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Decision Trees

• Task: Predict survival of a passenger on RMS Titanic

• Given features

– Gender

– Class

– Adult or not

• Predict

– Survived

– Not survived
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Looking at the data
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Converting data to numbers

• Numerical
– Example: Age

• Categorical
– Nominal: No intrinsic ordering (e.g., Gender)

• If more than two values, you may want to use a single column for each type

– Ordinal: Clear Ordering (e.g., Class)

• Sometimes, it may be useful to convert numerical variables to 
categorical ones or ordinal to nominal ones
– Age to IsAdult

– Class to In 3rd Class

4
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Decision Trees

5

• A tree predicting survival rate for titanic passengers
• A decision tree, in essence, “explains” a dataset by partitioning the 

space with respect to a single feature at a time
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How to build decision trees?

• We need to decide what feature (or attribute) to 
pick for splitting and what value
– Simplest case: A single feature divides the data into 

two groups which correspond to class labels (Done!)
– Practically: We pick an attribute and its value such 

that the division into groups based on this attribute 
leads to “pure” groups 

– Recursively do this to get the tree
– We use a metric that tells us how purer will be the 

groups if we use a certain attribute/value for splitting
• Called Information Gain

– How much we gain by splitting based on a certain attribute?

𝐼𝐺 𝑇, 𝑎 = 𝐼 𝑇 − 

𝑘=1

|𝑎|
|𝑎𝑘|

𝑁
𝐼(𝑎𝑘)
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Which feature should we pick first?

7

x1

x2
Current Error Rate: 16/48 = 1/3 

32

16

At each step pick the feature that gives the most “information gain” or the most reduction in error
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Check x2

8

x1

x2 Total points: 48
Current Error Rate: 16/48 = 1/3 

32

16
For a split along x2 = 0
Total points in the top half = 19 out of 48 
Error in the top half: 8/19 

Total points in the bottom half: 29
Error in the bottom half = 5/29

Total error: 
8

19

19

48
+

5

29

29

48
=  13/48

Reduction in error = 16/48-13/48 = 3/48

At each step pick the feature that gives the most “information gain”
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Check x1

9

x1

x2 Total points: 48
Current Error Rate: 16/48 = 1/3 

32

16
For a split along x1 = 0
Total points in the L half = 32 out of 48 
Error in the L half: 4/32 

Total points in the R half: 16
Error in the bottom half = 4/16

Total error: 
4

32

32

48
+

4

16

16

48
 = 8/48

Reduction in error = 16/48-8/48 = 8/48

x1 Gives the most improvement in error rate
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Continuing: Depth = 1
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x1

x2

32

16
If x1<0

yes no

Assign Red Assign Blue
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Continuing: Depth = 2
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x1

x2

32

16
If x1<0

yes no

Assign BlueIf x2<-1

yes no

Assign Red Assign Blue
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Continuing: Depth = 3
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x1

x2

32

16
If x1<0

yes no

Assign BlueIf x2<-1

yes no

Assign Red If x2<0.5

yes no

Assign Blue Assign Red
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Continuing
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x1

x2

32

16
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Continuing

14

x1

x2

32

16
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Which feature should we pick first?
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x1

x2

32

16
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Final

16

x1

x2

32

16

If x1<0

yes no

If x2<-1

yes no

Assign Red If x2<0.5

yes no

Assign Blue Assign Red
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Other ways of defining Information Gain

• We can define information gain based on

– Error

– Weighted error

– Entropy (Measures how much “disordered” each branch is)

– Gini (Measure how much “pure” each branch is)

17
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Using sklearn

23

https://scikit-learn.org/stable/modules/tree.html

from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)

https://scikit-learn.org/stable/modules/tree.html
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A detailed look

• A large number of hyperparameters
– Require careful selection

– You need to understand the role of each one of them

25

DecisionTreeClassifier(criterion='gini', splitter='best’, 
 max_depth=None, 
 min_samples_split=2, 
 min_samples_leaf=1, 
 min_weight_fraction_leaf=0.0,
 max_features=None, 
 max_leaf_nodes=None, 
 min_impurity_decrease=0.0, 
 min_impurity_split=None, 
 class_weight=None)
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Choosing depth

• How deep to go?

