EVOLUTIONARY RE-ENGINEERING OF AN INDUSTRIAL HPC
APPLICATION WITH OP-DSL

Gihan Mudalige
g.mudalige@warwick.ac.uk

Joint work with:
Istvan Reguly @ PPCU
Arun Prabhakar, Archie Powell and others at the HPSC group @ Warwick

Neil Sandham and team @ Southampton, Dario Amirante @ Surrey

Mike Giles @ Oxford, Paul Kelly and many more @ Imperial College London

Leigh Lapworth, Christopher Goddard, Paolo Adami and team @ Rolls-Royce plc. and Rolls-Royce Deutschland Ltd Co KG
NAG, UCL, STFC, IBM and many more industrial and academic collaborators.

w

22t August 2022 — EuroPar Workshop on Domain Specific Languages WARWICK

THE UNIVERSITY OF WARWICK

SINGLE THREAD SPEEDUP IS DEAD — MUST EXPLOIT PARALLELISM

H [Patte
42 Years of Processor Data =5 Now Goldan Age”
7 I v ' H. Sutter g *’ Transistors
10" I “Free Lunch is Over” : & 71 (1000s)

& “First Reconfigurable Wawve™
1 U ™ Adaptive Silicon, Elicent, Triscend,
Morphics, Chameleon Systems,

5 Cuicksilver Technology, Mathstar Single-Thread
107 =1 Performance
[SpeclNT x 10%)
_i 04 B F. Brooks A 4
[2 i
Mo Silver Bullet Frequency
(MHz)

1 Ua B Moora's

Lanas N : Typical Power
= L iy [Watts)
102 | * S A

T ewy Logical Cores
10" g
oy -
10° | g

1970 1980 1990 2000 2010 2020

Hennessy and Patterson, Turing Lecture 2018, overlaid over “42 Years of Processors Data”

https:/ fwwra karlrupp.net/2018/02 /42-years-of-microprocessor-trend-data/; “First Wave” added by Les Wilson, Frank Schirrmeister
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
MNew plot and data collected for 2010-2017 by K. Rupp

DIVERSE HARDWARE LANDSCAPE — COMPOUNDED BY THE RACE TO EXASCALE !

 Traditional CPUs O FPGAs
= |ntel, AMD, ARM, IBM = Dominated by Xilinx and Intel
= multi-core (close to 100 cores) = Various configurations
= Deep memory hierarchy (cache levels and RAM) = Low-level language / HLS tools for programming
= |onger vector units (e.g. AVX-512) = Significant energy savings
[GPUs
= NVIDIA (A100), AMD (MI200), Intel (Xe GPUs) (1 DSP Processors
= Many-core (> 2k simpler SIMT cores) = Phytium / The Chinese Matrix2000 GPDSP accelerator
= CUDA cores, Tensor cores (Chinese Exascale systems)
= Cache, Shared memory, HBM (3D stacked DRAM)
(J Heterogeneous Processors O TPUs, IPUs ...
= Different core architectures over the past years
= ARM big.LITTLE d Quantum ?

= NVIDIA Grace.Hopper
1 XeonPhi (discontinued)

= Many-core — based on simpler x86 cores
= MCDRAM (3D stacked DRAM)

BUT .. EVEN MORE DIVERSE WAYS TO PROGRAMMING THEM !

OpenMP, SIMD,

CUDA, OpenCL, OpenMP4.0, ,
SYCL/OneAPI,

HIP/ROCm,

MPI, PGAS

Task-based (e.g Legion)

and others

d Open standards so far have not been agile to catch up with changing architectures : OpenMP, SYCL
 Proprietary programming models are restricted to narrow vendor specific hardware : CUDA, OpenACC, ROCm

d Need different code-paths/parallelization schemes to get the best performance
Q E.g. Coloring vs atomics vs SIMD vs MPI vs Cache-blocking tiling for unstructured mesh class of applications

O What about legacy codes ? There is a lot of FORTRAN code out there

OP-DSL

O Separation of Concerns (... back in 2010 !)
= Specify the problem — not the implementation
= Leverage the best implementation for the target context
= Can be many contexts - hardware, programming model, parameters etc.

