
Under the Hood of SYCL –
An Initial Performance Analysis With an

Unstructured-mesh CFD Application

Istvan Z. Reguly1,2, Andrew M.B. Owenson2, Archie Powell2, Stephen A. Jarvis3, and
Gihan R. Mudalige2

1 Faculty of Information Technology and Bionics, Pazmany Peter Catholic University,
Budapest, Hungary

reguly.istvan@itk.ppke.hu
2 University of Warwick, Coventry, UK

{a.m.b.owenson, a.powell.3, g.mudalige}@warwick.ac.uk
3 University of Birmingham, Birmingham, UK

s.a.jarvis@bham.ac.uk

Abstract. As the computing hardware landscape gets more diverse, and the com-
plexity of hardware grows, the need for a general purpose parallel programming
model capable of developing (performance) portable codes have become highly
attractive. Intel’s OneAPI suite, which is based on the SYCL standard aims to fill
this gap using a modern C++ API. In this paper, we use SYCL to parallelize MG-
CFD, an unstructured-mesh computational fluid dynamics (CFD) code, to explore
current performance of SYCL. The code is benchmarked on several modern pro-
cessor systems from Intel (including CPUs and the latest Xe LP GPU), AMD,
ARM and Nvidia, making use of a variety of current SYCL compilers, with a par-
ticular focus on OneAPI and how it maps to Intel’s CPU and GPU architectures.
We compare performance with other parallelisations available in OP2, including
SIMD, OpenMP, MPI and CUDA. The results are mixed; the performance of this
class of applications, when parallelized with SYCL, highly depends on the target
architecture and the compiler, but in many cases comes close to the performance
of currently prevalent parallel programming models. However, it still requires dif-
ferent parallelization strategies or code-paths be written for different hardware to
obtain the best performance.

1 Introduction

With the switch to multi-core processors in 2004, the underpinning expectation of com-
mercial hardware developers and vendors has been that performance improvements of
applications could be maintained at historical rates by exploiting the increasing levels
of parallelism of emerging devices. However, a key barrier that has become increasingly
significant is the difficulty in programming them. The hardware architectures have be-
come highly complex with massively parallel and heterogeneous processors, deep and
multiple memory hierarchies and complex interconnects. Consequently extensive par-
allel programming knowledge is required to fully exploit the potential of these devices.

A wide range of parallel programming models, extensions and standards have been
introduced to address this problem. Over the years these have included proprietary

2 Authors Suppressed Due to Excessive Length

extensions such as CUDA, TBB, Cilk and OpenACC as well as evolving open stan-
dards such as OpenMP, OpenCL, and MPI. However, as observed by David Patterson
in 2010 [17], industry, academia and stakeholders of HPC have still not been able to
provide an acceptable and agile software solution for exploiting the rapidly changing,
massively parallel diverse hardware landscape. On the one hand, open standards have
been slow to catch up with supporting new hardware, and for many real applications
have not provided the best performance achievable from these devices. On the other
hand, proprietary solutions have only targeted narrow vendor-specific devices resulting
in a proliferation of parallel programming models and technologies. As a result, we have
seen and continue to see a golden age of parallel programming software research. A pri-
mary target of most such research has been achieving performance portability, where
software techniques and methods are developed to enable an application to achieve ef-
ficient execution across a wide range of HPC architectures without significant manual
modifications.

The most recent addition to the myriad array of parallel programming technologies
and software suites is Intel’s OneAPI. The need for a single application programming
interface (API) to program their divergent hardware products – the currently dominant
Xeon multi-core CPUs, recently announced Xe GPUs and Intel’s FPGA devices – is
driving this development. OneAPI is based on SYCL [2], a C++ abstraction layer for
programming parallel systems, initially based on OpenCL, but as of the latest version
of the standard, decoupled from it [20] to allow for different backends (e.g. CUDA,
OpenMP). With the advent of OneAPI and the emerging vendor support for SYCL,
it has been touted as one possible open standard for addressing the HPC performance
portability problem. As such the objective of the research presented in this paper is to
explore the performance of SYCL with a view to evaluate its performance portability,
contrasting achieved performance to more established programming models on a range
of modern multi-core and many-core devices.

We carry out this work building on the OP2 Domain Specific Language(DSL) [14],
which already has wide-ranging capabilities to target modern architectures. OP2 uses
source-to-source translation and automatic code generation to produce multiple par-
allellizations of an application written using the OP2 high-level API. It is currently
able to generate parallel code that use SIMD, OpenMP, CUDA and their combinations
with MPI together with different optimizations for each version to obtain the best per-
formance from different hardware. In this work we extend these capabilities to also
rapidly generate different variants of highly optimized SYCL code and apply it to a re-
cently developed, representative unstructured-mesh CFD application [16] that is written
with the OP2 API. We generate SYCL paralleizations for this application, and explore
its performance, allowing for a fair and direct comparison of performance, including
comparisons with other parallelisations generated through OP2. The work aims to pro-
vide a preliminary performance evaluation using current state-of-the-art SYCL. More
specifically we make the following contributions:

• We explore how an implementation of the unstructured-mesh parallel motif can be
achieved using the SYCL programming model. The main aspect for efficient par-
allelization is on handling the race-conditions of indirect array increments/updates
which we do through coloring and atomics schemes implemented with SYCL.

Under the Hood of SYCL 3

• The SYCL parallelization is used to develop a new target source generator for OP2.
This is used to automatically generate optimized SYCL code for a representative
CFD application called MG-CFD. Performance of the SYCL-based MG-CFD par-
allelization is benchmarked on a range of single-node hardware platforms and com-
pared to the same application parallelized through OP2 using currently established
programming models, including SIMD, OpenMP, CUDA and their combinations
with MPI.

• Finally, we present a detailed performance analysis of all the parallelizations ex-
plored above, contrasting the SYCL implementation with other parallelizations.

The use of an unstructured mesh application, which is characterized by their indirect
memory accesses leads to an interesting benchmarking study as such an irregular mo-
tif is difficult to parallelize. This we believe will provide a more contrasting evalua-
tion of SYCL, complementing previous work [9] on regular parallel motifs such as
structured-mesh applications. Furthermore, the use of OP2’s source-to-source translator
to automatically produce SYCL parallelizations enabled us to rapidly explore the de-
sign space and various optimizations without needing to manually modify MG-CFD’s
25 loops. We also show that the use of OP2 does not impact the best achievable per-
formance from SYCL for this application. Given the range of modern and emerging
multi-core and many-core architectures benchmarked, the different parallelizations ex-
plored for each, together with the use of multiple SYCL compilers, makes this study,
to our knowledge, the most comprehensive performance investigation into a non-trivial,
representative application developed with SYCL to-date.

