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Introduction to Sampling

• Making a distribution from observations
– Assume you are given a bunch of samples, can you make a 

probability distribution out of it?

• Sampling from a distribution

– Assume you are given a probability distribution p(x), then if you 
“sample” from it, you will be generating samples x which when 
observed will give you p(x)
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A generative look at Machine Learning
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Lex Fridman. Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series, 2020. 
https://www.youtube.com/watch?v=Ow25mjFjSmg.

https://www.youtube.com/watch?v=Ow25mjFjSmg
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Generating data with machine learning

• Can we generate examples?

• How?
– Density Modelling

• Modelling the Probability of 
observing a given point p(x)

• Once I have an explicit or implicit 
p(x), I can sample from that 
distribution to generate an example

• How to learn p(x)?
– We can use a neural network!

– 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥; 𝜃)

– Relation to partitioning of the 
feature space
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Generative Models

• Can we build a model to approximate a data 
distribution?

Lecture 12 -

Density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x)

- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

https://openai.com/blog/generative-models/
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Real image (training data) ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)
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Generating Data with Autoencoders
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Generative Models

• Can generate data
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Flow Based Methods
Diffusion
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A Simple Generative Machine Learning Example

• Nature
– A coin with p(x=H)=0.7 and  p(x=T)=0.3

– Generates data

• Data
– {H,H,H,T,T,H,T,H,H,T}

• Goal of Generative Learning
– Make a machine learning model that can generate data (heads or tails) 

that follows the same distribution as the real world or natural process

– Assume you have a learning machine G, which generates data then 
difference between the probability distributions of real and generated 
samples should be small
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Density Modelling in Generative Models

– Explicit Density Modelling

• The model should be able to 
– Generate a sample x

– tell what is the probability of p(x=H)

• Examples
– Variational Autoencoders

– Implicit Density Modelling

• The model should be able to 
– Generate a sample x

• Examples
– Generative Adversarial Networks
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REO for Generative Models

• Goal
– Learn parameters of the model so that the generated 

examples follow the same distribution as the real world 
examples

• Representation: x =  𝑓(𝑧; 𝜃)
• Evaluation: Differences between the probability 

distribution of x in nature, p(x) and of the generated 
samples 𝑝𝜃(𝑥) from 𝑓(𝑧; 𝜃) should be minimized
– So that if I sample from p(x) or if I sample from 𝑝𝜃(𝑥), the 

real and generated samples are similar
• KL Divergence

• Optimization
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Generative Adversarial Networks

• A generator learns to generate data that “fits” the unknown 
underlying probability distribution of a training set based on 
whether a “discriminator” can distinguish between the 
samples from the wild and the generated ones
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GAN Tutorial
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https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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How to go from generating coin flips to images?

• Assume you are given a bunch of B&W images 
for training that you would like to use to train a 
GAN to generate more images like that. 

• Let’s look at a single pixel location in each 
image
– We have a distribution of pixel values across all 

images at that location
• We would like our GAN to generate data according to 

that distribution at that pixel location
• Naïve idea: Have multiple GANs – one for each pixel 

location
– Assumes each pixel is independent of the other
– Computationally intensive

• We can train a single GAN to generate a multi-
dimensional probability distribution by using a multi-
output generator.
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Unconditional vs Conditional Generation

• Unconditional Generative Modelling

– Simple model the probability distribution of the data p(x)

• Example: Generating images without paying any regard to the digit
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Unconditional vs Conditional Generation

• Conditional Generative Modelling

– Simple model the probability distribution p(x|y) of the data x 
conditioned on a variable y

• Example: Generating images for a given digit
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GANs Applications

• GANs have some impressive applications

– Synthetic Image Generation

– Speech Generation

– Image to Image Translation

– Style Transfer

– Deep Fakes
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Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.  https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/ 

Raevskiy, Mikhail. “Write Your First Generative Adversarial Network 
Model on PyTorch.” Medium, August 31, 2020. 
https://medium.com/dev-genius/write-your-first-generative-
adversarial-network-model-on-pytorch-7dc0c7c892c7.

Barebones GAN 
https://github.com/foxtrotmike/CS909/blob/mas
ter/simpleGAN.ipynb 

https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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https://github.com/hindupuravinash/the-gan-zoo12
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The GAN Zoo
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https://github.com/hindupuravinash/the-gan-zoo
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Conditional GAN

Generator 𝑥

𝑧

Condition 𝑐

Prior distribution

Learn to approximate 𝑝(𝑥|𝑐)

Discriminator scalar

Training data: 𝑐, 𝑥 , (condition, desired output), e.g., (text, image) 

For Discriminator:
Positive example: 𝑐, 𝑥 , e.g., the original (text, image) pair 

Negative examples: 𝑐, 𝐺(𝑐) ,  e.g., (text, generated image) pair
𝑐′, 𝑥 ,   e.g., (arbitrary text, original image) pair

For Generator:
It wants the discriminator to classify 𝑐, 𝐺(𝑐)
as positive
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Condition 𝑐
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Text-to-Image Synthesis

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, D. Metaxas, “StackGAN: Text to Photo-realistic Image Synthesis with 
Stacked Generative Adversarial Networks”, arXiv prepring, 2016
S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw”, NIPS 2016
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Text to Image – Results
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Image-to-image Translation

P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks”, 

arXiv preprint, 2016 
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Unpaired Transformation – Cycle GAN, Disco GAN

Transform an object from one domain to another without paired data 

photo van Gogh

Domain X Domain Y
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TurbuGAN
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Feng, Brandon Yushan, Mingyang Xie, and Christopher A. Metzler. “TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind 
Deconvolution with Applications to Imaging Through Turbulence.” arXiv, August 22, 2022. https://doi.org/10.48550/arXiv.2203.06764.

https://doi.org/10.48550/arXiv.2203.06764
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Diffusion Models (Tutorial)
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https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb 

https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
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Seeing without seeing
• Takagi, Yu, and Shinji Nishimoto. “High-Resolution Image Reconstruction with Latent Diffusion Models from Human Brain Activity.” bioRxiv, 

December 1, 2022. https://doi.org/10.1101/2022.11.18.517004.
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https://doi.org/10.1101/2022.11.18.517004
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Do NNs see like us?

• built a neural network constrained by anatomical connectivity, 
and showed that with task-training it develops realistic neural 
activity observed in single cells! 

26

https://twitter.com/srinituraga/status/1635352596956467209 

https://twitter.com/srinituraga/status/1635352596956467209
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