we would like to have a GAN with
such a generator that you (and its discriminator) wouldn't be able to tell if a series of coin tosses has been generated using the GAN aor the underlying true process! In more
mathematical terms, we would like to train a generative model z = G(z; 8¢) that can generate samples x using Normally distributed random input (= -~ N(0, 1)) such that
the probability distribution of these generated samples pg(z) is close to p(x) without knowing p(z) in advance or explicitly modelling pa(z).

Using a GAN is an overkill for this simple task and there are much simpler and more effective ways of modelling this simple problem. However, this GAN based solution is

intended to help you understand how GANs can model complex densities implicitly and can be used to generate samples that mimic the true or natural generative process.

We first simulate the coin toss and generate 1024 training samples below. The histogram shows the (sample estimate of) the true density.

wun Histogram
A toy GAN to generate coin tosses 700 Tue
e 600
# Let's model the natural density and generate some data using that 500

% 400
import torch g 200
from torch import nn

200
import math 100
import matplotlib.pyplot as plt
import numpy as np o 2 Y 0 3 2
train_data_length = 1824 x
def cointoss(t): Example Data tensor([[8., 8., @., ..., 8.,
phead = 6.3 1., 1.1])

ratirn 1 A%*(+

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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* Assume you are given B&W images for training
a GAN to generate more images like that.

* Let’s look at a single pixel location in each
image
— We have a distribution of pixel values across all
images at that location

 We would like our GAN to generate data according to
that distribution at that pixel location

* Naive idea: Have multiple GANs — one for each pixel
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— Assumes each pixel is independent of the other :Z :
— Computationally intensive 500
* We can train a single GAN to generate a multi- g
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dimensional probability distribution by using a multi-
output generator.
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Unconditional vs Conditional Generation

* Unconditional Generative Modelling

— Simple model the probability distribution of the data p(x)
* Example: Generating images without paying any regard to the digit

Random Noise

Generative Model [EAES produces #
Training '

Trained Model

olo[olofola[>[o|0[0
RS
E8 N R N RS I (S ES EY)
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Unconditional vs Conditional Generation

* Conditional Generative Modelling
— Model the distribution p(x|y) of data x conditioned on a variable y

* Example: Generating images for a given digit

Class Labels
5

Random Noise

3uluonipuod

Generative Mode
Used Training

gives produces
I Trained Model ’

conditioning

y:
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GANs Applications

* GANs have some impressive applications

— Synthetic Image Generation Barebones GAN
https://github.com/foxtrotmike/CS909/blob/mas
— Speech Generation ter/simpleGAN.ipynb
. Raevskiy, Mikhail. “Write Your First Generative Adversarial Network
— |mage to |mage Translation Model on PyTorch.” Medium, August 31, 2020.

https://medium.com/dev-genius/write-your-first-generative-
adversarial-network-model-on-pytorch-7dcOc7c892c7.

— Style Transfer

Output

— Deep Fakes

Input labels

lan Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/
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The GAN Zoo

* Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation
* C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* GAN - Generative Adversarial Networks

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling * CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks ¢ CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs » CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

« AdaGAN - AdaGAN: Boosting Generative Models ¢ DTN - Unsupervised Cross-Domain Image Generation

« AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets * DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

9 : » DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
« AffGAN - Amortised MAP Inference for Image Super-resolution ; g ; , z <L
* DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts . DiiolSAN - DislGAN: Unstibeiead Diial Leakring 1o+ imsga-to-image Thansldtion

* ALI - Adversarially Learned Inference » EBGAN - Energy-based Generative Adversarial Network

* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization » f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery ¢ FF-GAN - Towards Large-Pose Face Frontalization in the Wild

» ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs = GAWWN:~Leashing Whatand Wheee to Uraw

* GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* Geometric GAN - Geometric GAN
¢ GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
» Bayesian GAN - Deep and Hierarchical Implicit Models

« BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks « GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
* BiGAN - Adversarial Feature Learning « AN - Neural Photo Editing with Introspective Adversarial Networks
« BS-GAN - Boundary-Seeking Generative Adversarial Networks * iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets ¢ IcGAN - Invertible Conditional GANs for image editing

. . . . v . . . s ID-CGAN - | De-raining Using a Conditional G tive Ad ial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters AR S S e

2 4 : « Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks o “ " -

* InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks ¢ LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis
* CoGAN - Coupled Generative Adversarial Networks * LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo
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Text-to-Image Synthesis

This flower has small, round violet This flower has small, round violet
petals with a dark purple center xXr = petals with a dark purple center
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Generator Network Discriminator Network

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, D. Metaxas, “StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Networks”, arXiv prepring, 2016

S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw”, NIPS 2016

Deep Learning: From Philosophy to AGI University of Warwick
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Text to Image — Results