L Domain Specific API
= Get application scientists to pose the solution using domain specific constructs — provided by the API
* Handling data done only using APl — contract with the user

[Restrict writing code that is difficult (for the compiler) to reason about and optimize
= “OP2 and OPS are a straitjacket” — Mike Giles
= Build in safeguards so that user cannot write bad code !

O Implementation of the API left to a lower level
= Target implementation to hardware — can use best optimizations
= Automatically generate implementation from specification for the context
= Exploit domain knowledge for better optimizations - reuse what we know is best for each context

OP2 API - EXAMPLE

! Declaring the mesh with 0P2

| sets

call op_decl_set(nnode,nodes, 'nodes’')

call op_decl_set(nedge,edges, 'edges’')

call op_decl_set(ncell,cells, 'cells")

! maps

call op_decl_map(edges,nodes,?,edge ,pedge , 'pedge')
call op_decl_map(edges,cells,?,ecell,pecell, 'pecell’)
! data

call op_decl_dat(nodes,2, 'real(8)',x,p_x, 'p_x")

call op_decl_dat(cells,4, 'real(8)',q,p_q, 'p_g")

call op_decl_dat(cells,1, 'real(8)',adt,p_adt, 'p_adt')
call op_decl_dat(cells,4, 'real(8)',res,p_res, 'p_res')

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40

! Elemental kernel

subroutine res_calc(x1,x2,q1,92,adt1,adt2,res1,res2)
IMPLICIT NONE
REAL (kind=8), DIMENSION(2), INTENT(IN) :: x1
REAL (kind=8), DIMENSION(2), INTENT(IN) :: x2

REAL(kind=8) :: dx,dy,mu,ri,pl,voll,p2,vol2,f
dx = x1(1) - x2(1)

dy = x1(2) - x2(2)

f=0.5=% (voll *# g1 (1) + vol2 * q2(1)) + &
& mux (q1(1) - q2(1))

res1(1) = resi(1) + f

res2(1) = res2(1) - f

* *

end subroutine

! Calculate flux residual - parallel loop over edges

call op_par_loop_8 (res_calc, edges, &

& op_arg_dat(x, 1, edge, 2,"real(8)", OP_READ), &
& op_arg_dat(x, 2, edge, 2,"real(8)", OP_READ), &
& op_arg_dat(q, 1, ecell, 4,"real(8)", OP_READ), &
& op_arg_dat(q, 2, ecell, 4,"real(8)", OP_READ), &
& op_arg_dat(adt, 1, ecell, 1,"real(8)", OP_READ), &
& op_arg_dat(adt, 2, ecell, 1,"real(8)", OP_READ), &
& op_arg_dat(res, 1, ecell, 4,"real(8)", OP_INC), &
& op_arg_dat(res, 2, ecell, 4,"real(8)", OP_INC))

EVOLUTIONARY APPLICATION DEVELOPMENT

Application ; |:> OP2 / OPS Application (Embedded API in Fortran/C/C++) H
L
Source-to-Source translator (Python / Clang-LLVM)]
L

Modified Platform Specific
OP2/0PS Application

7

Platform SpeC|f|c Optimized

Appllcat|on Files Optimized Backend libraries

% OP2/0PS Platform Specific

N

-) N Sequential for testing
Lin - 3
Conventional Compiler (e.g. icc, nvce, pgcc, clang, XL, Cray) + N SIMD/Vectorized d
compiler flags <—| N CUDA d

N OpenMP

..................................... : iy Q = \
Mesh Platform Specific N OpenCL)
(hdf5) |:> Binary Executable N SYCL)
............................... \ HIP/ROCm A

Hardware

I

OP2/OPS CobDE GENERATION

Paralleization Templates for Fortran

Fortran elemental
Kernel transformations > CUDA Fortran MPI +
Python/flang(?) CUDA Fortran,
D OpenMP =(F(l)ln[and] OpenMP
arallel code
OP2/0OPS Fortran Python+fparser? I 1 o ace AN L parallel coae | ~ ...
. . > en
Fortran APl _—"| application i . |
Language L I
> agnostic
common IR Paralleization Templates for C/C++
N
OP2/0PS [CIC++ : N\
. . N0 MPI +
C/IC++ APl _— appl|cat|on) Python+clang I 1 N AN (C/C++ CUDA, OpenMP,
> pen >
L paraIIeI code SYCL/OneAPI, HIP
C/C++elementalKernel 0!V [~ N~ N
transformations > SYCL/OneAPI
clang/libtooling |

d Simplest Code generation / translation
* |ntermediate representation is simply the loop descriptions + elemental kernels
= Generated parallel code can be viewed and understood by a human !