Details of OP2’s performance and portability for existing parallelizations along with
the benefits and limitations of such a DSL-based approach have been extensively stud-
ied and presented in previous publications [15, 19, 11, 18]. As such we focus on the
performance portability of SYCL. As this work uses OP2, we also do not draw con-
clusions with respect to the usability and maintainability of SYCL, as it is fully hidden
from the users of the OP2 library.

The rest of this paper is organized as follows: in Section 2 we present an intro-
duction to unstructured mesh applications and the key challenges in parallelizing this
class of applications. Next, in Section 3 we briefly detail the OP2 API and the target
SYCL parallelizations developed for subsequent code-generation through OP2. In Sec-
tion 4 we present empirical performance results of our main benchmark application
MG-CFD, parallelized using SYCL, compared to other parallelizations generated with
OP2. In Section 5 we present a bottleneck analysus of the systems benchmarked and
the achievable performance of each parallelization. Finally, conclusions are presented
in Section 6.

2 Parallelizing Unstructured-mesh Applications

The key characteristic of the unstructured-mesh motif is the use of explicit connectivity
information between elements to specify the mesh topology and consequently to access
data defined on neighboring elements [7]. This is in contrast to the use of stencils in
structured-mesh applications where the regular geometry of the mesh implicitly pro-
vides the connectivity information. As such, iterations over unstructured meshes lead

4 Authors Suppressed Due to Excessive Length

to highly irregular patterns of data accesses over the mesh, due to indirections. For ex-
ample, computations over the mesh involve iterating over elements of a set (e.g. faces),
performing the same computations, on different data, accessing/modifying data on the
set which they operate on (e.g. fluxes defined on the faces), or, using indirections ac-
cessing/modifying data defined on other sets (such as data on connected nodes). These
indirect accesses are particularly difficult to parallelize. For example, parallelizing a
loop over mesh edges, updating data on each of the two nodes connected to an edge
will lead to multiple edges updating the same nodal data simultaneously, unless explic-
itly handled by the programmer.

Several strategies exists for handling data races depending on the target hardware
and parallel programming model. SIMD vectorization on CPUs parallelize the iterative
loop over the mesh elements, stepping through it in strides of the SIMD vector length
of the processor. On a processor such as the current generation Intel Xeon – Skylake
or Cascade Lake processors this will be a vector length of 8 with double precision
arithmetic. Thus the computation over edges will proceed by computing over 8 edges
simultaneously at a time, updating values on the two nodes connected to each edge. One
way to handle data races within each step is to implement explicit gather-scatter oper-
ations to apply the indirect increments [15]. A gather will collect indirectly accessed
data, to a local SIMD-length sized array, then carrying out a computation as SIMD-
vector operations on this local data. Finally a scatter will serially apply the increments
to the indirectly accessed data.

For multi-threading on CPUs, the parallelization should make sure that multiple
edges assigned to threads do not update the same node simultaneously. With an OpenMP
parallelization, one way to avoid data races is to color the edges such than no two edges
of the same color update the same node [14]. Coloring can be similarly used for par-
allelizing on GPUs. Given the larger number of threads executable on GPUs, and the
availability of GPU shared memory, different variations of coloring can be used [21].
For distributed memory parallelizations, such as using MPI, explicitly partitioning the
mesh and assigning them to different processors leads to a decomposition of work
that only have the potential to overlap at the boundaries of the partitions. An owner
compute model with redundant computation can be used in this case to handle data
races [14]. Other strategies published for parallelizing unstructured-mesh applications
have included the use of a large temporary array [1] and atomics [21]. Using a large
temporary array entails storing the indirect increments for the nodes in a staging ar-
ray, during the edge loop, for example, and then a separate iteration over the nodes to
apply the increments from the temporary array on to the nodal data. Atomics on the
other hand simply allow for updates to be done one increment at a time with the use of
hardware-locks.

3 SYCL Parallelizations with OP2

The best performance we have observed with multi-threading on CPUs and SIMT on
GPUs has been through the use of coloring and atomics, respectively. As such, for the
SYCL implementation, we solely explore these strategies as appropriate to the target
hardware. To ease the development of multiple parallelizations with a range of different
optimizations, we make use of the OP2 DSL [4, 14].

Under the Hood of SYCL 5

1 /* ----- elemental kernel function ----------------*/

2 void res(const double *edge,
3 double *cell0, double *cell1){
4 //Computations, such as:

5 cell0 += *edge; *cell1 += *edge;
6 }
7

8 /* ----- main program -----------------------------*/

9 // Declaring the mesh with OP2

10 // sets

11 op_set edges = op_decl_set(numedge, "edges");
12 op_set cells = op_decl_set(numcell, "cells");
13 // mppings -connectivity between sets

14 op_map edge2cell = op_decl_map(edges, cells,
15 2, etoc_mapdata,"edge2cell");
16 // data on sets

17 op_dat p_edge = op_decl_dat(edges,
18 1,"double",edata,"p_edge");
19 op_dat p_cell = op_decl_dat(cells,
20 4,"double",cdata,"p_cell");
21

22 // OP2 parallel loop declaration

23 op_par_loop(res,"res", edges,
24 op_arg_dat(p_edge,-1,OP_ID ,4,"double",OP_READ),
25 op_arg_dat(p_cell, 0,edge2cell,4,"double",OP_INC),
26 op_arg_dat(p_cell, 1,edge2cell,4,"double",OP_INC));

Fig. 1. Specification of an OP2 parallel loop

OpenCL

MPI

Source-to-Source translator (Python / Clang-LLVM)

OP2/OPS Platform Specific
Optimized Backend libraries

Conventional Compiler (e.g. icc, nvcc, pgcc, clang, XL, Cray) +
compiler flags

Hardware

Link

OpenMP

Application OP2 Application (Fortran/C/C++ API)

Modified Platform Specific
OP2 Application

Platform Specific Optimized
Application Files

Mesh
(hdf5)

Platform Specific
Binary Executable

CUDA

Vectorized

Sequential

Fig. 2. Developing an Application with OP2

OP2 allows to define the unstructured-mesh problem in four abstract components:
(1) sets (e.g. nodes, edges, triangular faces, quadrilateral faces), (2) data on sets (e.g.
node coordinates, edge weights, cell fluxes), (3) explicit connectivity (or mapping) be-
tween the sets and (4) operations over sets declared as kernels iterating over each el-
ement of the set, accessing indirectly via mappings. A simple example illustrating the
OP2 API is presented in Fig.1. The loop is over the set of edges, carrying out the com-
putation per edge defined by the function res, accessing the data on edges, p_edge,
directly and updating the data held on the two cells, p_cell, adjacent to an edge,
indirectly via the mapping edge2cell. The op_arg_dat provides details of how an
op_dat’s data is accessed in the loop. Its first argument is the op_dat, followed by
its indirection index, op_map used to access the data indirectly, arity of the data in the
op_dat and the type of the data. The final argument is the access mode of the data, read
only, increment and others (such as read/write and write only, not shown here). The
op_par_loop call contains all the necessary information about the computational loop

6 Authors Suppressed Due to Excessive Length

1 op_par_loop(compute_flux_edge_kernel,
2 "compute_flux_edge_kernel", op_edges,
3 op_arg_dat(vars,0,en,5,"double",OP_READ),
4 op_arg_dat(vars,1,en,5,"double",OP_READ),
5 op_arg_dat(edwgts,-1,OP_ID,3,"double",OP_READ),
6 op_arg_dat(fluxes,0,en,5,"double",OP_INC),
7 op_arg_dat(fluxes,1,en,5,"double",OP_INC));

Fig. 3. MG-CFD’s compute_flux_edge_kernel loop

to perform the parallelization. It is clear that due to the abstraction, the parallelization
depends only on a handful of parameters such as the existence of indirectly accessed
data or reductions in the loop, plus the data access modes that lends to optimizations.

