Quantum-enhanced Financial Technologies

An overview of QSig Workshop Edinburgh, UK 26 January 2024 **Presented by:** Mahshid Delavar, PhD 23 Feb 2024

Agenda

- Money and anti-counterfeiting strategies
- Quantum Money (Private and Public)
- Extensions of Quantum Money: Quantum Lightning and One-shot Signature
- One-shot Signature: How to build it and its applications

Anti-Counterfieting Strategies

Isaac Newton

Holograms, embedded strips, "microprinting," special inks

Anti-Counterfieting Strategies

Problem: From a CS perspective, uncopyable cash seems impossible for trivial reasons

Any printing device a good guy can build, a determined bad guy can also build

 $x \rightarrow (x,x)$ is an easy computation

Anti-Counterfieting Strategies in Digital World

A trusted third party authorizes every transaction

Trusted third party is distributed over the Internet

OK, but sometimes we need **cash**, especially for privacy reasons, and that seems impossible to secure, at least in classical physics

The No-Cloning Theorem

Private Quantum Money Wiesner ~1969

- Each Bill has n qubits
- Each qubit is secretly prepared in one of four BB84 states |0⟩, |1⟩, |+⟩, |-⟩

Private Quantum Money

Private Quantum Money

Solves the copyable problem of the cash

But Still, if only the bank can verify the bills, doesn't that sort of defeat the purpose of cash?

Public Quantum Money

- Mint only involved in making new notes, not verification
- The procedure to generate new banknotes is kept secret.

Public Quantum Money Quantum Lightning One-S

One-Shot Signature

- Quantum Lightning is a primitive to build a Public Quantum Money where the procedure of creating banknotes is publicly known.
- One-shot Signature is a primitive to build a Public Quantum Money with Classical Communication.
- One of their applications is creating *Decentralized Blockchain-Less Cryptocurrency*

Levels of Security of Hash functions

Classical Collision Resistance

Levels of Security of Hash functions

Unequivocal: no efficient adversary can come up with an image h and a predicate p and later on, given a bit b, find a pre-image x such that H(x) = h and p(x) = b.

Collapsing: no efficient adversary can distinguish the following oracles:

- MeasureOutput($\sum_{x} a_x |x\rangle$): Given the quantum state $\sum_{x} a_x |x\rangle$ apply H on superposition to get the state $\sum_{x} a_x |x\rangle |H(x)\rangle$. Then measure the second register to get $|\psi_0\rangle \propto \sum_{x:H(x)=h} a_x |x\rangle |y\rangle$ and return $|\psi_0\rangle$.
- MeasureInput($\sum_{x} a_x |x\rangle$): Given the quantum state $\sum_{x} a_x |x\rangle$, measure it to get a random x and return $|\psi_1\rangle = |x\rangle |H(x)\rangle$.

Requires a hash function that is Collision-Resistant but Equivocal

H is a one-shot chameleon hash function if:

- $Gen(H) \rightarrow (sk, y)$
- $Inv(sk, x) \rightarrow r$ such that:
 - H(x,r) = y

One-shot Signature

- $Gen(crs) \rightarrow (sk, pk)$
- $Sign(sk,m) \rightarrow \sigma$
- $Vrfy(crs, pk, m, \sigma) = \{0, 1\}$

From one-shot chameleon to one-shot signature:

H(x,r) = yx:m, r: σ and y: pk

Applications - Signature Delegation

Applications - Signature Delegation

Applications – Blockchain-less Cryptocurrency with Classical Communication

• Mining using Proof of Work: Run $Gen(crs) \rightarrow (sk, pk)$ until the public key starts with 80 zeros

- No need to maintain a public ledger
- Consensus is required only on the crs
- Sending money requires classical communication

Any Questions?