
1

EVOLUTIONARY RE-ENGINEERING OF AN INDUSTRIAL HPC
APPLICATION WITH OP-DSL
Gihan Mudalige

g.mudalige@warwick.ac.uk

Joint work with:

Istvan Reguly @ PPCU

Arun Prabhakar, Archie Powell and others at the HPSC group @ Warwick

Neil Sandham and team @ Southampton, Dario Amirante @ Surrey

Mike Giles @ Oxford, Paul Kelly and many more @ Imperial College London

Leigh Lapworth, Christopher Goddard, Paolo Adami and team @ Rolls-Royce plc. and Rolls-Royce Deutschland Ltd Co KG

NAG, UCL, STFC, IBM and many more industrial and academic collaborators.

22th August 2022 – EuroPar Workshop on Domain Specific Languages

SINGLE THREAD SPEEDUP IS DEAD – MUST EXPLOIT PARALLELISM

DIVERSE HARDWARE LANDSCAPE – COMPOUNDED BY THE RACE TO EXASCALE !

 Traditional CPUs

 Intel, AMD, ARM, IBM

 multi-core (close to 100 cores)

 Deep memory hierarchy (cache levels and RAM)

 longer vector units (e.g. AVX-512)

 GPUs

 NVIDIA (A100), AMD (MI200) , Intel (Xe GPUs)

 Many-core (> 2k simpler SIMT cores)

 CUDA cores, Tensor cores

 Cache, Shared memory, HBM (3D stacked DRAM)

 Heterogeneous Processors

 Different core architectures over the past years

 ARM big.LITTLE

 NVIDIA Grace.Hopper

 XeonPhi (discontinued)

 Many-core – based on simpler x86 cores

 MCDRAM (3D stacked DRAM)

 FPGAs

 Dominated by Xilinx and Intel

 Various configurations

 Low-level language / HLS tools for programming

 Significant energy savings

 DSP Processors

 Phytium / The Chinese Matrix2000 GPDSP accelerator
(Chinese Exascale systems)

 TPUs, IPUs ….

 Quantum ?

BUT .. EVEN MORE DIVERSE WAYS TO PROGRAMMING THEM !

OpenMP, SIMD,
CUDA, OpenCL, OpenMP4.0, OpenACC,
SYCL/OneAPI,
HIP/ROCm,
MPI, PGAS
Task-based (e.g Legion)
and others ….

 Open standards so far have not been agile to catch up with changing architectures : OpenMP, SYCL

 Proprietary programming models are restricted to narrow vendor specific hardware : CUDA, OpenACC, ROCm

 Need different code-paths/parallelization schemes to get the best performance
 E.g. Coloring vs atomics vs SIMD vs MPI vs Cache-blocking tiling for unstructured mesh class of applications

 What about legacy codes ? There is a lot of FORTRAN code out there

OP-DSL

 Separation of Concerns (… back in 2010 !)

 Specify the problem – not the implementation

 Leverage the best implementation for the target context

 Can be many contexts - hardware, programming model, parameters etc.

 Domain Specific API

 Get application scientists to pose the solution using domain specific constructs – provided by the API

 Handling data done only using API – contract with the user

 Restrict writing code that is difficult (for the compiler) to reason about and optimize

 “OP2 and OPS are a straitjacket” – Mike Giles

 Build in safeguards so that user cannot write bad code !

 Implementation of the API left to a lower level

 Target implementation to hardware – can use best optimizations

 Automatically generate implementation from specification for the context

 Exploit domain knowledge for better optimizations - reuse what we know is best for each context

OP2 API - EXAMPLE

node-x

node-y

EVOLUTIONARY APPLICATION DEVELOPMENT

HIP/ROCm

SYCL

OpenCL

MPI

Source-to-Source translator (Python / Clang-LLVM)

OP2/OPS Platform Specific
Optimized Backend libraries

Conventional Compiler (e.g. icc, nvcc, pgcc, clang, XL, Cray) +
compiler flags

Hardware

Link

OpenMP

Application OP2 / OPS Application (Embedded API in Fortran/C/C++)

Modified Platform Specific
OP2/OPS Application

Platform Specific Optimized
Application Files

Mesh
(hdf5)

Platform Specific
Binary Executable

CUDA

SIMD/Vectorized

Sequential for testing

OP2/OPS CODE GENERATION

 Simplest Code generation / translation
 Intermediate representation is simply the loop descriptions + elemental kernels
 Generated parallel code can be viewed and understood by a human !