Parsing a code written in the above API, OP2’s automatic code generator can pro-
duce a wide range of parallelizations following the development flow illustrated in Fig.2.
When generating a platform specific parallel implementation of a loop specified by an
op_par_loop, the code generator, essentially a source-to-source translator, makes use
of a base template (or skeleton) that has been hand-crafted by the OP2 developers.
Each of these skeletons make use of the best optimizations and platform specific con-
figurations for the target hardware and programming models. For example, to produce
the CUDA implementation, the OP2 code generator simply modifies the appropriate
CUDA skeleton with the declared parameters of the op_par_loop to produce the con-
crete implementation of the loop [6]. Given the different parallelization strategies and
optimizations that can be used even when using a single parallel programming model,
different skeletons are maintained and reused together with configuration flags for fur-
ther customizing what code they will generate. However, for a domain scientist devel-
oping an unstructured-mesh application, the process of generating a concrete parallel
implementation will be automatic.

In this work, we formulate the unstructured-mesh problem using OP2’s domain-
specific abstraction and then extend its automatic code generation tools to produce an
optimized SYCL parallelization. Given the range of hardware and SYCL compilers
available, multiple parallelization strategies were investigated to ascertain the best per-
formance. On CPUs, we found that a hierarchical coloring strategy (with 1 work item
per workgroup) to apply the indirect increments produced the best performance. On
the NVIDIA GPUs benchmarked, the best performance with SYCL was achieved with
atomics. However, a SYCL compiler exposing non-standard atomics (fp64) is required
to take advantage of the hardware support available on these many-core devices.

3.1 Coloring

As noted before, coloring can be applied to resolve the data races in unstructured-mesh
computations. This parallelization strategy can be generally implemented on any shared
memory multi-threaded system, including CPUs and GPUs without any restrictions due
to hardware capabilities. Different variations of coloring have been implemented within
OP2 as detailed in previous works [21]. Figure 4 details an excerpt of the SYCL code
generated by OP2 for the most time-consuming parallel loop compute_flux_edge

_kernel in MG-CFD. The OP2 API declaration of this loop is listed in Figure 3. This
loop iterates over the set of mesh edges, op_edges, indirectly reading DP floating-point
data held in the node-indexed array vars, using the mapping from edges to nodes, en;

Under the Hood of SYCL 7

1 /*Cast OP2 dats, maps and coloring plan as SYCL buffers*/

2 arg0_buffer = ... ; // vars - indirectly accessed

3 arg3_buffer = ... ; // fluxes - indirectly accessed

4 map0_buffer = ... ; // en - mapping table

5 arg2_buffer = ... ; // edwgts - directly accessed

6

7 col_reord_buffer = ... ; // coloring array

8

9 for (int col=0; col<Plan->ncolors; col++){//for each color

10 int start = Plan->col_offsets[0][col];
11 int end = Plan->col_offsets[0][col+1];
12 int nblocks = (end - start - 1)/nthread + 1;
13

14 // enqueue arguments and elemental kernel

15 op2_queue->submit([&](cl::sycl::handler& cgh) {
16 ind_arg0 = (*arg0_buffer).. // enqueue vars

17 ind_arg1 = (*arg3_buffer).. // enqueue fluxes

18 opDat0Map = (*map0_buffer).. //enqueue mapping en

19 arg2 = (*arg2_buffer).. // enqueue edwgts

20

21 // enqueue coloring array

22 col_reord = (*col_reord_buffer)..
23 // enqueue any global constants used in the kernel

24 ...
25 //elemental kernel function as lambda - enqueue it

26 auto compute_flux_edge_kernel_gpu = [=](
27 const double *var_a, const double *var_b,
28 const double *edwgts,double *fluxes_a,
29 double *fluxes_b)
30 { .../*body of kernel*/ ... };
31

32 // setup kernel work items

33 auto kern = [=](cl::sycl::item<1> item) {
34 int tid = item.get_id(0);
35 if (tid + start < end) {
36 int n = col_reord[tid + start];
37 int map0idx; int map1idx;
38

39 // get the indirect index via mapping

40 map0idx = opDat0Map[n+set_size*0];
41 map1idx = opDat0Map[n+set_size*1];
42

43 //user-supplied kernel call

44 compute_flux_edge_kernel_gpu(
45 &ind_arg0[map0idx*5], &ind_arg0[map1idx*5],
46 &arg2[n*3],
47 &ind_arg1[map0idx*5], &ind_arg1[map1idx*5]);
48 }
49 };
50 // execute kernel

51 cgh.parallel_for
52 <class compute_flux_edge_kernel>
53 (cl::sycl::range<1>(nthread * nblocks), kern);
54 }); // end of enqueue arguments and elemental kernel

55 }

Fig. 4. Global coloring parallelization generated by OP2 for the compute_flux_edge_kernel

loop in MG-CFD

it also directly reads DP floating-point data held on edges from array edwgts. The re-
sulting flux contributions are indirectly incremented onto the output node-indexd array
fluxes, again via the edges to nodes mapping.

There are two fundamental coloring schemes and execution strategies, which are
illustrated in Figure 5. The simpler one, called global coloring, performs a single level
of greedy coloring of set elements (in this case edges) based on a mapping (here edges

8 Authors Suppressed Due to Excessive Length

Block 0
Block 1

Block 2

Block 0
Block 1

Block 2

Fig. 5. Coloring strategies in OP2 – global and hierarchical coloring

to nodes). As the first drawing in Figure 5 shows, this gives us edge colors, where no
two edges with the same color share a node. In terms of execution, edges with the same
color can now be executed in parallel, with a synchronization between colors.