L Multi-layered — no opaque / black box layers
O Build with well supported / long-term technologies - Python, Clang/libtooling, [flang, mlir]

EPSRC PROSPERITY PARTNERSHIP — ASIMoOV [HYDRA TO OP2-HYDRA |

[Virtual certification of Gas Turbine Engines
= Main consortium with partners — Rolls-Royce plc., EPCC, Warwick, Oxford, Cambridge and Bristol

Combustor

U Grand Challenge 1 — Sliding Planes model of Rig250 (DLR test rig compressor)
= 4.5 stage rotor-stator (10-row full annulus) | 4.58B mesh nodes.
= Need to obtain 1 revolution of compressor in less than 24 hours

= Current production estimates at over 7 days

[Setup
= Moving rotor-stator — sliding planes interfaces
= Rotors and Stators modelled with Hydra CFD suite — URANS (360-degree models)
= 10 rotor-stator interfaces

)y Compressor Turbine

Fan Sif
 (IPC and HPC)

= Code coupling for sliding planes — move from current monolithic (Hydra only) production code to coupling

O Challenges

= Performance portability — run both CPUs and GPUs by multiple vendors
= Preserve production code’s scientific code and structure — cannot re-write, MUST “evolve” not overhaul !
= Convince users to adopt ! (Ongoing for nearly 10 years now)

EVOLVING HYDRA TO OP2-HYDRA - PRELIMINARIES

(L Declare problem using OP2 APl [Manual]
Start with original code

Pass over Hydra data to OP2’s op_sets, op maps and op_dats

Needed to rely on in-house 1/0 libs to read mesh data — then hand these raw pointers to OP2

Still original loops accessing original blocks of memory— OP2 dev version does not move / realloc memory

Add OP2 header module + link with OP2 sequential developer backend : validate a small case
(Prepare loops to be with outlined kernels [Manual]

do while

(hyd par loop

(ncells, istart, iend))

subroutine distr (areac,areanl,arean2?2,arean3)

call hyd access r8(‘r’,areac, 1, ncells, null, 0,0,1,1) real (8), intent (in) areac
call hyd access r8(‘r’,arean, 1, nnodes, ncell, 1,1,1,3) real (8), intent (in) areanl, arean?2, arean3
do ic = istart, iend areanl = areanl + areac/3.0
il = ncell (1,1ic) arean? = arean?2 + areac/3.0
12 = ncell (2,1c) arean3 = arean3 + areac/3.0
i3 = ncell (3,1ic) end subroutine
area(il) = arean(il) + areac(ic) /3.0
area (i2) = arean(i2) + areac(ic) /3.0 do while (hyd par loop (ncells, istart, iend))
area (i13) = arean(i3) + areac(ic)/3.0 call hyd access r8(‘r’,areac, 1, ncells, null, ©0,0,1,1)
end do call hyd access r8(‘r’,arean, 1, nnodes, ncell, 1,1,1,3)
end while do ic = istart, iend
il = ncell (1,1ic)
i2 = ncell (2,1ic)
i3 = ncell (3,1ic)

call distr(areac(ic),arean(il),arean(i2),arean(i3))
end do
end while

EVOLVING HYDRA TO OP2-HYDRA — AUTOMATING LOOP CONVERSION

[Manual]
Hydra
= Qutline elemental kernels

= Remove race-conditions
from common block vas

[semi-automatic]

[semi-automatic] Hydra - loops

. Hydra -
kernels outlined

Use convert.py in OP2 API

Converts hyd par loops to op par_ loops
Creates ».F90, kernels/*.inc

Manually : check accesses descriptors
Handle or 1nc and global + reductions

= Usestrip const.pyon*.inc
» Creates constant lists and put them in
FO90 modules in hydra constants.F90

[semi-automatic]