 Multi-layered – no opaque / black box layers
 Build with well supported / long-term technologies - Python, Clang/libtooling, [flang, mlir]

Fortran

application

C/C++

application

OP2/OPS

Fortran API

OP2/OPS

C/C++ API

Language
agnostic

common IR

CUDA Fortran

OpenMP

OpenACC

Paralleization Templates for Fortran

CUDA

OpenMP

SYCL/OneAPI

Paralleization Templates for C/C++

Fortran

parallel code

C/C++

parallel code
C/C++ elemental Kernel

transformations
clang/libtooling

MPI +
CUDA, OpenMP,

SYCL/OneAPI, HIP

……

MPI +
CUDA Fortran,

OpenMP

……Python+fparser2

Python+clang

Fortran elemental
Kernel transformations
Python/flang(?)

EPSRC PROSPERITY PARTNERSHIP – ASIMOV [HYDRA TO OP2-HYDRA]

 Virtual certification of Gas Turbine Engines

 Main consortium with partners – Rolls-Royce plc., EPCC, Warwick, Oxford, Cambridge and Bristol

 Grand Challenge 1 – Sliding Planes model of Rig250 (DLR test rig compressor)

 4.5 stage rotor-stator (10-row full annulus) | 4.58B mesh nodes.

 Need to obtain 1 revolution of compressor in less than 24 hours

 Current production estimates at over 7 days

 Setup

 Moving rotor-stator – sliding planes interfaces

 Rotors and Stators modelled with Hydra CFD suite – URANS (360-degree models)

 10 rotor-stator interfaces

 Code coupling for sliding planes – move from current monolithic (Hydra only) production code to coupling

 Challenges

 Performance portability – run both CPUs and GPUs by multiple vendors

 Preserve production code’s scientific code and structure – cannot re-write, MUST “evolve” not overhaul !

 Convince users to adopt ! (Ongoing for nearly 10 years now)

EVOLVING HYDRA TO OP2-HYDRA - PRELIMINARIES

 Declare problem using OP2 API [Manual]

 Start with original code

 Pass over Hydra data to OP2’s op_sets, op_maps and op_dats

 Needed to rely on in-house I/O libs to read mesh data – then hand these raw pointers to OP2

 Still original loops accessing original blocks of memory– OP2 dev version does not move / realloc memory

 Add OP2 header module + link with OP2 sequential developer backend : validate a small case

 Prepare loops to be with outlined kernels [Manual]

do while (hyd_par_loop (ncells, istart, iend))

call hyd_access_r8(‘r’,areac, 1, ncells, null, 0,0,1,1)

call hyd_access_r8(‘r’,arean, 1, nnodes, ncell, 1,1,1,3)

do ic = istart, iend

i1 = ncell (1,ic)

i2 = ncell (2,ic)

i3 = ncell (3,ic)

area(i1) = arean(i1) + areac(ic)/3.0

area(i2) = arean(i2) + areac(ic)/3.0

area(i3) = arean(i3) + areac(ic)/3.0

end do

end while

subroutine distr(areac,arean1,arean2,arean3)

real(8), intent(in) :: areac

real(8), intent(in) :: arean1, arean2, arean3

arean1 = arean1 + areac/3.0

arean2 = arean2 + areac/3.0

arean3 = arean3 + areac/3.0

end subroutine

do while (hyd_par_loop (ncells, istart, iend))

call hyd_access_r8(‘r’,areac, 1, ncells, null, 0,0,1,1)

call hyd_access_r8(‘r’,arean, 1, nnodes, ncell, 1,1,1,3)