The second strategy, called hierarchical coloring, performs two levels of coloring.
First, the mesh is split into blocks of edges, the blocks themselves are colored, so that
no two blocks with the same color share any node. Second, edges within the block are
greedily colored. In terms of execution, blocks of the same color can be executed in
parallel, and within blocks there is further parallelism, so edges of the same color can
be executed in parallel. This hierarchical scheme maps to architectures with hierarchical
parallelism, for example blocks map to OpenMP threads or thread blocks in CUDA, and
intra-block parallelism maps to vector units or CUDA threads. We map this hierarchical
scheme to nd_range parallel for loops in SYCL.

The SYCL parallelization with global coloring starts by extracting the SYCL typed
buffers from OP2’s data structures (Figure 4, lines 1-5). The iteration set, in this case
the mesh edges, has been colored by OP2, with coloring information stored in internal
struct Plan. For SYCL execution, this coloring information is also stored in a SYCL
integer buffer. An outer loop over colors initiates parallel execution across edges of the
same color (line 9). Edge indices are held in the col_reord array, with edges of the
same color stored consecutively. The current color determines the loop range start

to end, read from Plan->col_offsets, determining which edges of col_reord to
iterate through for that particular parallel execution.

Similar to the setup required for executing an OpenCL kernel, the arguments for
the execution kernel, the kernel itself and any global constants referenced in the kernel
are enqueued (lines 15-30). The kernel itself is specified as a lambda function (lines
25-30). Next, the SYCL kernel is set with flat parallelism, so that nthread*nblocks
work items are launched (lines 51-53). The indirections are resolved by using the edge
index n to access the indices held in the mapping table opDat0Map (lines 40-41). The
elemental kernel is called with these indices, together with the directly accessed data as
arguments (lines 44-47).

The advantage of global coloring is its simplicity – it can be easily expressed in
any parallel programming environment. The main disadvantage with global coloring
is the lack of data-reuse where multiple edges that write to the same mesh node have
different color, and temporal locality is therefore poor. A further disadvantage is the
low cache utilization where elements of the same color are not neighbors in the mesh,
and therefore unlikely to be stored in consecutive memory locations.

The hierarchical coloring scheme maps well to GPU architectures, and in principle
to CPU threads and vector units as well. However, the OpenMP-based implementations

Under the Hood of SYCL 9

(hipSYCL) have a mismatch between the abstraction and the implementation, leading
to poor performance; they need to launch one thread per work item when using two-
level parallelism (nd_range). Intel’s OneAPI compilers can optimise and map this better
to hardware, yet despite achieving vectorization, as we show in Section 4, performance
was poor. To address these issues, we implemented a variation of the hierarchical execu-
tion scheme in SYCL where each work group consists of a single work item, which then
iterates through the edges in that block sequentially. This proved to perform better on
all CPU platforms with all compilers. This implementation now matches the execution
scheme used by OP2’s OpenMP execution scheme. However, it prevents vectorization
by construction.

All coloring based executions add a one-time setup cost to the total runtime for
creating the colored execution scheme. For production applications that iterate over
many cycles, this setup cost becomes negligible or indeed could be pre-computed if the
mesh is known before runtime.

3.2 Atomics
In contrast to coloring, atomics-based parallelizations enable the indirect updates (i.e.
increments) to be applied sequentially using hardware atomic operations. The disad-
vantage is that not all hardware has fast DP implementations of atomics, and that the
SYCL 1.2.1 standard does not include them, however hipSYCL has support for them
on NVIDIA GPUs. Figure 6 details an excerpt of the SYCL code generated by OP2
for compute_flux_edge_kernel loop using atomics targeting the hipSYCL compiler
(which has support for DP atomics). This code is similar to the global coloring scheme
for much of the setup. The start and end now points to the full iteration range over
the mesh edges. The key difference with atomics is the use of local arrays arg3_l and
arg4_l to hold the indirect increments and apply them using atomics (lines 44-53).
This results in an extra 10 floating point operations per edge. In contrast to coloring
schemes, there is no setup cost for coloring plan construction when using atomics.

4 Performance
In this section, we generate SYCL parallelizations with OP2 for MG-CFD [16]. MG-
CFD is a 3D unstructured multigrid, finite-volume computational fluid dynamics (CFD)
mini-app for inviscid-flow. Developed by extending the CFD solver in the Rodinia
benchmark suite [8, 5], it implements a three-dimensional finite-volume discretization
of the Euler equations for inviscid, compressible flow over an unstructured grid. It per-
forms a sweep over edges to accumulate fluxes, implemented as a loop over all edges.
Multi-grid support is implemented by augmenting the construction of the Euler solver
presented in [8] with crude operators to transfer the state of the simulation between
the levels of the multi-grid. Initially written as a standalone CPU only implementa-
tion [16], MG-CFD has now been converted to use the OP2 API. It is available as open-
source software at [3]. This repository also contains the concrete parallel implementa-
tions generated through OP2 for SIMD, OpenMP, CUDA, OpenMP4.0, OpenACC and
their combinations with MPI. The branch feature/sycl contains the generated SYCL
versions of the application used in our performance investigation.

Our aim is to compare the performance of the SYCL implementations to that of
other parallel versions for MG-CFD and explore how similar execution strategies can

10 Authors Suppressed Due to Excessive Length

1 /*Cast OP2 dats, maps and coloring plan as SYCL buffers*/

2 arg0_buffer = ... ; // vars - indirectly accessed

3 arg3_buffer = ... ; // fluxes - indirectly accessed

4 map0_buffer = ... ; // en - mapping table

5 arg2_buffer = ... ; // edwgts - directly accessed

6

7 if (end-start>0) {
8 int nblocks = (end-start-1)/nthread+1;
9 // enqueue arguments and elemental kernel

10 op2_queue->submit([&](cl::sycl::handler& cgh) {
11

12 ind_arg0 = (*arg0_buffer).. // enqueue vars

13 ind_arg1 = (*arg3_buffer).. // enqueue fluxes

14 opDat0Map = (*map0_buffer).. //enqueue mapping en

15 arg2 = (*arg2_buffer).. // enqueue edwgts

16 // enqueue any global constants used in the kernel

17 ...
18 //elemental kernel function as lambda

19 auto compute_flux_edge_kernel_gpu = [=](...)
20 { .../*body of kernel*/ ... };
21

22 // setup kernel work items

23 auto kern = [=](cl::sycl::nd_item<1> item) {
24 //local variables for holding indirect increments

25 double arg3_l[5], arg4_l[5];
26 for (int d=0; d<5; d++){ arg3_l[d] = 0.0;}
27 for (int d=0; d<5; d++){ arg4_l[d] = 0.0;}
28 int tid = item.get_global_linear_id();
29 if (tid + start < end) {
30 int n = tid+start;
31 int map0idx; int map1idx;
32

33 // get the indirect index via mapping

34 map0idx = opDat0Map[n + set_size * 0];
35 map1idx = opDat0Map[n + set_size * 1];
36

