
1

EVOLUTIONARY RE-ENGINEERING OF AN INDUSTRIAL HPC 
APPLICATION WITH OP-DSL
Gihan Mudalige

g.mudalige@warwick.ac.uk 

Joint work with:

Istvan Reguly @ PPCU

Arun Prabhakar, Archie Powell and others at the HPSC group @ Warwick

Neil Sandham and team @ Southampton, Dario Amirante @ Surrey

Mike Giles @ Oxford, Paul Kelly and many more @ Imperial College London

Leigh Lapworth, Christopher Goddard, Paolo Adami and team @ Rolls-Royce plc. and Rolls-Royce Deutschland Ltd Co KG

NAG, UCL, STFC, IBM and many more industrial and academic collaborators. 

22th August 2022 – EuroPar Workshop on Domain Specific Languages



SINGLE THREAD SPEEDUP IS DEAD – MUST EXPLOIT PARALLELISM



DIVERSE HARDWARE LANDSCAPE – COMPOUNDED BY THE RACE TO EXASCALE !

 Traditional CPUs  

 Intel, AMD, ARM, IBM

 multi-core (close to 100 cores)

 Deep memory hierarchy (cache levels and RAM)

 longer vector units (e.g. AVX-512)

 GPUs

 NVIDIA (A100), AMD (MI200) , Intel (Xe GPUs)

 Many-core (> 2k simpler SIMT cores)

 CUDA cores, Tensor cores  

 Cache, Shared memory, HBM (3D stacked DRAM)

 Heterogeneous Processors 

 Different core architectures over the past years

 ARM big.LITTLE

 NVIDIA Grace.Hopper

 XeonPhi (discontinued) 

 Many-core – based on simpler x86 cores

 MCDRAM (3D stacked DRAM)

 FPGAs

 Dominated by Xilinx and Intel  

 Various configurations

 Low-level language / HLS tools for programming

 Significant energy savings

 DSP Processors 

 Phytium / The Chinese Matrix2000 GPDSP accelerator 
(Chinese Exascale systems)

 TPUs, IPUs …. 

 Quantum ?



BUT .. EVEN MORE DIVERSE WAYS TO PROGRAMMING THEM !

OpenMP, SIMD,
CUDA, OpenCL, OpenMP4.0, OpenACC,
SYCL/OneAPI,
HIP/ROCm,
MPI, PGAS
Task-based (e.g Legion)
and others ….

 Open standards so far have not been agile to catch up with changing architectures : OpenMP, SYCL

 Proprietary programming models are restricted to narrow vendor specific hardware : CUDA, OpenACC, ROCm

 Need different code-paths/parallelization schemes to get the best performance
 E.g. Coloring vs atomics vs SIMD vs MPI vs Cache-blocking tiling for unstructured mesh class of applications

 What about legacy codes ? There is a lot of FORTRAN code out there



OP-DSL

 Separation of Concerns (… back in 2010 !)

 Specify the problem – not the implementation

 Leverage the best implementation for the target context

 Can be many contexts - hardware, programming model, parameters etc.

 Domain Specific API

 Get application scientists to pose the solution using domain specific constructs – provided by the API

 Handling data done only using API – contract with the user

 Restrict writing code that is difficult (for the compiler) to reason about and optimize  

 “OP2 and OPS are a straitjacket” – Mike Giles

 Build in safeguards so that user cannot write bad code !

 Implementation of the API left to a lower level 

 Target implementation to hardware – can use best optimizations

 Automatically generate implementation from specification for the context

 Exploit domain knowledge for better optimizations - reuse what we know is best for each context



OP2 API - EXAMPLE

node-x

node-y



EVOLUTIONARY APPLICATION DEVELOPMENT

HIP/ROCm

SYCL

OpenCL

MPI

Source-to-Source translator (Python / Clang-LLVM)

OP2/OPS Platform Specific 
Optimized Backend libraries

Conventional Compiler (e.g. icc, nvcc, pgcc, clang, XL, Cray) + 
compiler flags

Hardware

Link

OpenMP

Application OP2 / OPS Application (Embedded API in Fortran/C/C++)

Modified Platform Specific 
OP2/OPS Application

Platform Specific Optimized 
Application Files

Mesh 
(hdf5)

Platform Specific 
Binary Executable

CUDA

SIMD/Vectorized

Sequential for testing



OP2/OPS CODE GENERATION

 Simplest Code generation / translation
 Intermediate representation is simply the loop descriptions + elemental kernels
 Generated parallel code can be viewed and understood by a human !