– The shallow we stay, the higher empirical error but the simpler the 
boundary

– The deeper we go, the lower the empirical error but the more 
complex the boundary

• May lead to poorer generalization

26
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Advantages and Disadvantages

27

Advantages Disadvantages

Simple to understand and interpret Less Accurate

Able to handle both numerical and categorical 
data

Optimal Decision Tree learning is NP-complete

Requires little data preparation Sensitive to data changes

Uses a white box model Can create overly complex boundaries

Possible to validate a model using statistical 
tests

Impurity metrics can bias results to more levels

Non-statistical approach that makes no 
assumptions of the training data or prediction 
residuals

Complexity control through tree depth 
parameter

Built-in feature selection and interpretation Practical implementation needs some “tricks”
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The curious case of weak learners

• Shallow trees give weak classification

– However, if we combine the outputs of many weak learners, we can 
get a strong learner

– Change data given to each tree learner

– Change features given 

28
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Ensemble Methods

• Combine the predictions from 
multiple “weak” learners
– Uncorrelated errors in predictions

• Each learner makes errors on 
different examples

– If errors are correlated, little 
advantage in combining the 
classifiers

• How to make different classifiers
– Different Data set partitioning
– Different Features
– Different parameters
– Learning errors from previously 

trained methods

29

Polikar 2006: http://users.rowan.edu/~polikar/RESEARCH/PUBLICATIONS/csm06.pdf 
Ensemble Machine Learning Methods and Applications (chapter 1), 2012
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning
_%20Methods%20and%20Applications%20%5BZhang%20%26%20Ma%202012-02-17%5D.pdf

https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf


Data Mining University of Warwick

Ensemble Methods

• Bootstrap Aggregation (Bagging)

– Involves having each model in the ensemble vote with equal weight. 

– Trains each model in the ensemble using a randomly drawn subset of 
the training set. 

– Random Forest algorithm

30

https://en.wikipedia.org/wiki/Ensemble_learning

https://en.wikipedia.org/wiki/Ensemble_learning
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Bagging

31



Data Mining University of Warwick

Random Forest Classification

32

sklearn.ensemble.RandomForestClassifier(n_estimators=100, max_depth=None, 
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, 
min_impurity_split=None, bootstrap=True, class_weight=None, max_samples=None)
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Each leaf can produce a weighted output as well

33
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Ensemble Methods

• Boosting

– Boosting involves incrementally building an ensemble by training 
each new model instance to emphasize the training instances that 
previous models mis-classified.

– Adaboost

– Gradient Boosted Trees (XGBoost)

34
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XGBoost: A Scalable Tree Boosting System

• An implementation of gradient-boosted trees

• Uses structural risk minimization

• Incrementally builds a machine learning model by combining 
simple trees

• Very successful in different Kaggle Competitions

• Easy to use

35
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XGBoost

36
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Algorithm Description

• Representation

– A collection of trees

• For a given example, the outputs of all trees is added to produce the final 
output

37
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Algorithm Description

• Evaluation

– Using Structural Risk Minimization

• Regularization
– Reduce the number of tree leaves

– Reduce the weight of the leaves

• Reduce the empirical error

• Optimization

– At tth step, learn a single tree using gradient descent that to reduce 
the error

38
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XGBoost Parameters

39https://machinelearningmastery.com/develop-first-xgboost-model-python-scikit-learn/

https://machinelearningmastery.com/develop-first-xgboost-model-python-scikit-learn/
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SHAP: A unified approach to explain the output of any machine learning model

40

# https://github.com/slundberg/shap
import xgboost
import shap
# load JS visualization code to notebook
shap.initjs() 

# train XGBoost model
X,y = shap.datasets.boston()
model = xgboost.train({"learning_rate": 0.01}, 
xgboost.DMatrix(X, label=y), 100)