37 //elemental kernel call

38 compute_flux_edge_kernel_gpu(
39 &ind_arg0[map0idx*5], &ind_arg0[map1idx*5],
40 &arg2[n*3],
41 arg3_l, arg4_l);
42

43 //apply indirect increments using atomics

44 {cl::sycl::atomic<double> a
45 {cl::sycl::global_ptr<double>
46 {&ind_arg1[0+map0idx*5]}};
47 a.fetch_add(arg3_l[0]);}
48 ...
49 ...
50 {cl::sycl::atomic<double> a
51 {cl::sycl::global_ptr<double>
52 {&ind_arg1[4+map1idx*5]}};
53 a.fetch_add(arg4_l[4]);}
54 }
55 };
56 // execute kernel

57 cgh.parallel_for
58 <class compute_flux_edge_kernel>
59 (cl::sycl::nd_range<1>(nthread*nblocks,nthread),kern);
60 }); //end of enqueue arguments and elemental kernel

61 }

Fig. 6. Atomics-based paralelization generated by OP2 for compute_flux_edge_kernel loop
in MG-CFD

be expressed using SYCL. For benchmarking we make use of a number of systems
based on currently prevalent and emerging processor architectures. A summary of the

Under the Hood of SYCL 11

Table 1. Benchmark systems specifications: GPUs
GPU NVIDIA V100 NVIDIA A100 AMD Radeon VII Intel Iris XE MAX
Bus protocol PCI-e 3.0 SXM4 PCI-e 3.0 PCI-e 4.0
Cores 5120 6912 3840 768
Clock (MHz) 1245-1380 1410 1400-1750 300-1650
TFLOPS/s compute 7 9.7 3.46 2.53 (single)
Bandwidth (GB/s) 900 1600 1024 68
Measured BW (GB/s) 789.3 1268.7 668.2 53.5
Memory size (GB) 16 40 16 4
TDP (W) 250 400 300 25

Table 2. Benchmark systems specifications: CPUs
System AWS c5d.24xlarge AWS c5a.24xlarge AWS c6g.16xlarge
Node Intel Xeon AMD Epyc (Rome) AWS Graviton2
Architecture Platinum 8275CL @ 3.00GHz 7R32 @ 3.20GHz ARM v8.2 @ 2.5GHz

(Cascade Lake)
Procs × cores 2×24 (2 SMT/core) 1×48 (2 SMT/core) 1×64 (1 thread/core)
CPU Vector Length 512 bits 256 bits 128 bits
(Instructions) (AVX-512) (AVX-2) (NEON)
Cache Hierarchy 32KB L1D/core, 32KB L1D/core 64KB L1/core

1MB L2/core, 512KB L2/core 1MB L2/core
35.75MB L3/socket 256MB L3/socket 32MB L3/socket

CPU Main Memory 192 GB 192 GB 128 GB
Measured BW (GB/s) 109.3 (per socket) 131.6 173.6
O/S Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04
TDP per CPU ~240 W ~220W ~100W

Table 3. Compilers and Compiler Flags
Compiler Version Compiler Flags
Intel OneAPI Compilers Beta 9 -O3 -xHOST -inline-forceinline

icc, icpc, dpcpp Backend: OpenCL -restrict -qopenmp|-fsycl

nvcc CUDA 10.2 -O3 -restrict

V100 : -gencode arch=compute_70,code=sm_70

A100 : -gencode arch=compute_80,code=sm_80

HipSYCL Compiler Based on Clang 9 -O3

Backend: OpenMP All CPUs: �hipsycl-platform=cpu
syclcc-clang Backend: CUDA V100 : �hipsycl-gpu-arch=sm_70

Backend: CUDA A100 : �hipsycl-gpu-arch=sm_80
Backend: HIP Radeon VII : �hipsycl-gpu-arch=gfx906

GNU 9.3 AMD Rome, AWS Graviton2 -Ofast -fopenmp

gcc,g++

key specifications of these systems are detailed in Table 1 and Table 2.
We use the NVIDIA V100 and AMD Radeon VII GPUs of our local cluster. The

A100 GPUs used were in AWS (Amazon Web Services) p4d.24xlarge instances,
and the Iris XE MAX (based on XE LP architecture) GPUs were accessed through
Intel’s DevCloud. To benchmark CPUs, we have evaluated three high-end machines
available through AWS instances. The c5d.24xlarge instance has a dual-socket Intel

12 Authors Suppressed Due to Excessive Length

14.74
12.45

16.35 16.36

35.05

20.76

9.19 8.60
11.84 12.33

50.89

25.56

11.17
14.18 13.99 12.01

29.88

16.98

0

10

20

30

40

50

60

MPI SIMD OMP OMPxMPI SYCL(g) SYCL(h) MPI SIMD OMP OMPxMPI SYCL(g) SYCL(h) MPI SIMD OMP OMPxMPI SYCL(g) SYCL(h)

R
u

n
ti

m
e

(s
ec

o
n

d
s)

INTEL CASCDE LAKE - SINGLE SOCKET ARM GRAVITON2 AMD EPYC ROME

Fig. 7. MG-CFD, Runtime (seconds) on single socket CPUs – 8M edges, 25 MG Cycles

7.57 6.22
9.04

38.69

22.99

2.01 3.29
1.39 2.22

5.69

0

5

10

15

20

25

30

35

40

45

MPI SIMD OMPxMPI SYCL(g) SYCL(h) CUDA SYCL(a) CUDA SYCL(a) SYCL(h)

Ru
nt

im
e

(s
eo

nd
s)

INTELCASCADE LAKE
DOUBLE SOCKET

V100 RADEON
VII

A100

Fig. 8. MG-CFD, Runtime (seconds) on a dual socket CPUs and GPUs - 8M edges, 25 MG Cycles

Xeon Cascade Lake Platinum, each with 24 cores and 2 threads per core (SMT-2). The
c5a.24xlarge has a single-socket AMD Epyc Rome with 48 physical cores and SMT-
2. The c6g.16xlarge has a single-socket AWS Graviton2 ARM with 64 cores. While
all of these were virtual machines, these contain some of the latest hardware architec-
tures available, and achieve the same fraction of peak performance as our internal, less
powerful, Intel-based bare-metal systems.

Figures 7 and 8 presents the runtime of the main time-marching loops of MG-CFD
on the above systems, solving a NASA Rotor 37 [10] benchmark mesh consisting of
8 million edges on the finest level. The time to solution of 25 multi-grid cycles are
reported here. The time for initial I/O (mesh loading and partitioning) are not included,
given that these are a one-off setup cost and depends on other libraries such as HDF5,
ParMetis/PTScotch etc., whose performance is not the subject of this paper. The figure
presents the runtime of the application without any coloring plan time construction
overheads, which was discussed in Section 3.1. Given these setup costs are one-off or
indeed can be computed a priori if the mesh is known before runtime, we believe the
figure provides a fairer comparison between the actual performance of each architecture
and parallelization model. Compilers and compiler flags used for each version of the
parallelizations are detailed in Table 3.