= Useadd decl const.py oOn*.F,
*.F90 toadd op decl const calls
after lines that modify constants

Constants —
stage 1

[semi-automatic] Constants —
Use replace const.py ONkernels/*, *.F,*.F90 Stage 2

Swaps common blocks for F90 module

OP2-Hydra

[automatic] Multiple Parallel
Use op2 fortran.py for codegen on files with Versions

op par loops
Creates kernels/* [seq|omp]|gpul]kernels.F90

EVOLVING HYDRA TO OP2-HYDRA — DISTRIBUTED MEMORY CHALLENGES

O Using legacy / in-house I/0 libraries

= Took a lot of time to get at the raw data read in from in-house 1/0O libraries — Hydra uses Cray pointers !
= Currently attempting to automate this process for any new version of Hydra

L Communications avoiding optimizations

= Partial MPI halo (PH) exchange — only exchange part of the MPI halo that has been modified
= Grouping of MPI halos (GH) — pack halos from different op_dats to single message | there is now a packing cost !
= GPU-side Gathers (GG) and scatter — gather/scatter data to be communicated to coupler using a GPU kernel, instead of on host

ARCHER?2
1 — 104300 1 — 104588
10 nodes 27 nodes | 107 nodes 283 nodes
Default | 41.62 16.55 41.24 18.19
+PH | 39.87 15.64 38.36 16.88 5-7 % gains
Cirrus
1 — 104300 1 — 26530
15 nodes 20 nodes | 17 nodes
Default | 19.07 13.58 23.79
+GG +PH +GH | 5.09 4.23 6.74 60 — 75 % gains

EVOLVING HYDRA TO OP2-HYDRA — GPU CHALLENGES

 Fortran 77 Common blocks declaring constants
= Move to Fortran 90 — use modules
= Declare constants with op_decl const so that GPU code generation can add copies to device

O Elemental kernel calling external function
= Need source of external functions - to code-gen SoA parameters for external function
= No pointer aliasing

O Elemental kernel body
= Exits in the kernel, print statements

EVOLVING HYDRA TO OP2-HYDRA — INTEGRATING WITH COUPLER

IGV] [R1L | [s1 |[Rz |[s2][R3 |[S3][Ra |54

HS1 @ HS2

IGV \\l\“,’ji\\\’/‘,-—/ R1

HS3 HS9

S1 S4

Reproduced with permission from : V. Marciniak, A. Weber, E. K'uegler, Modelling transition for the design of modern axial
turbomachines, in: 6th European Conference on Computational Fluid Dynamics, Barcelona, Spain, 2014, pp. 20-25

L Needed to interface with Rolls-Royce’s in-house coupler - JIM76
= JM76 can couple arbitrary number of models — specialized treatment for fluid-solid and fluid-fluid interfaces

[For this problem it implements sliding-planes interfaces
= Extrude mesh of Rotor and Stator to create overlapping mesh with adjacent zone

= During execution — search and find correct source-donor element | interpolate flow vars from one zone | communicate to
donor zone

UKey challenges
= Give JM76 access to OP2 internal data —op_dats and op_maps
= Efficient communication between GPUs — GPU side gathers

OP2-HYDRA — TOWARDS VIRTUAL CERTIFICATION OF GAS TURBINE ENGINES

Trent XWB Engine

Combustor

)y Compressor Turbine

Fan f i/
= (IPC and HPC)

 Rig250 — 430M mesh — 10 rows [10,54y]
 Rig250 — 653M mesh — 2 rows [2,5]
 Rig250 — 4.58B mesh — 10 rows [10, o4;]

Rig250 Geometry and Engine

RIG250 — PROBLEM SETUP AND MESH

0.021rev

I6v | [Rl | [s1 |[Rz J[s2|[R3 |[S3][R4]S4 , :
Axial Velocity (m/s)
350
/ ‘ ‘\ / ‘ S / ~ 300
250
v A4 -
I F A4
| g ' ’,-’fl ‘_/ 4 s 4 150
Inlet ! Y Outlet .
| " -;| ;r,f i /// —l_-é;
I, - | |-ﬁ‘| H *
: r--- "w*J'd'iu_l b
L; - -) |“_' 0
- o) Ly
1 xRl
] | T .
A Y 4 _ '“‘-_
. : L—
o \.\
e y I J
Reproduced with permission from : V. Marciniak, A. Weber, E. K'uegler, Modelling transition for the design of modern g >
axial turbomachines, in: 6th European Conference on Computational Fluid Dynamics, Barcelona, Spain, 2014, pp. 20—

25

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable
Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022

OP2-HYDRA PERFORMANCE - SYSTEMS

TABLE 1: Systems specifications.

