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Introduction to Sampling

 Making a distribution from observations

— Assume you are given a bunch of samples, can you make a
probability distribution out of it?

 Sampling from a distribution

— Assume you are given a probability distribution p(x), then if you
“sample” from it, you will be generating samples x which when
observed will give you p(x)
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A generative look at Machine Learning
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Lex Fridman. Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series, 2020.
https://www.youtube.com/watch?v=0w25mjFjSmg.
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https://www.youtube.com/watch?v=Ow25mjFjSmg

Generating data with machine learning

 Can we generate examples?
e How?

— Density Modelling

* Modelling the Probability of
observing a given point p(x)

* Once | have an explicit or implicit
p(x), | can sample from that
distribution to generate an example

 How to learn p(x)?
— We can use a neural network!
— Pmodet(X; 0)
— Relation to partitioning of the
feature space
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Generative Models

e Can we build a model to approximate a data
distribution?

s = |
< ] " :
il . LN W

Real image (training data) ~ pg,.(X) Generated samples ~ p_, qe((X)

Want to learn p ., 40(X) similar to pg,..(x)

Density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for p_.(X)
- Implicit density estimation: learn model that can sample from p_ _,.,(X) w/o explicitly defining it

https://openai.com/blog/generative-models/
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Generating Data with Autoencoders

As close as possible
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* Can generate data

Generative Models

Generative models

/\b

Direct

Explicit density

Implicit density

T

GAN
Flow Based Methods
Diffusion

\

Tractable density

Approximate density

Markov Chain

Fully Visible Belief Nets

NADE
MADE
PixelRNN/CNN

T,

Variational

Markov Chain

Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA)

lan Goodfellow. Tutorial on Generative Adversarial Networks, 2017.
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A Simple Generative Machine Learning Example

* Nature
— A coin with p(x=H)=0.7 and p(x=T)=0.3
— Generates data

* Data
— {H,H,H,TTHTHH,T}

* Goal of Generative Learning

— Make a machine learning model that can generate data (heads or tails)
that follows the same distribution as the real world or natural process

— Assume you have a learning machine G, which generates data then
difference between the probability distributions of real and generated
samples should be small
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Density Modelling in Generative Models

— Explicit Density Modelling
e The model should be able to

— Generate a sample x
— tell what is the probability of p(x=H)

* Examples

— Variational Autoencoders

— Implicit Density Modelling
* The model should be able to
— Generate a sample x

* Examples

— Generative Adversarial Networks

Data Mining
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REO for Generative Models

e Goal

— Learn parameters of the model so that the generated
examples follow the same distribution as the real world
examples

* Representation: x = f(z;0)

* Evaluation: Differences between the probability
distribution of x in nature, p(x) and of the generated
samples pg(x) from f(z; 8) should be minimized

— So that if | sample from p(x) or if | sample from pg(x), the
real and generated samples are similar

* KL Divergence
* Optimization

Data Mining University of Warwick 10



Generative Adversarial Networks

* A generator learns to generate data that “fits” the unknown
underlying probability distribution of a training set based on
whether a “discriminator” can distinguish between the
samples from the wild and the generated ones

Training set V Discriminator
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GAN Tutorial

Z€C Open in Colab

A Barebones GAN in PyTorch for generating coin flips

By Fayyaz Minhas

Let's consider a very simple coing toss as a process that generates coin flips with a probability of 0.3 of producing heads. We can describe the underlying probability
distribution for this generative process (coin toss) as p(z) where z € {H = 1,T = 0} is sampled from p(z), e, z — p(z). We would like to use a Generative Adversarial
Network (GAN) to model this process using a number of data samples or observations from the original process for training. Specifically, we would like to have a GAN with
such a generator that you (and its discriminator) wouldn't be able to tell if a series of coin tosses has been generated using the GAN or the underlying true process! In more
mathematical terms, we would like to train a generative model z = G(z; 8¢) that can generate samples x using Normally distributed random input (= -~ IN(0, 1)) such that
the probability distribution of these generated samples pe(z) is close to p(z) without knowing p(z) in advance or explicitly modelling pe(z).

Using a GAN is an overkill for this simple task and there are much simpler and more effective ways of modelling this simple problem. However, this GAN based solution is

intended to help you understand how GANs can model complex densities implicitly and can be used to generate samples that mimic the true or natural generative process.

We first simulate the coin toss and generate 1024 training samples below. The histogram shows the (sample estimate of) the true density.

wnn Histogram
A toy GAN to generate coin tosses 700 Tue
o 600
# Let's model the natural density and generate some data using that 500

% 400
import torch g 00
from torch import nn

200
import math 100
import matplotlib.pyplot as plt
import numpy as np 0 T 5 0 3 2
train_data_length = 1824 x
def cointoss(t): Example Data tensor([[e., ©., 8., ..., ©.,
phead = 6.3 1., 1.11)

ratiirn 1 A% (+

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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 Assume you are given a bunch of B&W images
for training that you would like to use to train a

GAN to generate more images like that. )
* Let’s look at a single pixel location in each 'fi
image L

4

— We have a distribution of pixel values across all
images at that location

 We would like our GAN to generate data according to
that distribution at that pixel location

* Naive idea: Have multiple GANs — one for each pixel
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— Assumes each pixel is independent of the other 700 =
— Computationally intensive 600
 We can train a single GAN to generate a multi- o
dimensional probability distribution by using a multi- e
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Unconditional vs Conditional Generation

* Unconditional Generative Modelling

— Simple model the probability distribution of the data p(x)
* Example: Generating images without paying any regard to the digit

Random Noise
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Unconditional vs Conditional Generation

* Conditional Generative Modelling

— Simple model the probability distribution p(x|y) of the data x
conditioned on a variable y
* Example: Generating images for a given digit

Random Noise

3uluonipuod

_ gives produces
Generative Model Trained Model ’

Training

conditioning
y=1
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GANs Applications

* GANs have some impressive applications

— Synthetic Image Generation Barebones GAN
https://github.com/foxtrotmike/CS909/blob/mas
— Speech Generation ter/simpleGAN.ipynb
. Raevskiy, Mikhail. “Write Your First Generative Adversarial Network
— |mage to |mage Translation Model on PyTorch.” Medium, August 31, 2020.

https://medium.com/dev-genius/write-your-first-generative-
adversarial-network-model-on-pytorch-7dcOc7c892c7.