Caption Image

a pitcher is about to throw the ball to the batter

a group of people on skis stand in the snow

a man in a wet suit riding a surfboard on a wave
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lmage-to-

Labels to Street Scene

image Translation

BW to Color

Labels to Facade

output
input output input output
Day to Night Edges to Photo
/7N
I
A=
.'I ["h 1
- O
S T e U .
| Y
I
_;‘l1
output output input output

P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks”,

arXiv preprint, 2016
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Unpaired Transformation — Cycle GAN, Disco GAN

Transform an object from one domain to another without paired data

Summer 2 = Winter

summer —» winter

winter —» summer

photo —»Monet

ck
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TurbuGAN

Unknown / \
Turbulence
Physical Scene —  Capturing = ——>
Observed Measurements
Differentiable ﬂ w (a) Typical Observation (b) Lucky Frame

B Rendering —
i I
: Simulated \lmulated Measurements - |
| Turbulence
I I
I I
o A%ve'rs_anal — e
— (c) Mao et al. (d) Ours

S

(a) Typical (b) Lucky (c) Mao et al. (d) Ours-IN (e) Ours-DIP

Feng, Brandon Yushan, Mingyang Xie, and Christopher A. Metzler. “TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind
Deconvolution with Applications to Imaging Through Turbulence.” arXiv, August 22, 2022. https://doi.org/10.48550/arXiv.2203.06764.
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Diffusion Models .

« What is diffusion? S 2

Low Entropy

v g

William James Sidis

. . . PREFACE
Concentration Gradient Dynamic
< > Equilibrium This work sets forth a theory which is speculative in
High Low nature, there being no verifying experiments. It is based on

the idea of the reversibility of everything in time; that is,
that every type of process has its time-image, a

o Ca N we Iea N to reverse it? corresponding process which is its exact reverse with

respect to time. This accounts for all physical laws but

one, namely, the second law of thermodynamics. This law
A \F&" B A m B has been found during the nineteenth century to be a
source of a great deal of difficulty. The eminent physicist,

Clerk-Maxwell, in the middle of the nineteenth century,

L o ® ° LX) while giving a proof of that law, admitted that reversals

Py are possible by imagining a "sorting demon" who could
Y o o [ )} ® sort out the smaller particles, and separate the slower ones
o from the faster ones. This second law of thermodynamics
brought in the idea of energy-level, of unavailable energy
o (or "entropy" as it was called by Clausius) which was
constantly increasing.

L
-

Maxwell’s Demon

https://en.wikipedia.org/wiki/Maxwell%27s demon
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Diffusion Models

e Main idea: Learn to reverse a “diffusion” process

Forward Process

q(xelxe—1) q(xzlxr—1)

XT-1 XT

N_J

p(xe—1lxe) p(xr_qlxr)

Reverse Process

Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
Dhariwal, Prafulla, and Alex Nichol. “Diffusion Models Beat GANs on Image Synthesis.” arXiv, June 1, 2021. https://doi.org/10.48550/arXiv.2105.05233.
Nichol, Alex, and Prafulla Dhariwal. “Improved Denoising Diffusion Probabilistic Models.” arXiv, February 18, 2021. https://doi.org/10.48550/arXiv.2102.09672.
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Forward Process

Diffusion Models -
* Generation by learning to reverse entropy | l l l l
* Forward Process: Generate noisy signals o

from data =]

Values

— Data distribution gets gradually 31
converted to noise 0 2 4 6 B 10 12 14 16 18 20 2 24 2% 28 I I ¥ 3 3B/ 40 42 44 45 48
. Timestep t
* Reverse Process: Learn to denoise Reverse Process

— Using a neural network €g(x;, t) with

4
weights 68 which takes the noisy 2
data x; as input along with the time |
step t (and possibly other '
"conditioning" variables) to output an o
estimate of the noise €; that has been ]
added to x, to generate x;. Thisis 2]

Values

achieved by solving the following =h
optimization problem: g

T T T T T T T T T T T T T
43 45 44 42 1’-10 38 35 34 32 30 28 25 24 22 20 B 16 14 12 10 B B 4 2 o

. 2 Timestep t
ming Et,xoe|6t — €g(x, 1) "’
»
* Generation: Once the neural network is ; ' €t X7
trained, we can generate data using: : ;Oise e (xp, 0) T €0 (s, ) i
t~ X~Fmodel
o Estimated noise
x = xp — €g(xp, T) with x;~N(0,1) romn () é = ‘o Noise
* Can be improved by operating in a bl sample . Trained
compressed or latent space: Latent N - -
diffusion Training Generation

Simplest Diffusion Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
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SORA: Diffusion Transformer
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https://openai.com/research/video-generation-models-as-world-simulators
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Application of Generative Modelling
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