System ARCHER2 Cirrus
HPE Cray EX SGI/HPE 8600
GPU Cluster
Processor AMD EPYC 7742 Intel Xeon Gold 6248
@ 2.25 GHz (Cascade Lake) @ 2.5 GHz
+ NVIDIA Tesla
VI00-SXM2-16GB GPU
(procs xcores) 2x64 2x20 + 4xGPUs
/node
Memory/mode 256 GB 384 GB + 40GB/GPU
Interconnect HPE Cray Shingshot Infiniband
2x 100 Gb/s FDR, 54.5 Gb/s
bi-directional/node
0S HPE Cray LE Linux CentOS 7
(based on SLES 15)
Compilers GNU 10.2.0 nvloriran (nvhpc 21.2)

Compiler Flags

Power/node

—0Z2 —el —IfP1C

660w

CUDA 11.6 and sm_70
-02 -Kieee
== 900W

OP2-HYDRA SCALING PERFORMANCE

Rig250 — 430M mesh, 10 rows

45

Runtime/time-step (Seconds)
Y - N N W
o [&)] o a o (@] o

39.76
—i—ARCHER2
—o—Cirrus
----- Ideal
- 7.42
5.16 446 TTISSIIe=— 0.58
) 3.28 s=e=———s———1l
(151 [20] " [25)
0 10 20 30 40 50 60 70 80

ARCHERZ2 Nodes (1 Cirrus node = 1.36 ARCHERZ2 nodes) [# Cirrus nodes]

O ARCHER2 @ 34 nodes 1 Cirrus @ 25 nodes
94% parallel efficiency » 94% parallel efficiency
= 10% coupling overhead = 20% coupling overhead

0 ARCHER2 @ 82 nodes

82% parallel efficiency 3.7- 4x speedup
= 20% coupling overhead

90

Rig250 — 653M mesh, 2 rows
40

36.29

—— ARCHER2
—&—Cirrus

35

30

25

20

15

Runtime/time-step (Seconds)

T) N R S Rt 7.90
0 s T

5 [1;]*\‘4_19

221 [29]

-

0 10 20 30 40 50 60 70 80 90
ARCHER2 Nodes (1 Cirrus node = 1.36 ARCHER2 nodes) [# Cirrus Nodes]

0 ARCHER2 @ 80 nodes 1 Cirrus @ 29 nodes
= 88% parallel efficiency = 98% parallel efficiency
= 8% coupling overhead = 12% coupling overhead

3.3 - 3.4x speedup

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable
Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022

OP2-HYDRA SCALING PERFORMANCE - RIG250 4.58B MESH

Time to solution (hours) — Achieved (A), Projected (P)

Runtime per time-step (seconds) 1 revolution of Rig250
N F o0 S — Rig250 Problem ARCHER? Cirrus
— Runime #nodes Runtime #nodes
ESS 1 — 104300 - Monolithic 93.0 (P) S
830 1 — 1043027 - Coupled 85.0 (P) 8 2.9(P) 15
,§25 1 — 10430ns - Coupled 3.3 (P) 80 1.8 (P) 25
220 1 — 26538 - Monolithic 770.0 (P) S
§ 15 1 — 26530 - Coupled 40.0 (P) 8 3.9(P) 17
€ 10 1 — 2530 - Coupled 8.2 (P) 40 3.2 (P) 22
c I — 104585 - Coupled 14.5(A) 166 4.7(P) 122
. 1 — 104.585 - Coupled 9.4 (A) 256
0 100 200 300 400 500 600 1 — 104585 - Coupled 5.5 (A) 512