do ic = istart, iend

i1 = ncell (1,ic)

i2 = ncell (2,ic)

i3 = ncell (3,ic)

call distr(areac(ic),arean(i1),arean(i2),arean(i3))

end do

end while

EVOLVING HYDRA TO OP2-HYDRA – AUTOMATING LOOP CONVERSION

Hydra
Hydra -

kernels outlined
 Outline elemental kernels

 Remove race-conditions

from common block vas

Hydra - loops

in OP2 API Use convert.py

 Converts hyd_par_loops to op_par_loops

 Creates *.F90, kernels/*.inc

 Manually : check accesses descriptors
 Handle OP_INC and global + reductions

Constants –

stage 1

 Use strip_const.py on *.inc

 Creates constant lists and put them in
F90 modules in hydra_constants.F90 Constants –

stage 2 Use replace_const.py on kernels/*, *.F,*.F90

 Swaps common blocks for F90 module

OP2-Hydra

 Use add_decl_const.py on *.F,

*.F90 to add op_decl_const calls

after lines that modify constants Multiple Parallel

Versions Use op2_fortran.py for codegen on files with
op_par_loops

 Creates kernels/*_[seq|omp|gpu]kernels.F90

[Manual] [semi-automatic]

[semi-automatic]

[semi-automatic]

[semi-automatic]

[automatic]

EVOLVING HYDRA TO OP2-HYDRA – DISTRIBUTED MEMORY CHALLENGES

 Using legacy / in-house I/O libraries

 Took a lot of time to get at the raw data read in from in-house I/O libraries – Hydra uses Cray pointers !

 Currently attempting to automate this process for any new version of Hydra

 Communications avoiding optimizations

 Partial MPI halo (PH) exchange – only exchange part of the MPI halo that has been modified

 Grouping of MPI halos (GH) – pack halos from different op_dats to single message | there is now a packing cost !

 GPU-side Gathers (GG) and scatter – gather/scatter data to be communicated to coupler using a GPU kernel, instead of on host

5 – 7 % gains

60 – 75 % gains

EVOLVING HYDRA TO OP2-HYDRA – GPU CHALLENGES

 Fortran 77 Common blocks declaring constants

 Move to Fortran 90 – use modules

 Declare constants with op_decl_const so that GPU code generation can add copies to device

 Elemental kernel calling external function

 Need source of external functions - to code-gen SoA parameters for external function

 No pointer aliasing

 Elemental kernel body
 Exits in the kernel, print statements

EVOLVING HYDRA TO OP2-HYDRA – INTEGRATING WITH COUPLER

 Needed to interface with Rolls-Royce’s in-house coupler - JM76

 JM76 can couple arbitrary number of models – specialized treatment for fluid-solid and fluid-fluid interfaces

 For this problem it implements sliding-planes interfaces

 Extrude mesh of Rotor and Stator to create overlapping mesh with adjacent zone

 During execution – search and find correct source-donor element | interpolate flow vars from one zone | communicate to
donor zone

Key challenges
 Give JM76 access to OP2 internal data – op_dats and op_maps

 Efficient communication between GPUs – GPU side gathers

Reproduced with permission from : V. Marciniak, A. Weber, E. K ̈uegler, Modelling transition for the design of modern axial

turbomachines, in: 6th European Conference on Computational Fluid Dynamics, Barcelona, Spain, 2014, pp. 20–25

OP2-HYDRA – TOWARDS VIRTUAL CERTIFICATION OF GAS TURBINE ENGINES

Trent XWB Engine Rig250 Geometry and Engine

 Rig250 – 430M mesh – 10 rows [10430M]

 Rig250 – 653M mesh – 2 rows [2653M]

 Rig250 – 4.58B mesh – 10 rows [104.58B]

RIG250 – PROBLEM SETUP AND MESH

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable

Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022

Reproduced with permission from : V. Marciniak, A. Weber, E. K ̈uegler, Modelling transition for the design of modern

axial turbomachines, in: 6th European Conference on Computational Fluid Dynamics, Barcelona, Spain, 2014, pp. 20–