Reference performance numbers were collected using existing parallelizations in
OP2: plain MPI which does not auto-vectorize, an MPI+SIMD version which uses ex-
plicit gathers and scatters to enable auto-vectorization, OpenMP that does not auto-
vectorize, hybrid MPI+OpenMP, and for NVIDIA GPUs using CUDA with atomics.

4.1 CPU results

On the Intel Cascade Lake CPU, we used the OneAPI compilers to compile SYCL. The
global colouring variant (g) uses a flat parallel for loop, however due to poor memory

Under the Hood of SYCL 13

access patterns it performs the worst. To improve memory locality, we utilize the hier-
archical execution scheme (h) – mapping blocks to threads as done in case of OpenMP,
and optionally elements within blocks to vector lanes. The performance reported in Fig-
ure 7 (SYCL (h)) uses the same number of blocks as the OpenMP version and only uses
a single work item per workgroup, which mirrors the behavior of our OpenMP execu-
tion scheme, and overall runtime is 26% slower. We also evaluated using 8 work items
(AVX512 with FP64) and utilized Intel’s subgroup extension to perform safe colored
updates, however performance further degraded. An examination of the generated as-
sembly for the most expensive loop provides two key insights : (1) computations did
vectorize (when using more than 1 work item per workgroup), closely matching our
SIMD variant, although no fused multiply-add instructions were generated, resulting in
a 32% increase of floating point operations, and (2) the number of memory movement
operations were significantly larger (approx. 2×).

On the ARM Graviton2 and AMD Epyc, we used the hipSYCL implementation,
which uses OpenMP underneath. For flat parallel loops, hipSYCL will map computa-
tions to a flat OpenMP parallel loop, however when using hierarchical parallelism it will
launch one thread per work item to guarantee that barriers can be handled correctly. The
global coloring execution scheme clearly performs poorly, due to the lack of memory
locality. For the hierarchical execution scheme, we used a single work item per work-
group, mirroring the OpenMP execution scheme. On the Graviton2 SYCL performance
is 2.16× worse than plain OpenMP – largely due to the relative immaturity of ARM
support in Clang (used by hipSYCL) versus GNU g++ (used with flat OpenMP). On the
AMD Epyc however, SYCL performs only 21% slower compared to plain OpenMP.

4.2 NVIDIA and AMD GPU results

For the comparison with GPUs, we also ran on both sockets of the Intel Cascade
Lake CPU, and observed over 95% scaling efficiency for pure MPI and MPI+SIMD,
though only 80% for MPI+OpenMP. SYCL however did not improve when running
over both sockets due to NUMA issues – OP2 does not yet have an MPI+SYCL back-
end, which would address issue. For both NVIDIA and AMD GPUs, we utilized the
automatic Array-of-Structs→ Struct-of-Arrays data layout conversion feature of OP2.
On NVIDIA GPUs, we used the atomics versions and compiled with hipSYCL – this
showed a 60− 64% slowdown compared to the atomics version of CUDA. These dif-
ferences are likely due to the immaturity of the hipSYCL compiler, resulting in higher
register pressure and lower occupancy. The AMD Radeon VII GPU does not have hard-
ware support for double precision atomics, and therefore we utilized the hierarchical
coloring execution scheme with 128 work items per workgroup. OP2 does not have
support for either HIP or OpenCL, therefore we could not compare this to a reference
implementation.

4.3 Intel Iris XE MAX performance
To further explore OneAPI, we have evaluated the recently released Intel datacenter
GPU built on the XE LP (low-power) platform. As the specifications in Table 1 show,
this is a GPU in an entirely different class to the others tested. It has a 10−16× lower
TDP, and a similarly lower maximum bandwidth (53 GB/s measured), yet a relatively

14 Authors Suppressed Due to Excessive Length

high maximum computational throughput – though it has to be noted that the card does
not support double precision. This makes the platform have the highest ratio of FLOPS
to bandwidth among all the tested hardware.

We prepared a single precision version of MG-CFD to evaluate performance – with-
out considering the implications on accuracy and convergence at the moment. These
GPUs also do not support single precision atomics, therefore we compared the vari-
ous colored execution schemes. Intel’s GPUs also support the subgroups extension of
SYCL, and indeed are vital for good performance. We found the best performing combi-
nation is the hierarchical coloring execution scheme with 16 work items per workgroup,
and 16 work items per subgroup (i.e. one subgroup per workgroup), and relied on sub-
group barriers to perform the colored updates. The automatic AoS to SoA data layout
conversion did not improve performance on this GPU. The best runtime was 22.37 sec-
onds – for context, we compared performance to a single-socket Platinum 8256 CPU
(4 cores, 51 GB/s STREAM bandwidth), which ran MPI+SIMD in 21.62 seconds and
pure OpenMP in 42.37.

5 Bottleneck Analysis

To gather further insight into the performance profile of the application, we selected
the most time-consuming kernel (compute_flux_edge), responsible for over 50% of
total runtime, to carry out a bottleneck analysis. This kernel operates on edges, for each
performing about 150 floating point instructions, reading 5 values from each node, 3
values from the edge, then indirectly incrementing 5 further values on each node. Due
to the indirect accesses it is not a trivially vectorizable kernel, and it is highly sensi-
tive to data reuse. For each platform we collected the relevant compute (GFLOPS/sec)
and bandwidth (GB/s) measures onto the rooflines of each platform using the Berkeley
Empirical Roofline Tool [12] and the STREAM [13] benchmark.

Table 4. Floating point operations per edge with different compilers
Scalar SIMD CUDA

Intel ARM/AMD AVX 512 AVX ARM

FLOPs/edge 150 165 216 165 164 323

To calculate the operation counts (FLOPs) per edge, we inspected the assembly
generated for the computation of each edge for different implementations (see Table
4, which shows operations, not instructions). There are over 150 floating point opera-
tions per edge (with minor variations between compilers), and 13 of these are sqrt

and div operations. It is important to note here that on CPUs there are separate as-
sembly instructions for division and square root operations (though with much lower
throughput than multiply or add), whereas on NVIDIA GPUs, these are mapped to a
sequence of multiplications and additions – hence the much higher FLOPS per edge
for CUDA shown in Table 4. Furthermore, depending on the compiler and the kinds of
vectors used (scalar, AVX or AVX512) we get different FLOP counts; AVX generates
precise divisions (single instruction), whereas AVX512 generates approximate recipro-
cals followed by additional multiply and add operations. With SIMD and hierarchical

Under the Hood of SYCL 15

execution schemes, we stage increments in a local array, then apply them separately,
adding a further 10 add instructions per edge. Finally, as reported before, Intel’s SYCL
version does not use FMA instructions, therefore even though the number of floating
point operations is the same, the number of instructions is 32% higher.