ARCHER2 Nodes

0 ARCHER2 @ 512 nodes:
= 82% parallel efficiency (vs 107 node run)
= 15% coupling overhead

O 122 Cirrus nodes is power equivalent to 166 ARCHER2 nodes
U ARCHERZ2 needs just over 3x more number of power equivalent nodes
(512) to match Cirrus’s runtime (4.7 hours)

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable
Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022

E‘E-r!::::

Z
O
T
=
-l
O
%
=
@
il

L

_

@

Te)

N
O

nd

OTHER PROJECTS — OPENSBLI (UNI. OF SOUTHAMPTON)

L Compressible Navier-Stockes solver
= With shock capturing WENO/TENO
= 4th order Finite Difference https://opensbli.github.io/

= Single/double precision u velocity

-1.0 -0.5 0.0 0.5 1.0
L OpenSBLI is a Python framework
= Write equations in SymPy expressions
= OPS code generated

ndim i
scl = "sx{\'scheme\':\'Teno\'}"

mass = "Eq(Der(rho,t), - Conservative(rhou_j,x_j,%s))" % scl

momentum = "Eq(Der(rhou_i,t) , —Conservative(rhou_ixu_j + KD(_i,_j)*p,x_j , %s) + Der(tau_i_j,x_j))" % scl
energy = "Eq(Der(rhoE,t), — Conservative((p+rhoE)xu_j,x_j, %s) — Der(q_j,x_j) + Der(u_ixtau_i_j ,x_j))" % scl
stress_tensor = "Eq(tau_i_j, (mu/Re)x(Der(u_i,x_j)+ Der(u_j,x_i) - (2/3)* KD(_i,_j)* Der(u_k,x_k)))"

heat_flux = "Eq(q_j, (-mu/((gama-1)*MinfsMinfxPrxRe))*xDer(T,x_j))"

Avg = RoeAverage([o, 1])

LLF = LLFTeno(teno_order, averaging=Avg)
cent = Central(4)

rk = RungeKuttalS(3, formulation='SSP')

boundaries [direction] [side] = IsothermalWallBC(direction, @, wall_eqns)

alg = TraditionalAlgorithmRK(block)
0PSC(alg)

Jacobs, C. T., Jammy, S. P., Sandham N. D. (2017). OpenSBLI: A framework for the automated derivation and parallel
execution of finite difference solvers on a range of computer architectures. Journal of Computational Science,
18:12-23, DOI: 10.1016/j.jocs.2016.11.001

OPENSBLI oN ARHCERZ2

O Taylor — Green Vortex Problem — ARCHER2 benchmark

. ling - 10243 Mesh
>trong Sca mg 0243 Mes From recent benchmarking runs done by
" Double precision Andrew Turner and the ExCALIBUR
= Speedup calculated from 1000 iterations — includes start up time. Benchmarking team (Oct 2021)
64.00 .
—B-lters/sec
32.00 | _
-=--Linear e

16.00

4.00
2.00
1.00
8192 65536 524288
Cores

EXCALIBUR PROJECT - TURBULENT FLOW SIMULATIONS AT THE EXASCALE

L ExCALIBUR Phase 1B — Turbulence at the Exascale
= Imperial, Warwick, Newcastle, Southampton, Cambridge, STFC collaboration | UKTC and UKCTRF Communities
Xcompact3D and Wind Energy, OpenSBLI and Green Aviation, uDALES and Air Quality, SENGA+ and Net-Zero Combustion

Extending OPS capability — robust code-gen tools and parallel transformations | support future-proof code development
uQ, 1/0, Coupling and Visualization

Machine Learning Algorithms for Turbulent Flow

O CCP — Turbulence
= Direct solver libraries — Tri-, penta-, 7-, 9-, 11 diagonal, multi-dimensional solvers
= |ntegrate direct-solver libraries to be called within OPS
= OpenSBLI type high-level (Python) framework for XCompact3D — High Order FD framework

UK CONSORTIUM
ON TURBULENT
(o4 I ;{3 REACTING FLOWS

xC R

CHALLENGES — COST / EFFORT OF CONVERSION

L Converting legacy code is time consuming
= Large code base,
= Defunct 3rd party libs,
= Fortran 77 or older !

O Difficult to validate code
= New code giving the same accurate scientific output ?
= What code should | certify ? High-level code/generated code ?
= Difficult to convince users to use new code - fear of an opaque compiler / intermediate representation / black box !

