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GENERATIVE MACHINE LEARNING
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Creating noise from data is easy; creating data from noise is generative modeling.*

[*] Song, Yang, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. “Score-Based Generative 
Modeling through Stochastic Differential Equations.” arXiv, February 10, 2021. https://doi.org/10.48550/arXiv.2011.13456.

https://doi.org/10.48550/arXiv.2011.13456
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Background: Introduction to Sampling

• Empirical distribution Modelling: Making a distribution from 
observations (Density Estimation)
– Example: 

• Observations: {H,T,H,T,H}
• P(H) = 3/5 = 0.6, P(T) = 2/5 = 0.4
• Shown as probability distribution (normalized histogram)

• Sampling from a distribution
– Assume you are given a probability distribution p(x), then if you “sample” 

from it, you will be generating samples x which when observed will give 
you p(x)

– Example
• Given: P(H) = 0.6, P(T) = 0.4
• Generated Samples: {H,T,H,T,H,T,H,H,T,H}
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Background: Generating samples 

• Can we generate samples of a target distribution using 
samples from a source distribution as input?
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Generator
𝑥~𝑆(𝑥) 𝑧~𝑇(𝑧)

X = np.random.rand(N) Z = np.random.randn(N)+0.5

𝑥~𝑈(𝑎 = 0, 𝑏 = 1) 𝑧~𝑁(𝜇 = 0.5, 𝜎 = 1)
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A generative look at Machine Learning
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Lex Fridman. Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series, 2020. 
https://www.youtube.com/watch?v=Ow25mjFjSmg.

𝑝(𝑦|𝑥)
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Fundamental aim of a discriminative model
Learn a model of p(y|x) from observations

Fundamental aim of a Generative Model
Learn a model of 𝑝(𝑥) or 𝑝(𝑥|𝑦) from observations to generate 

samples from random noise input

Training input

Training input

https://www.youtube.com/watch?v=Ow25mjFjSmg
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Generating data with machine learning

• Can we generate examples that 
follow the same distribution as a 
given set of examples using noise 
as input?

• Sampling from the multi-
dimensional distribution of data

• How?
– Density Modelling

• Modelling the Probability of observing 
a given point 𝑝(𝑥)

• Once I have an explicit or implicit 𝑝(𝑥), 
I can sample from that distribution to 
generate an example

6
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Generating Data with Autoencoders
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Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb 
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https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb
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Generative Models

• Can we build a model to approximate a data distribution 
from given examples?

Lecture 12 -

Density estimation: a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x)

- Algorithms: Gaussian Mixture Models, Kernel Density Estimation, Variational Autoencoders

- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

- Algorithms: Vanilla autoencoder, Generative adversarial networks (GANs), Diffusion Models, Normalizing Flows

https://openai.com/blog/generative-models/ 8

Real image (training data) ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)
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A Simple Generative Machine Learning Example

• Nature
– A coin with p(x=H)=0.7 and  p(x=T)=0.3

– Generates data

• Given Data
– {H,H,H,T,T,H,T,H,H,T}

• Goal of Generative Learning
– Make a machine learning model that can generate data (heads or tails) 

that follows the same distribution as data from the real world or natural 
process. 

– The difference between the probability distributions of real and generated 
samples should be small
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Noise

{H,H,H,T,T,H,T,H,H,T}
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REO for Generative Models
• Goal

– Given a set of real-world examples: 𝑥~𝑝 𝑥 . 𝑝 𝑥  is not explicitly 
known.

– Learn parameters 𝜃 of the model 𝑓(𝑧; 𝜃) so that the examples 
generated by the model follow the same distribution as the real-
world examples 𝑥~𝑝(𝑥) 

• Representation: 𝑥 =  𝑓(𝑧; 𝜃) with 𝑧~𝑁𝑜𝑖𝑠𝑒
– Let’s denote the distribution of examples generated by this model 

as 𝑝𝜃(𝑥). 
– Note that the model may not have an explicit internal formula for 

this distribution.

• Evaluation: 
– Differences between the probability distribution of 𝑥 in nature 

𝑝(𝑥) and of the generated samples 𝑝𝜃(𝑥) from 𝑓(𝑧; 𝜃)
• That is, if I sample from 𝑝 𝑥  or if I sample from𝑝𝜃(𝑥), the real and 

generated samples are similar

• Optimization
– Use gradient descent to optimize for 𝜃
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𝑧~𝑁(𝟎, 𝑰)

𝑓(𝑧; 𝜃)

Real image (training data) ~ 𝑝 𝑥
𝑝 𝑥  is not given. 

Generated samples ~ 𝑝𝜃(𝑥) 
𝑝𝜃(𝑥) may be implicit.
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Generative Adversarial Networks

• Use “Adversarial Training” to train a generator and 
discriminator simultaneously

• Generator: Generate samples from noise

• Discriminator: Detect “fake” or generated samples

11
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Adversarial Training in a GAN

• GAN Training the goal is to:
– Train the discriminator to be good at detecting fakes

• Simple classification: Discriminator should produce 1 for real and 0 
for generated 

▪ min
𝜽𝑫

σ𝑥𝑖∈𝑅 𝑙(𝐷(𝒙𝑖; 𝜽𝑫), 1) + σ𝑧𝑗~𝑁 𝑙(𝐷(𝐺 𝒛𝑗; 𝜽𝑮 ; 𝜽𝑫), 0) 

– Train the generator to be so good that the discriminator 
labels generated samples as “Real”
• The generator exploits the discriminator’s ability or knowledge to 

distinguish between real and generated samples to its advantage

• The generator is optimized such that the discriminator produces 1 
for generated examples

▪ min
𝜽𝑮

σ𝒛𝑗~𝑁 𝑙(𝐷(𝐺 𝒛𝒋; 𝜽𝑮 ; 𝜽𝑫), 1) 

▪ OR equivalently, the generator is optimized such that the 
discriminator generates errors in classifying generated examples 
(note the max below)

▪ max
𝜽𝑮

σ𝒛𝒋~𝑁 𝑙(𝐷(𝐺 𝑧𝑗; 𝜽𝑮 ; 𝜽𝑫), 0)

▪ Can also add additional loss terms for quality/realism etc.
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GAN Tutorial

13

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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How to go from generating coin flips to images?