The achieved computational throughput of compute_flux is shown in Table 5,
with the highest fraction of peak achieved on the V100 GPU at 26%. While the maxi-
mum throughput is not representative particularly on CPUs due to the long-latency sqrt
and division instructions, it is nevertheless clear that operational throughput – partic-
ularly for vectorized and GPU versions - is not a bottleneck. On CPU architectures, it
is on the ARM platform, where the highest fraction of peak is achieved: 22% with the
MPI+SIMD variant.

Table 5. Achieved computational throughput (GFLOPS/sec) of compute_flux
Intel
CSX

AMD
EPYC

ARM
Graviton2

NVIDIA
V100

NVIDIA
A100

AMD
Radeon VII

Max compute 1150 1421 845.2 6953 9539 3301
MPI 101 139 171
MPI+SIMD 215 104 190
OpenMP 98 117 138
SYCL 74 88 67 1140 1269 517
CUDA 1836 2480

Table 6. Amount of data moved (in GB) from/to off-chip RAM with various parallelizations

MPI
OpenMP
hierarchical

SYCL
global

SYCL
hierarchical

CUDA
atomics

AMD SYCL
hierarchical

448 778 2856 818 381 1190

To calculate the amount of data moved, and to determine how much compute_flux
is bound by available memory bandwidth, we have created a stripped-down version of
the kernel with negligible compute operations, but the same memory accesses, called
unstructured_stream. Then, we instrumented this unstructured_stream kernel
using LIKWID [22], and used the MEM performance counter group to determine the
amount of data that is read from and written to off-chip DRAM. For the GPU archi-
tectures, we used NVIDIA Nsight Compute tool and ROCm’s rocprof tool to gather
the same information. The collected results are shown in Table 6, and it highlights a
very important aspect of unstructured mesh computations: the execution method used
to avoid race conditions has enormous implications in terms of the amount of data
moved, and consecutively performance.

1. MPI – with distributed memory parallelism, each process iterates sequentially over
the elements it owns, and the additional cost is in the explicit communications
between processes.

2. Hierarchical coloring – when we break the edges into blocks, then color the blocks,
and execute blocks of the same color in parallel, then by construction there will be

16 Authors Suppressed Due to Excessive Length

0

0.2

0.4

0.6

0.8

1

1.2

MPI MPI+SIMD OpenMP (h) MPI+OpenMP (h) SYCL (g) SYCL (h) V100 atomics A100 atomics Radeon VII (h)

Fr
ac

tio
n

of
 S

TR
EA

M
 b

an
dw

id
th compute_flux

unstructured_stream

INTEL CASCDE LAKE

Fig. 9. Fraction of STREAM bandwidth achieved by unstructured_stream and compute_flux

no data reuse between blocks, but there will be reuse within blocks. On average
26 colors are required. With OpenMP and SYCL running on the CPU, we use
blocks of size 2048, when running on the AMD GPU, we use a block size of 128.
Correspondingly, these execution schemes move 1.73−2.65× the amount of data
compared to MPI.

3. Global coloring – when edges are colored based on potential race conditions, then
all edges with the same color are executed in parallel, then there is no data reuse
between edges by construction. On average 22.8 colors are required. This approach
requires moving the most data; 6.25× the amount compared to MPI.

4. CUDA Atomics – flat parallelism is used, and there is no need for explicit com-
munication between the processes or thread as in the case of MPI. Therefore this
approach incurs the least overhead in terms of data movement.

The performance of unstructured_stream can then be directly contrasted with
STREAM; in Figure 9, we show the fraction of peak bandwidth (as measured by STREAM)
achieved by both unstructured_stream and compute_flux. It is clear that on the
Intel CPU, all parallelisations are bandwidth bound – MPI+SIMD is slower than the
others due to the overhead of explicitly packing and unpacking registers. On the GPU
platforms, performance is reported to be limited by L1/Texture cache throughput as
well as atomics on NVIDIA and block synchronization overhead (required for colored
updates) on AMD cards.

When comparing the achieved bandwidth of compute_flux, the performance dif-
ferences of different parallelisations are seen from a different perspective; how much
performance is bottlenecked by data movement, and how much computations are inter-
leaved with data movement. The MPI and MPI+SIMD variants move the same amount
of data, VTune reports 99.7% vector capacity usage for the computational body of the
SIMD version, while the plain MPI version does not vectorize at all. Despite good vec-
torization with SIMD, there is poor overlap between computations and data movement,
reducing its efficiency to 69%. When enabling Hyper-threading (which is shown in the
results), performance of compute_flux is improved by 17% compared to only using 1
thread per core (but makes no difference for unstructured_stream), which supports
the conclusion of poor overlap. This is even more obvious on the non-vectorized MPI
version, where the cost of scalar computations reduces the efficiency of compute_flux
to 41%, and is therefore just as much bound by the throughput of scalar operations.

Under the Hood of SYCL 17

The lack of vectorization is much less impactful on other parallelizations; even
though neither OpenMP nor hierarchical SYCL versions vectorize (SYCL’s vectorized
hierarchical version performs even worse as discussed above), they still achieve over
55% of peak bandwidth – due to having to move 1.7− 1.8× more data. The lack of
overlap between compute and data movement is responsible for the rest of the gap to
STREAM. With global coloring, the SYCL implementation does vectorize, yet the cost
of data movement dwarfs that of computations.

On the GPUs, only 43–62% of peak bandwidth is achieved by unstructured

stream, but compute_flux also achieves 39–44% of peak as well. Computations
and data movement is much better overlapped thanks to the massive parallelism, but
while unstructured_stream achieves 100% occupancy, compute_flux only has
35%, leading to worse overlap.

6 Conclusion
The results shown indicate that the SYCL API brings comparable performance (within
a factor of 1.3-2.0×) overall for both CPUs and GPUs from different vendors in this
application. The SYCL ecosystem is rapidly closing the performance gap with other
parallel programming models. This is an essential quality of any new parallel API, so
the fact that SYCL already achieves this shows that it is a good foundation for Intel’s
OneAPI software suite. In addition, as the standard is further developed, performance
parity with other models is expected as software and hardware vendors optimise.

However, as with other portable parallelization approaches, there is still the need to
write different parallelizations within the code to achieve the best runtimes. In the case
of this unstructured mesh application, that entailed writing a coloring parallelization
for CPUs and Radeon GPUs, and an atomics version for NVIDIA GPUs. Thus, the idea
of SYCL abstracting away device specific code may not be entirely representative of
real world use cases. This is especially true for irregular classes of applications, such as
unstructured-mesh as opposed to the more commonly explored regular applications.