 Multi-layered – no opaque / black box layers
 Build with well supported / long-term technologies - Python, Clang/libtooling, [flang, mlir]

Fortran 

application

C/C++ 

application

OP2/OPS 

Fortran  API

OP2/OPS 

C/C++ API

Language 
agnostic 

common IR

CUDA Fortran

OpenMP

OpenACC

Paralleization Templates for Fortran

CUDA

OpenMP

SYCL/OneAPI

Paralleization Templates for C/C++

Fortran 

parallel code

C/C++ 

parallel code
C/C++ elemental Kernel 

transformations
clang/libtooling

MPI + 
CUDA, OpenMP, 

SYCL/OneAPI, HIP 

……

MPI + 
CUDA Fortran, 

OpenMP

……Python+fparser2

Python+clang

Fortran elemental 
Kernel transformations
Python/flang(?)



EPSRC PROSPERITY PARTNERSHIP – ASIMOV [ HYDRA TO OP2-HYDRA ]

 Virtual certification of Gas Turbine Engines

 Main consortium with partners – Rolls-Royce plc., EPCC, Warwick, Oxford, Cambridge and Bristol

 Grand Challenge 1 – Sliding Planes model of Rig250 (DLR test rig compressor)

 4.5 stage rotor-stator (10-row full annulus) | 4.58B mesh nodes.

 Need to obtain 1 revolution of compressor in less than 24 hours

 Current production estimates at over 7 days

 Setup 

 Moving rotor-stator – sliding planes interfaces 

 Rotors and Stators modelled with Hydra CFD suite – URANS (360-degree models)

 10 rotor-stator interfaces

 Code coupling for sliding planes – move from current monolithic (Hydra only) production code to coupling

 Challenges

 Performance portability – run both CPUs and GPUs by multiple vendors

 Preserve production code’s scientific code and structure – cannot re-write, MUST “evolve” not overhaul !

 Convince users to adopt ! (Ongoing for nearly 10 years now) 



EVOLVING HYDRA TO OP2-HYDRA - PRELIMINARIES

 Declare problem using OP2 API [Manual]

 Start with original code 

 Pass over Hydra data to OP2’s op_sets, op_maps and op_dats

 Needed to rely on in-house I/O libs to read mesh data – then hand these raw pointers to OP2 

 Still original loops accessing original blocks of memory– OP2 dev version does not move / realloc memory

 Add OP2 header module + link with OP2 sequential developer backend : validate a small case

 Prepare loops to be with outlined kernels [Manual]

do while (hyd_par_loop (ncells, istart, iend))  

call hyd_access_r8(‘r’,areac, 1, ncells, null,  0,0,1,1)

call hyd_access_r8(‘r’,arean, 1, nnodes, ncell, 1,1,1,3)

do ic = istart, iend

i1 = ncell (1,ic)

i2 = ncell (2,ic)

i3 = ncell (3,ic)

area(i1) = arean(i1) + areac(ic)/3.0

area(i2) = arean(i2) + areac(ic)/3.0

area(i3) = arean(i3) + areac(ic)/3.0

end do

end while

subroutine distr(areac,arean1,arean2,arean3)

real(8), intent(in) :: areac

real(8), intent(in) :: arean1, arean2, arean3

arean1 = arean1 + areac/3.0

arean2 = arean2 + areac/3.0

arean3 = arean3 + areac/3.0

end subroutine

do while (hyd_par_loop (ncells, istart, iend))  

call hyd_access_r8(‘r’,areac, 1, ncells, null,  0,0,1,1)

call hyd_access_r8(‘r’,arean, 1, nnodes, ncell, 1,1,1,3)