25

OP2-HYDRA PERFORMANCE - SYSTEMS

OP2-HYDRA SCALING PERFORMANCE

Rig250 – 430M mesh, 10 rows Rig250 – 653M mesh, 2 rows

 ARCHER2 @ 34 nodes

 94% parallel efficiency

 10% coupling overhead

 ARCHER2 @ 82 nodes

 82% parallel efficiency

 20% coupling overhead
3.7- 4x speedup

 Cirrus @ 25 nodes

 94% parallel efficiency

 20% coupling overhead

 ARCHER2 @ 80 nodes

 88% parallel efficiency

 8% coupling overhead

3.3 - 3.4x speedup

 Cirrus @ 29 nodes

 98% parallel efficiency

 12% coupling overhead

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable

Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022

OP2-HYDRA SCALING PERFORMANCE - RIG250 4.58B MESH

Time to solution (hours) – Achieved (A), Projected (P)

1 revolution of Rig250Runtime per time-step (seconds)

 122 Cirrus nodes is power equivalent to 166 ARCHER2 nodes

 ARCHER2 needs just over 3x more number of power equivalent nodes

(512) to match Cirrus’s runtime (4.7 hours)

 ARCHER2 @ 512 nodes:

 82% parallel efficiency (vs 107 node run)

 15% coupling overhead

G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis, Towards Virtual Certification of Gas Turbine Engines With Performance-Portable

Simulations. In 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022

RIG250 – FLOW SOLUTION

OTHER PROJECTS – OPENSBLI (UNI. OF SOUTHAMPTON)

 Compressible Navier-Stockes solver

 With shock capturing WENO/TENO

 4th order Finite Difference

 Single/double precision

 OpenSBLI is a Python framework

 Write equations in SymPy expressions

 OPS code generated

Jacobs, C. T., Jammy, S. P., Sandham N. D. (2017). OpenSBLI: A framework for the automated derivation and parallel
execution of finite difference solvers on a range of computer architectures. Journal of Computational Science,
18:12-23, DOI: 10.1016/j.jocs.2016.11.001

OpenSBLI
https://opensbli.github.io/

OPENSBLI ON ARHCER2

 Taylor – Green Vortex Problem – ARCHER2 benchmark

 Strong Scaling - 10243 Mesh

 Double precision

 Speedup calculated from 1000 iterations – includes start up time.

From recent benchmarking runs done by

Andrew Turner and the ExCALIBUR

Benchmarking team (Oct 2021)

EXCALIBUR PROJECT - TURBULENT FLOW SIMULATIONS AT THE EXASCALE

 ExCALIBUR Phase 1B – Turbulence at the Exascale

 Imperial, Warwick, Newcastle, Southampton, Cambridge, STFC collaboration | UKTC and UKCTRF Communities

 Xcompact3D and Wind Energy, OpenSBLI and Green Aviation, uDALES and Air Quality, SENGA+ and Net-Zero Combustion

 Extending OPS capability – robust code-gen tools and parallel transformations | support future-proof code development

 UQ, I/O, Coupling and Visualization

 Machine Learning Algorithms for Turbulent Flow

 CCP – Turbulence

 Direct solver libraries – Tri-, penta-, 7-, 9-, 11 diagonal, multi-dimensional solvers

 Integrate direct-solver libraries to be called within OPS

 OpenSBLI type high-level (Python) framework for XCompact3D – High Order FD framework

CHALLENGES – COST / EFFORT OF CONVERSION

 Converting legacy code is time consuming

 Large code base,

 Defunct 3rd party libs,

 Fortran 77 or older !

 Difficult to validate code

 New code giving the same accurate scientific output ?

 What code should I certify ? High-level code/generated code ?

 Difficult to convince users to use new code - fear of an opaque compiler / intermediate representation / black box !

 Incremental conversion – loop by loop

 Simpler than CUDA, but more difficult than OpenACC/OpenMP

 Automated conversion ?