# explain the model's predictions using SHAP values
# (same syntax works for LightGBM, CatBoost, and scikit-
learn models)
shap_values = shap.TreeExplainer(model).shap_values(X)
# visualize the first prediction's explanation
shap.force_plot(shap_values[0,:], X.iloc[0,:])

https://github.com/slundberg/shap
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References
• XGBoost: A Scalable Tree Boosting System

• https://www.slideshare.net/JaroslawSzymczak1/xgboost-the-algorithm-that-wins-every-competition

– Especially the feature importance

• https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

41

https://www.slideshare.net/JaroslawSzymczak1/xgboost-the-algorithm-that-wins-every-competition
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
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Class Notebook

• https://github.com/foxtrotmike/CS909/blob/master/trees.ipyn
b 

42

https://github.com/foxtrotmike/CS909/blob/master/trees.ipynb
https://github.com/foxtrotmike/CS909/blob/master/trees.ipynb
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• Hyperparameter guide

– https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.ht
ml 

• Missing values: built-in handling

– https://datascience.stackexchange.com/questions/15305/how-does-
xgboost-learn-what-are-the-inputs-for-missing-values

– https://towardsdatascience.com/xgboost-is-not-black-magic-
56ca013144b4 

43

https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html
https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html
https://datascience.stackexchange.com/questions/15305/how-does-xgboost-learn-what-are-the-inputs-for-missing-values
https://datascience.stackexchange.com/questions/15305/how-does-xgboost-learn-what-are-the-inputs-for-missing-values
https://towardsdatascience.com/xgboost-is-not-black-magic-56ca013144b4
https://towardsdatascience.com/xgboost-is-not-black-magic-56ca013144b4
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LightGBM and catboost

• Faster and Lighter GBM with early stopping

– https://lightgbm.readthedocs.io/en/latest/Python-Intro.html 

– However, xgboost also supports a similar model now

• https://github.com/dmlc/xgboost/issues/1950 

• https://catboost.ai/

44

https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
https://github.com/dmlc/xgboost/issues/1950
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End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis
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Decision Tree Learning

• Decision tree learning is the construction of a decision tree from class-
labeled training tuples. A decision tree is a flow-chart-like structure, where 
each internal (non-leaf) node denotes a test on an attribute, each branch 
represents the outcome of a test, and each leaf (or terminal) node holds a 
class label. The topmost node in a tree is the root node.

• Algorithms for constructing decision trees usually work top-down, by 
choosing a variable at each step that best splits the set of items.

46

3rd Class

Age
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Top-down induction of decision trees (TDIDT)

• A tree can be “learned” by splitting 
the source set into subsets based 
on an attribute value test

• Pick the attribute that creates 
“purer” subsets (greedy approach!)

• This process is repeated on each 
derived subset in a recursive 
manner called recursive 
partitioning. 

• The recursion is completed when 
the subset at a node has all the 
same value of the target variable, 
or when splitting no longer adds 
value to the predictions

47

Teknomo Kardi (2009): http://people.revoledu.com/kardi/tutorial/DecisionTree/

http://people.revoledu.com/kardi/tutorial/DecisionTree/
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Measures of Impurity
• Gini impurity (CART)

• 𝐺𝐼 𝑇, 𝑎 = 𝐼 𝑇 − σ𝑘=1
|𝑎| |𝑎𝑘|

𝑁
𝐼(𝑎𝑘)

• Entropy-Based Information Gain (ID, C4.5, C5.0)

• 𝐼𝐺 𝑇, 𝑎 = 𝐻 𝑇 − σ𝑘=1
|𝑎| |𝑎𝑘|

𝑁
𝐻(𝑎𝑘)

48

𝑎𝑘 is the kth subset partition 
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Measuring Impurity

• Variance Reduction (Regression)