do ic = istart, iend

i1 = ncell (1,ic)

i2 = ncell (2,ic)

i3 = ncell (3,ic)

call distr(areac(ic),arean(i1),arean(i2),arean(i3))

end do

end while



EVOLVING HYDRA TO OP2-HYDRA – AUTOMATING LOOP CONVERSION

Hydra
Hydra  -

kernels outlined
 Outline elemental kernels

 Remove race-conditions

from common block vas

Hydra - loops 

in OP2 API Use convert.py

 Converts hyd_par_loops to op_par_loops

 Creates *.F90, kernels/*.inc

 Manually : check accesses descriptors
 Handle OP_INC and global + reductions

Constants –

stage 1

 Use strip_const.py on *.inc

 Creates constant lists and put them in  
F90 modules in hydra_constants.F90 Constants –

stage 2 Use replace_const.py on kernels/*, *.F,*.F90

 Swaps common blocks for F90 module

OP2-Hydra

 Use add_decl_const.py on *.F, 

*.F90 to add op_decl_const calls 

after lines that modify constants Multiple Parallel 

Versions Use op2_fortran.py for codegen on files with 
op_par_loops

 Creates kernels/*_[seq|omp|gpu]kernels.F90

[Manual] [semi-automatic]

[semi-automatic]

[semi-automatic]

[semi-automatic]

[automatic]



EVOLVING HYDRA TO OP2-HYDRA – DISTRIBUTED MEMORY CHALLENGES

 Using legacy / in-house I/O libraries 

 Took a lot of time to get at the raw data read in from in-house I/O libraries – Hydra uses Cray pointers !

 Currently attempting to automate this process for any new version of Hydra 

 Communications avoiding optimizations

 Partial MPI halo (PH) exchange – only exchange part of the MPI halo that has been modified

 Grouping of MPI halos (GH) – pack halos from different op_dats to single message | there is now a packing cost !

 GPU-side Gathers (GG) and scatter – gather/scatter data to be communicated to coupler using a GPU kernel, instead of on host

5 – 7 % gains

60 – 75 % gains



EVOLVING HYDRA TO OP2-HYDRA – GPU CHALLENGES

 Fortran 77 Common blocks declaring constants

 Move to Fortran 90 – use modules

 Declare constants with op_decl_const so that GPU code generation can add copies to device 

 Elemental kernel calling external function 

 Need source of external functions - to code-gen SoA parameters for external function

 No pointer aliasing 

 Elemental kernel body
 Exits in the kernel, print statements



EVOLVING HYDRA TO OP2-HYDRA – INTEGRATING WITH COUPLER

 Needed to interface with Rolls-Royce’s in-house coupler - JM76

 JM76 can couple arbitrary number of models – specialized treatment for fluid-solid and fluid-fluid interfaces

 For this problem it implements sliding-planes interfaces 

 Extrude mesh of Rotor and Stator to create overlapping mesh with adjacent zone

 During execution – search and find correct source-donor element | interpolate flow vars from one zone | communicate to 
donor zone

Key challenges 
 Give JM76 access to OP2 internal data – op_dats and op_maps

 Efficient communication between GPUs – GPU side gathers

Reproduced with permission from : V. Marciniak, A. Weber, E. K ̈uegler, Modelling transition for the design of modern axial 

turbomachines, in: 6th European Conference on Computational Fluid Dynamics, Barcelona, Spain, 2014, pp. 20–25



OP2-HYDRA – TOWARDS VIRTUAL CERTIFICATION OF GAS TURBINE ENGINES

Trent XWB Engine Rig250 Geometry and Engine

 Rig250 – 430M mesh – 10 rows [10430M]

 Rig250 – 653M mesh – 2 rows [2653M]

 Rig250 – 4.58B mesh – 10 rows [104.58B]



RIG250 – PROBLEM SETUP AND MESH

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable 

Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022

Reproduced with permission from : V. Marciniak, A. Weber, E. K ̈uegler, Modelling transition for the design of modern 

axial turbomachines, in: 6th European Conference on Computational Fluid Dynamics, Barcelona, Spain, 2014, pp. 20–