— Style Transfer

Output

— Deep Fakes

Input labels

lan Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/
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https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb

The GAN Zoo

» Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
* C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

¢ GAN - Generative Adversarial Networks

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling ¢ CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks ¢ CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

» AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs « CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

« AdaGAN - AdaGAN: Boosting Generative Models ¢ DTN - Unsupervised Cross-Domain Image Generation

o AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets * DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

x : » DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
e AffGAN - Amortised MAP Inference for Image Super-resolution ; g ; , : <
* DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

» AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts . DtislSAN - DislGAN: Unstibeiaad Diial Leakring 1o¢ imsga-to-image Thanaldtion

* ALI - Adversarially Learned Inference » EBGAN - Energy-based Generative Adversarial Network

* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization » f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery ¢ FF-GAN - Towards Large-Pose Face Frontalization in the Wild

» ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs » GAWWN:~Leashing Whatand Whese to Uraw

* GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* Geometric GAN - Geometric GAN
¢ GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

e b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

» Bayesian GAN - Deep and Hierarchical Implicit Models

* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks « GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
» BiGAN - Adversarial Feature Learning « |AN - Neural Photo Editing with Introspective Adversarial Networks
« BS-GAN - Boundary-Seeking Generative Adversarial Networks » iGAN - Generative Visual Manipulation on the Natural Image Manifold

e CGAN - Conditional Generative Adversarial Nets ¢ IcGAN - Invertible Conditional GANs for image editing

" . . . . . . . * ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters 9 ¢ v

2 4 . « Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks o . . "

; : y ' - " < * InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks ¢ LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis
* CoGAN - Coupled Generative Adversarial Networks * LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

University of Warwick 17
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Conditional GAN

Training data: (¢, x), (condition, desired output), e.g., (text, image)

Condition ¢ |:> For Generator:
It wants the discriminator to classify (¢, G(c))
Generator |:> X as positive
Prior distribution z |:>

Learn to approximate p(x|c)

Condition ¢ : Discriminator |:> scalar

For Discriminator:
Positive example: (¢, x), e.g., the original (text, image) pair

Negative examples: (¢, G(¢)), e.g., (text, generated image) pair
(c',x), e.g., (arbitrary text, original image) pair

Data Mining University of Warwick 18



Text-to-Image Synthesis

This flower has small, round violet This flower has small, round violet
petals with a dark purple center I = petals with a dark puiple center
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S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, D. Metaxas, “StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Networks”, arXiv prepring, 2016

S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw”, NIPS 2016
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Text to Image — Results

Caption

Image

a pitcher is about to throw the ball to the batter
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a group of people on skis stand in the snow
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a man in a wet suit riding a surfboard on a wave
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Image-to-image Translation

BW to Color

Labels to Facade

Labels to Street Scene

output

input ) output
i Aerial to Map x
: input output input
Edges to Photo
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[ 1\:} k_ i
R I
|
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| n '
b
i \
output output input output

P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks”,

arXiv preprint, 2016
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Unpaired Transformation — Cycle GAN, Disco GAN

Transform an object from one domain to another without paired data

Do ain X

summer —» winter

winter —» summer

photo —»Monet

ck
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Feng, Brandon Yushan, Mingyang Xie, and Christopher A. Metzler. “TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind
Deconvolution with Applications to Imaging Through Turbulence.” arXiv, August 22, 2022. https://doi.org/10.48550/arXiv.2203.06764.
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Diffusion Models (Tutorial)

Forward Process

q(xqlxg) q(xelxe—1) q(xrlxr—_q1)
4 4
5 - : d )
L "
Xo X4 Xt—1 Xt XT-1 XT
p(xolx1) p(xe—qxe) pQxr_qlxr)

Reverse Process

https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
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Seeing without seeing

*  Takagi, Yu, and Shinji Nishimoto. “High-Resolution Image Reconstruction with Latent Diffusion Models from Human Brain Activity.” bioRxiv,
December 1, 2022. https://doi.org/10.1101/2022.11.18.517004.

Iz N— | Presented Images

Image

Presented Encoder Reconstructedi

Image 1 Image
/fé%’j Image
B J‘J Decoder

Reconstructed Images

Semantic /

Decoder Semantic
Vector
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Do NNs see like us?

* built a neural network constrained by anatomical connectivity,
and showed that with task-training it develops realistic neural
activity observed in single cells!

Optic lobe of the Drosophila Convolutional recurrent network model
lobula lobula
plate - plate
T4 o T . T _ T . e F2o
BLs 8 TS GO A P r e 2 e o i 25 2
b e , / { 4 .
Wiy light L S A0 ’__, .
s 1 Q‘v—‘ B P, " - 1 A 0 0 A B e~ S .
= | v =
' ==—====
2 = i i E=======
' lobula lobula
.- c/o Tory Herman
retina  lamina medulla l central brain retina  lamina medulla l central brain

https://twitter.com/srinituraga/status/1635352596956467209
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