49
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IG = 1.571- {(5/10)0.722+(2/10)0+(3/10)0 = 1.210

Teknomo Kardi (2009): http://people.revoledu.com/kardi/tutorial/DecisionTree/

http://people.revoledu.com/kardi/tutorial/DecisionTree/
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Choosing the feature

• Advantages and Disadvantages

51

Advantages Disadvantages

Simple to understand and interpret Less Accurate

Able to handle both numerical and categorical 
data

Optimal Decision Tree learning is NP-complete

Requires little data preparation Sensitive to data changes

Uses a white box model Can create overly complex boundaries

Possible to validate a model using statistical 
tests

Impurity metrics can bias results to more levels

Non-statistical approach that makes no 
assumptions of the training data or prediction 
residuals

Complexity control through tree depth 
parameter

Built-in feature selection and interpretation Practical imlementation needs some “tricks”
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Ensemble Methods

• Combine the predictions from 
multiple “weak” learners
– Uncorrelated errors in predictions

• Each learner makes errors on 
different examples

– If errors are correlated, little 
advantage in combining the 
classifiers

• How to make different classifiers
– Different Data set partitioning
– Different Features
– Different parameters
– Learning errors from previously 

trained methods

52

Polikar 2006: http://users.rowan.edu/~polikar/RESEARCH/PUBLICATIONS/csm06.pdf 
Ensemble Machine Learning Methods and Applications (chapter 1), 2012
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning
_%20Methods%20and%20Applications%20%5BZhang%20%26%20Ma%202012-02-17%5D.pdf

https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
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Ensemble methods
• Bootstrap Aggregation (Bagging)

– Involves having each model in the ensemble vote with equal weight. 
– Trains each model in the ensemble using a randomly drawn subset of 

the training set. 
– Random Forest algorithm

• Boosting
– Boosting involves incrementally building an ensemble by training each 

new model instance to emphasize the training instances that previous 
models mis-classified.

– Adaboost
– Gradient Boosted Trees

• Stacking (Stacked Generalization)
– Build models and then build a model that predicts the output based 

on the prediction of individual models

• Bayesian Parameter Modeling, Bayesian Model Combination

https://en.wikipedia.org/wiki/Ensemble_learning

53

https://en.wikipedia.org/wiki/Ensemble_learning
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XGBoost: A Scalable Tree Boosting System

• An implementation of gradient-boosted trees

• Uses structural risk minimization

• Incrementally builds a machine learning model by combining 
simple trees

• Very successful in different Kaggle Competitions

• Easy to use

55
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SRM

• Representation: Output score for a given example is the 
sum of K tree scores

• Loss: Sum of losses over individual examples (regression 
loss, classification loss, etc.)

• Model Complexity: Number of trees, norm of leaf weights, 
etc.

56

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 𝐿 𝑋, 𝑌; 𝑓 + 𝜆𝑔 𝑓

𝑋, 𝑌 is the training data
𝑓 is the learning function

Regularization 

Classifier Complexity
(smoothing) term

Empirical Loss (or  risk) 

termStructural Risk
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Structural Risk in Trees: Model Complexity

• Assume a regression tree with T leaves

• We define tree by a vector of scores in leafs, and a leaf index 
mapping function that maps an instance to a leaf 

57
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Structural Risk in Trees : Model Complexity

58
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Representation: Using Additive Boosting

• Start off with a simple predictor

• The next step predictor tries to reduce the error between the 
prediction of the previous stage and the target by addition

59
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Evaluation: Additive Training

60
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Optimization: Taylor Expansion

61
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Optimization

• This gives (notice, gi, hi depend only on loss)

62
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Optimization

• We know

• Therefore, for our objective function

• We get

63
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Structural Risk of Trees

64
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Searching Algorithm for Single Tree

65
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Greedy Split: Information Gain

66



Data Mining University of Warwick

Greedy Splitting

• Algorithm
• For each node, enumerate over all features 

– For each feature, sorted the instances by feature value 
• Use a linear scan to decide the best split along that feature 