25



OP2-HYDRA PERFORMANCE - SYSTEMS



OP2-HYDRA SCALING PERFORMANCE

Rig250 – 430M mesh, 10 rows Rig250 – 653M mesh, 2 rows

 ARCHER2 @ 34 nodes

 94% parallel efficiency

 10% coupling overhead

 ARCHER2 @ 82 nodes

 82% parallel efficiency

 20% coupling overhead
3.7- 4x speedup

 Cirrus @ 25 nodes

 94% parallel efficiency

 20% coupling overhead

 ARCHER2 @ 80 nodes

 88% parallel efficiency

 8% coupling overhead

3.3 - 3.4x speedup

 Cirrus @ 29 nodes

 98% parallel efficiency

 12% coupling overhead

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable 

Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022



OP2-HYDRA SCALING PERFORMANCE - RIG250 4.58B MESH

Time to solution (hours) – Achieved (A), Projected (P) 

1 revolution of Rig250Runtime per time-step (seconds)

 122 Cirrus nodes is power equivalent to 166 ARCHER2 nodes 

 ARCHER2 needs just over 3x more number of power equivalent nodes 

(512) to match Cirrus’s runtime (4.7 hours)

 ARCHER2 @ 512 nodes:

 82% parallel efficiency (vs 107 node run)

 15% coupling overhead

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable 

Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022



RIG250 – FLOW SOLUTION



OTHER PROJECTS – OPENSBLI (UNI. OF SOUTHAMPTON)

 Compressible Navier-Stockes solver

 With shock capturing WENO/TENO

 4th order Finite Difference 

 Single/double precision

 OpenSBLI is a Python framework

 Write equations in SymPy expressions

 OPS code generated

Jacobs, C. T., Jammy, S. P., Sandham N. D. (2017). OpenSBLI: A framework for the automated derivation and parallel
execution of finite difference solvers on a range of computer architectures. Journal of Computational Science,
18:12-23, DOI: 10.1016/j.jocs.2016.11.001

OpenSBLI
https://opensbli.github.io/



OPENSBLI ON ARHCER2

 Taylor – Green Vortex Problem – ARCHER2 benchmark 

 Strong Scaling - 10243  Mesh

 Double precision

 Speedup calculated from 1000 iterations – includes start up time. 

From recent benchmarking runs done by 

Andrew Turner and the ExCALIBUR

Benchmarking team (Oct 2021)



EXCALIBUR PROJECT - TURBULENT FLOW SIMULATIONS AT THE EXASCALE

 ExCALIBUR Phase 1B – Turbulence at the Exascale

 Imperial, Warwick, Newcastle, Southampton, Cambridge, STFC collaboration | UKTC and UKCTRF Communities

 Xcompact3D and Wind Energy, OpenSBLI and Green Aviation, uDALES and Air Quality, SENGA+ and Net-Zero Combustion

 Extending OPS capability – robust code-gen tools and parallel transformations | support future-proof code development

 UQ, I/O, Coupling and Visualization

 Machine Learning Algorithms for Turbulent Flow

 CCP – Turbulence

 Direct solver libraries – Tri-, penta-, 7-, 9-, 11 diagonal, multi-dimensional solvers 

 Integrate direct-solver libraries to be called within OPS

 OpenSBLI type high-level (Python) framework for XCompact3D – High Order FD framework



CHALLENGES – COST / EFFORT OF CONVERSION

 Converting legacy code is time consuming

 Large code base, 

 Defunct 3rd party libs, 

 Fortran 77 or older !

 Difficult to validate code 

 New code giving the same accurate scientific output ?

 What code should I certify ? High-level code/generated code ?

 Difficult to convince users to use new code  - fear of an opaque compiler / intermediate representation / black box !

 Incremental conversion – loop by loop

 Simpler than CUDA, but more difficult than OpenACC/OpenMP

 Automated conversion ? 

 Changing user requirements

 Wanting to use a DSL for doing things beyond what it was intended for !