• Assume you are given B&W images for training 
a GAN to generate more images like that. 

• Let’s look at a single pixel location in each 
image
– We have a distribution of pixel values across all 

images at that location
• We would like our GAN to generate data according to 

that distribution at that pixel location

• Naïve idea: Have multiple GANs – one for each pixel 
location

– Assumes each pixel is independent of the other

– Computationally intensive

• We can train a single GAN to generate a multi-
dimensional probability distribution by using a multi-
output generator.

14
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Unconditional vs Conditional Generation

• Unconditional Generative Modelling

– Simple model the probability distribution of the data p(x)

• Example: Generating images without paying any regard to the digit
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Unconditional vs Conditional Generation

• Conditional Generative Modelling

– Model the distribution p(x|y) of data x conditioned on a variable y

• Example: Generating images for a given digit
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GANs Applications

• GANs have some impressive applications

– Synthetic Image Generation

– Speech Generation

– Image to Image Translation

– Style Transfer

– Deep Fakes

18

Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.  https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/ 

Raevskiy, Mikhail. “Write Your First Generative Adversarial Network 
Model on PyTorch.” Medium, August 31, 2020. 
https://medium.com/dev-genius/write-your-first-generative-
adversarial-network-model-on-pytorch-7dc0c7c892c7.

Barebones GAN 
https://github.com/foxtrotmike/CS909/blob/mas
ter/simpleGAN.ipynb 

https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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https://github.com/hindupuravinash/the-gan-zoo 12

8

The GAN Zoo

19

https://github.com/hindupuravinash/the-gan-zoo
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Text-to-Image Synthesis

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, D. Metaxas, “StackGAN: Text to Photo-realistic Image Synthesis with 
Stacked Generative Adversarial Networks”, arXiv prepring, 2016
S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw”, NIPS 2016

20
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Text to Image – Results

21
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Image-to-image Translation

P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks”, 

arXiv preprint, 2016 

22
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Unpaired Transformation – Cycle GAN, Disco GAN

Transform an object from one domain to another without paired data 

photo van Gogh

Domain X Domain Y

23
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TurbuGAN
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Feng, Brandon Yushan, Mingyang Xie, and Christopher A. Metzler. “TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind 
Deconvolution with Applications to Imaging Through Turbulence.” arXiv, August 22, 2022. https://doi.org/10.48550/arXiv.2203.06764.

https://doi.org/10.48550/arXiv.2203.06764
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Diffusion Models
• What is diffusion?

• Can we learn to reverse it?

25

High EntropyLow Entropy

https://en.wikipedia.org/wiki/Maxwell%27s_demon 

1925

Maxwell’s Demon

https://en.wikipedia.org/wiki/Maxwell%27s_demon
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Diffusion Models

• Main idea: Learn to reverse a “diffusion” process

26

Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
Dhariwal, Prafulla, and Alex Nichol. “Diffusion Models Beat GANs on Image Synthesis.” arXiv, June 1, 2021.  https://doi.org/10.48550/arXiv.2105.05233.
Nichol, Alex, and Prafulla Dhariwal. “Improved Denoising Diffusion Probabilistic Models.” arXiv, February 18, 2021. https://doi.org/10.48550/arXiv.2102.09672.

https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
https://doi.org/10.48550/arXiv.2105.05233
https://doi.org/10.48550/arXiv.2102.09672
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Diffusion Models

• Generation by learning to reverse entropy
• Forward Process: Generate noisy signals 

from data
– Data distribution gets gradually 

converted to noise
• Reverse Process: Learn to denoise

– Using a neural network  𝜖𝜃 𝑥𝑡 , 𝑡  with 
weights  𝜃 which takes the noisy 
data 𝑥𝑡 as input along with the time 
step 𝑡 (and possibly other 
"conditioning" variables) to output an 
estimate of the noise 𝜖𝑡  that has been 
added to  𝑥0 to generate  𝑥𝑡. This is 
achieved by solving the following 
optimization problem:

• Generation: Once the neural network is 
trained, we can generate data using:

• Can be improved by operating in a 
compressed or latent space: Latent 
diffusion

27

Simplest Diffusion Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb 

minθ 𝐸𝑡,𝑥0𝜖 𝜖𝑡 − 𝜖𝜃 𝑥𝑡, 𝑡 2

𝑥 = 𝑥𝑇 − 𝜖𝜃 𝑥𝑇 , 𝑇  with 𝑥𝑇~𝑁(0,1)
NN

𝜖𝜃 𝑥𝑡, 𝑡𝑇
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https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
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SORA: Diffusion Transformer

28

https://openai.com/research/video-generation-models-as-world-simulators 

https://openai.com/research/video-generation-models-as-world-simulators
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Application of Generative Modelling

29
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