– Take the best split solution along all the features 

67
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Boosted Tree Algorithm

68
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Code

69

import pandas as pd
import numpy as np
import xgboost as xgb

train = pd.read_csv("../input/train.csv")
test = pd.read_csv("../input/test.csv")
submission = pd.read_csv("../input/sampleSubmission.csv")
#target is class_1, ..., class_9 - needs to be converted to 0, ..., 8
train['target'] = train['target'].apply(lambda val: np.int64(val[-1:]))-1

Xy_train = train.as_matrix()
X_train = Xy_train[:,1:-1]
y_train = Xy_train[:,-1:].ravel()

X_test = test.as_matrix()[:,1:]

dtrain = xgb.DMatrix(X_train, y_train, missing=np.NaN)
dtest = xgb.DMatrix(X_test, missing=np.NaN)

params = {"objective": "multi:softprob", "eval_metric": "mlogloss", "booster" : "gbtree",
"eta": 0.05, "max_depth": 3, "subsample": 0.6, "colsample_bytree": 0.7, "num_class": 9}

num_boost_round = 100

gbm = xgb.train(params, dtrain, num_boost_round)
pred = gbm.predict(dtest)

print(gbm.eval(dtrain))

to account for 
examples importance 
we can assign weights 
to them in DMatrix
(not done here)
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Feature Importance

70

importance = gbm.get_fscore()

fdict = {}
for key, name in enumerate(train.columns[1:-1]):

fdict['f{0}'.format(key)] = name

importance_with_names = []

for key, value in importance.items():
importance_with_names.append((fdict[key], value))

pd.DataFrame(importance_with_names, columns=['feature',
'fscore']).\
set_index('feature').sort_values(['fscore'],
ascending=[0])[:20].\
plot(kind="barh", legend=False, figsize=(6, 10))
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XGBoost via Scikit

71

import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.metrics import log_loss

train = pd.read_csv("../input/train.csv")
test = pd.read_csv("../input/test.csv")
submission = pd.read_csv("../input/sampleSubmission.csv")
#target is class_1, ..., class_9 - needs to be converted to 0, ..., 8
train['target'] = train['target'].apply(lambda val: np.int64(val[-1:]))-1

Xy_train = train.as_matrix()
X_train = Xy_train[:,1:-1]
y_train = Xy_train[:,-1:].ravel()

X_test = test.as_matrix()[:,1:]

num_boost_round = 100

gbm = xgb.XGBClassifier(max_depth=3, learning_rate=0.05, objective="multi:softprob", subsample=0.6,
colsample_bytree=0.7, n_estimators=num_boost_round)

gbm = gbm.fit(X_train, y_train)

pred = gbm.predict_proba(X_test)

y_hat_train = gbm.predict_proba(X_train)
print(log_loss(y_train, y_hat_train))
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XGBoost Parameters

72
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SHAP: A unified approach to explain the output of any machine learning model

73

# https://github.com/slundberg/shap
import xgboost
import shap
# load JS visualization code to notebook
shap.initjs() 

# train XGBoost model
X,y = shap.datasets.boston()
model = xgboost.train({"learning_rate": 0.01}, 
xgboost.DMatrix(X, label=y), 100)

# explain the model's predictions using SHAP values
# (same syntax works for LightGBM, CatBoost, and scikit-
learn models)
shap_values = shap.TreeExplainer(model).shap_values(X)
# visualize the first prediction's explanation
shap.force_plot(shap_values[0,:], X.iloc[0,:])

https://github.com/slundberg/shap
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References
• XGBoost: A Scalable Tree Boosting System

• https://www.slideshare.net/JaroslawSzymczak1/xgboost-the-algorithm-that-wins-every-competition

– Especially the feature importance

• https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

74

https://www.slideshare.net/JaroslawSzymczak1/xgboost-the-algorithm-that-wins-every-competition
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
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End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis
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