 Asking for “back-doors” / “escape hatches”  -- leads to poor performance



CHALLENGES – COST / EFFORT OF CONVERSION

 Currently purely done via academic and (small/short term) industrial funding 

 Long term funding and maintenance

 Once established probably will not be different to any other classical library

 Will require compiler expertise to maintain code generation tools

 What DSL to choose ?

 Re-use technologies / DSLs – especially code-gen tools (best not to reinvent !)

 Skills Gap 

 Program in C/C++/Fortran  (at a minimum)

 Knowledge of compilers / code-generation 

 Compete for applicants – Communicate what we do better | impact of HPC / Computational Sciences 

 [ In the UK ] Salary  

 [ In the UK ] Contracts 



DSLS / HIGH-LEVEL ABSTRACTIONS GAINING TRACTION

 FEniCS - PDE solver package - https://fenicsproject.org/

 Firedrake - automated system for the portable solution of PDEs 

using the finite element method   https://www.firedrakeproject.org/

 PyFR - Python based framework for solving advection-diffusion

type problems on streaming architectures using the 

Flux Reconstruction approach - http://www.pyfr.org/

 Devito - prototype DSL and code generation framework 

based on SymPy for the design of highly optimised 

finite difference kernels for use in 

inversion methods  - http://www.opesci.org/devito-public

 GungHO/PSyclone project - Weather modelling codes (MetOffice)

 STELLA – DSL for stencil codes, for solving PDEs (Metro Swiss)

 Kokkos – C++ template library – SNL

 RAJA - C++ template libraries - LLNL

C/C++, Fortran,

Motifs / Parallel patterns

Numerical Method

FeniCS, Firedrake, 

PyFR, OpenSBLI, Devito

OP2 / OPS

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London) 

Kokkos, RAJA

SYCL / OneAPI

https://fenicsproject.org/
https://www.firedrakeproject.org/
http://www.pyfr.org/
http://www.opesci.org/devito-public


DOWNLOADS AND MORE INFORMATION

 GitHub Repositories

 OP2 – https://github.com/OP-DSL/OP2-Common

 OPS – https://github.com/OP-DSL/OPS

 OP-DSL Webpage - https://op-dsl.github.io/

 Contact

 Gihan Mudalige (Warwick) - g.mudalige@warwick.ac.uk

 Istvan Reguly (PPCU – Hungary) - reguly.istvan@itk.ppke.hu

https://github.com/OP-DSL/OP2-Common
https://github.com/OP-DSL/OPS
https://op-dsl.github.io/
mailto:g.mudalige@warwick.ac.uk
mailto:reguly.istvan@itk.ppke.hu


ACKNOWLEDGEMENTS

 OP2 was part-funded by the UK Technology Strategy Board and Rolls-Royce plc. through the SILOET project, and the UK EPSRC 
projects EP/I006079/1, EP/I00677X/1 on Multi-layered Abstractions for PDEs.

 OPS was part-funded by the UK Engineering and Physical Sciences Research Council projects EP/K038494/1, EP/K038486/1, 
EP/K038451/1 and EP/K038567/1 on “Future-proof massively-parallel execution of multi-block applications” and EP/J010553/1
“Software for Emerging Architectures” (ASEArch) project. 

 This  research  is  supported  by  Rolls-Royce  plc.,  and  by  the  UK EPSRC  (EP/S005072/1) Strategic  Partnership  in  
ComputationalScience for  Advanced  Simulation  and  Modelling  of  Engineering Systems  (ASiMoV). 

 Gihan Mudalige was supported by the Royal Society Industrial Fellowship Scheme (INF/R1/180012)

 Research was part-supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

 The research has been carried out within the project Thematic Research Cooperation Establishing Innovative Informatic and Info-
communication Solutions, which has been supported by the European Union and co-financed by the European Social Fund under 
grant number EFOP-3.6.2-16-2017-00013.

 OpenSBLI was part-funded by EPSRC grants EP/K038567/1 and EP/L000261/1, and European Commission H2020 grant 671571
“ExaFLOW: Enabling Exascale Fluid Dynamics Simulations