 Changing user requirements

 Wanting to use a DSL for doing things beyond what it was intended for !

 Asking for “back-doors” / “escape hatches” -- leads to poor performance

CHALLENGES – COST / EFFORT OF CONVERSION

 Currently purely done via academic and (small/short term) industrial funding

 Long term funding and maintenance

 Once established probably will not be different to any other classical library

 Will require compiler expertise to maintain code generation tools

 What DSL to choose ?

 Re-use technologies / DSLs – especially code-gen tools (best not to reinvent !)

 Skills Gap

 Program in C/C++/Fortran (at a minimum)

 Knowledge of compilers / code-generation

 Compete for applicants – Communicate what we do better | impact of HPC / Computational Sciences

 [In the UK] Salary

 [In the UK] Contracts

DSLS / HIGH-LEVEL ABSTRACTIONS GAINING TRACTION

 FEniCS - PDE solver package - https://fenicsproject.org/

 Firedrake - automated system for the portable solution of PDEs

using the finite element method https://www.firedrakeproject.org/

 PyFR - Python based framework for solving advection-diffusion

type problems on streaming architectures using the

Flux Reconstruction approach - http://www.pyfr.org/

 Devito - prototype DSL and code generation framework

based on SymPy for the design of highly optimised

finite difference kernels for use in

inversion methods - http://www.opesci.org/devito-public

 GungHO/PSyclone project - Weather modelling codes (MetOffice)

 STELLA – DSL for stencil codes, for solving PDEs (Metro Swiss)

 Kokkos – C++ template library – SNL

 RAJA - C++ template libraries - LLNL

C/C++, Fortran,

Motifs / Parallel patterns

Numerical Method

FeniCS, Firedrake,

PyFR, OpenSBLI, Devito

OP2 / OPS

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

Kokkos, RAJA

SYCL / OneAPI

https://fenicsproject.org/
https://www.firedrakeproject.org/
http://www.pyfr.org/
http://www.opesci.org/devito-public

DOWNLOADS AND MORE INFORMATION

 GitHub Repositories

 OP2 – https://github.com/OP-DSL/OP2-Common

 OPS – https://github.com/OP-DSL/OPS

 OP-DSL Webpage - https://op-dsl.github.io/

 Contact

 Gihan Mudalige (Warwick) - g.mudalige@warwick.ac.uk

 Istvan Reguly (PPCU – Hungary) - reguly.istvan@itk.ppke.hu

https://github.com/OP-DSL/OP2-Common
https://github.com/OP-DSL/OPS
https://op-dsl.github.io/
mailto:g.mudalige@warwick.ac.uk
mailto:reguly.istvan@itk.ppke.hu

ACKNOWLEDGEMENTS

 OP2 was part-funded by the UK Technology Strategy Board and Rolls-Royce plc. through the SILOET project, and the UK EPSRC
projects EP/I006079/1, EP/I00677X/1 on Multi-layered Abstractions for PDEs.

 OPS was part-funded by the UK Engineering and Physical Sciences Research Council projects EP/K038494/1, EP/K038486/1,
EP/K038451/1 and EP/K038567/1 on “Future-proof massively-parallel execution of multi-block applications” and EP/J010553/1
“Software for Emerging Architectures” (ASEArch) project.

 This research is supported by Rolls-Royce plc., and by the UK EPSRC (EP/S005072/1) Strategic Partnership in
ComputationalScience for Advanced Simulation and Modelling of Engineering Systems (ASiMoV).

 Gihan Mudalige was supported by the Royal Society Industrial Fellowship Scheme (INF/R1/180012)

 Research was part-supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

 The research has been carried out within the project Thematic Research Cooperation Establishing Innovative Informatic and Info-
communication Solutions, which has been supported by the European Union and co-financed by the European Social Fund under
grant number EFOP-3.6.2-16-2017-00013.

 OpenSBLI was part-funded by EPSRC grants EP/K038567/1 and EP/L000261/1, and European Commission H2020 grant 671571
“ExaFLOW: Enabling Exascale Fluid Dynamics Simulations