If this disparity continues, then it could lead to SYCL being seen as yet another
industry standard, being grouped together with existing compute frameworks which
offer similar levels of performance portability. For example, OpenMP is a far more
mature standard which can also be written for all devices that SYCL currently supports,
not to mention code-bases that do not use modern C++ (e.g. Fortran), which then cannot
use SYCL. The DSL-based code generator used in this work, OP2, has been able to keep
up with such changes by adding new code generators which can produce code based
on emerging standards and models. However, for applications which are not based on
frameworks and require a rewrite, developers could be hesitant to adopt SYCL for these
reasons.

Nevertheless, SYCL is a major step forward, in that it presents a modern, succinct
C++ API (in contrast to e.g. OpenCL), capable of targeting an impressively wide set of
parallel architectures (in contrast to vendor-specific extensions, e.g. CUDA), that allows
fine grained control over parallelism, and is reasonably capable of exposing low-level
features of various architectures. Given the improving performance of compilers, we do
recommend SYCL to application developers who want a unified parallel programming
framework.

18 Authors Suppressed Due to Excessive Length

As a continuation of this work, we are developing multi-device and distributed
memory support with MPI+SYCL in OP2, and we are evaluating performance with
a range of further applications already using OP2. We also intend to explore the support
for targeting FPGAs using SYCL.

Acknowledgment

References

1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Tech. Rep.
LLNL-TR-490254

2. C++ Single-source Heterogeneous Programming for OpenCL (accessed 2019), https://
www.khronos.org/sycl/

3. MG-CFD-OP2 GitHub Repository (accessed 2019), https://github.com/warwick-
hpsc/MG-CFD-app-OP2

4. OP2 github repository (accessed 2019), https://github.com/OP-DSL/OP2-Common
5. Rodinia: Accelerating Compute-Intensive Applications with Accelerators (accessed 2019),

https://rodinia.cs.virginia.edu/
6. Balogh, G., Mudalige, G., Reguly, I., Antao, S., Bertolli, C.: OP2-Clang: A Source-to-

Source Translator Using Clang/LLVM LibTooling. In: 2018 IEEE/ACM 5th Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-HPC). pp. 59–70 (Nov 2018).
https://doi.org/10.1109/LLVM-HPC.2018.8639205

7. Colella, P.: Defining Software Requirements for Scientific Computing (2004), (Presentation)
8. Corrigan, A., Camelli, F., R.Löhner, Wallin, J.: Running Unstructured Grid CFD Solvers

on Modern Graphics Hardware. In: 19th AIAA Computational Fluid Dynamics Conference.
No. AIAA 2009-4001 (June 2009)

9. Deakin, T., McIntosh-Smith, S.: Evaluating the Performance of HPC-Style
SYCL Applications. In: Proceedings of the International Workshop on OpenCL.
IWOCL ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3388333.3388643

10. Denton, J.: Lessons from rotor 37. Journal of Thermal Science 6(1), 1–13 (1997)
11. Giles, M., Mudalige, G., Spencer, B., Bertolli, C., Reguly, I.: Designing OP2

for GPU architectures. Journal of Parallel and Distributed Computing 73(11),
1451–1460 (2013). https://doi.org/https://doi.org/10.1016/j.jpdc.2012.07.008, https://

www.sciencedirect.com/science/article/pii/S0743731512001694, novel archi-
tectures for high-performance computing

12. Lo, Y.J., Williams, S., Van Straalen, B., Ligocki, T.J., Cordery, M.J., Wright, N.J., Hall,
M.W., Oliker, L.: Roofline model toolkit: A practical tool for architectural and program anal-
ysis. In: International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems. pp. 129–148. Springer (2014)

13. McCalpin, J.D.: Memory Bandwidth and Machine Balance in Current High Performance
Computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter pp. 19–25 (Dec 1995)

14. Mudalige, G., Giles, M., Reguly, I., Bertolli, C., Kelly, P.: OP2: An active li-
brary framework for solving unstructured mesh-based applications on multi-core
and many-core architectures. 2012 Innovative Parallel Computing, InPar 2012
(2012). https://doi.org/10.1109/InPar.2012.6339594, http://dx.doi.org/10.1109/
InPar.2012.6339594

Under the Hood of SYCL 19

15. Mudalige, G., Reguly, I., Giles, M.: Auto-vectorizing a Large-scale Production Unstructured-
mesh CFD Application. In: Proceedings of the 3rd Workshop on Programming Mod-
els for SIMD/Vector Processing. pp. 5:1–5:8. WPMVP ’16, ACM, New York, NY,
USA (2016). https://doi.org/10.1145/2870650.2870651, http://doi.acm.org/10.1145/
2870650.2870651

16. Owenson, A., Wright, S., Bunt, R., Ho, Y., Street, M., Jarvis, S.: An Unstructured CFD Mini-
Application for the Performance Prediction of a Production CFD Code. Concurrency Com-
putat: Pract Exper (2019). https://doi.org/10.1002/cpe.5443, https://doi.org/10.1002/
cpe.5443

17. Patterson, D.: The Trouble with Multi-Core. IEEE Spectrum 47(7), 28–32, 53 (July 2010).
https://doi.org/10.1109/MSPEC.2010.5491011

18. Reguly, I.Z., Giles, D., Gopinathan, D., Quivy, L., Beck, J.H., Giles, M.B., Guillas,
S., Dias, F.: The VOLNA-OP2 tsunami code (version 1.5). Geoscientific Model Devel-
opment 11(11), 4621–4635 (2018). https://doi.org/10.5194/gmd-11-4621-2018, https://
gmd.copernicus.org/articles/11/4621/2018/

19. Reguly, I.Z., Mudalige, G.R., Bertolli, C., Giles, M.B., Betts, A., Kelly, P.H.J.,
Radford, D.: Acceleration of a Full-Scale Industrial CFD Application with OP2.
IEEE Transactions on Parallel and Distributed Systems 27(5), 1265–1278 (2016).
https://doi.org/10.1109/TPDS.2015.2453972

20. Reyes, R., Brown, G., Burns, R., Wong, M.: SYCL 2020: More than Meets the Eye. In:
Proceedings of the International Workshop on OpenCL. IWOCL ’20, Association for Com-
puting Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3388333.3388649,
https://doi.org/10.1145/3388333.3388649

21. Sulyok, A., Balogh, G., Reguly, I., Mudalige, G.: Locality Optimized Unstructured Mesh
Algorithms on GPUs. Journal of Parallel and Distributed Computing 134, 50 – 64 (2019).
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.07.011

22. Treibig, J., Hager, G., Wellein, G.: LIKWID: A Lightweight Performance-Oriented Tool
Suite for x86 Multicore Environments. In: 2010 39th International Conference on Parallel
Processing Workshops. pp. 207–216 (2010). https://doi.org/10.1109/ICPPW.2010.38