O Incremental conversion — loop by loop
= Simpler than CUDA, but more difficult than OpenACC/OpenMP
= Automated conversion ?

O Changing user requirements
= Wanting to use a DSL for doing things beyond what it was intended for !
= Asking for “back-doors” / “escape hatches” -- leads to poor performance

CHALLENGES — COST / EFFORT OF CONVERSION

[Currently purely done via academic and (small/short term) industrial funding

O Long term funding and maintenance
= Once established probably will not be different to any other classical library
= Will require compiler expertise to maintain code generation tools

 What DSL to choose ?
= Re-use technologies / DSLs — especially code-gen tools (best not to reinvent !)

O Skills Gap
= Program in C/C++/Fortran (at a minimum)
= Knowledge of compilers / code-generation
= Compete for applicants — Communicate what we do better | impact of HPC / Computational Sciences
= [In the UK] Salary
= [In the UK] Contracts

DSLS / HIGH-LEVEL ABSTRACTIONS GAINING TRACTION

O FENICS - PDE solver package - https://fenicsproject.org/

U Firedrake - automated system for the portable solution of PDEs

using the finite element method https://www.firedrakeproject.org/ FeniCS, Firedrake,
PyFR, OpenSBLI, Devito

O PyFR - Python based framework for solving advection-diffusion %

type problems on streaming architectures using the

Flux Reconstruction approach - http://www.pyfr.org/

U Devito - prototype DSL and code generation framework Kokkos, RAJA———»
based on SymPy for the design of highly optimised
finite difference kernels for use in

inversion methods - http://www.opesci.org/devito-public

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity ?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

L GungHO/PSyclone project - Weather modelling codes (MetOffice)
L STELLA — DSL for stencil codes, for solving PDEs (Metro Swiss)

O Kokkos — C++ template library — SNL
O RAJA - C++ template libraries - LLNL

https://fenicsproject.org/
https://www.firedrakeproject.org/
http://www.pyfr.org/
http://www.opesci.org/devito-public

DOWNLOADS AND MORE INFORMATION

1 GitHub Repositories
= OP2 - https://github.com/OP-DSL/OP2-Common
= OPS - https://github.com/OP-DSL/OPS

(OP-DSL Webpage - https://op-dsl.github.io/

1 Contact
= Gihan Mudalige (Warwick) - g.mudalige@warwick.ac.uk

= |stvan Reguly (PPCU — Hungary) - reguly.istvan@itk.ppke.hu

IA\ S I m %\VI

https://github.com/OP-DSL/OP2-Common
https://github.com/OP-DSL/OPS
https://op-dsl.github.io/
mailto:g.mudalige@warwick.ac.uk
mailto:reguly.istvan@itk.ppke.hu

ACKNOWLEDGEMENTS

O OP2 was part-funded by the UK Technology Strategy Board and Rolls-Royce plc. through the SILOET project, and the UK EPSRC
projects EP/1006079/1, EP/100677X/1 on Multi-layered Abstractions for PDEs.

 OPS was part-funded by the UK Engineering and Physical Sciences Research Council projects EP/K038494/1, EP/K038486/1,
EP/K038451/1 and EP/K038567/1 on “Future-proof massively-parallel execution of multi-block applications” and EP/J010553/1
“Software for Emerging Architectures” (ASEArch) project.

O This research is supported by Rolls-Royce plc., and by the UK EPSRC (EP/S005072/1) Strategic Partnership in
ComputationalScience for Advanced Simulation and Modelling of Engineering Systems (ASiMoV).

[Gihan Mudalige was supported by the Royal Society Industrial Fellowship Scheme (INF/R1/180012)
O Research was part-supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

U The research has been carried out within the project Thematic Research Cooperation Establishing Innovative Informatic and Info-
communication Solutions, which has been supported by the European Union and co-financed by the European Social Fund under
grant number EFOP-3.6.2-16-2017-00013.

L OpenSBLI was part-funded by EPSRC grants EP/K038567/1 and EP/L000261/1, and European Commission H2020 grant 671571
“ExaFLOW: Enabling Exascale Fluid Dynamics Simulations

