
1

EVOLUTIONARY RE-ENGINEERING OF MULTI-PHYSICS
INDUSTRIAL HPC APPLICATIONS WITH OP-DSLS

Gihan Mudalige

Royal Society Industry Fellow

Associate Professor (Reader) in High Performance Computing

Department of Computer Science, University of Warwick
g.mudalige@warwick.ac.uk

Joint work with:

Istvan Reguly @ PPCU,

Kamalavasan Kamalakannan, Arun Prabhakar, Archie Powell and others at the HPSC group @ Warwick

Neil Sandham and team @ Southampton, Dario Amirante @ Surrey,

Mike Giles @ Oxford, Paul Kelly and many more @ Imperial College London,

Rolls-Royce plc., NAG, UCL, STFC, IBM and many more industrial and academic collaborators.

26th Feb 2022 – Code Generation and Transformation in HPC on Heterogeneous Platforms - SIAM-PP22

SINGLE THREAD SPEEDUP IS DEAD – MUST EXPLOIT PARALLELISM

THE HAIL MARY PASS !

“The semiconductor industry threw the equivalent of a Hail Mary pass when it switched from making
microprocessors run faster to putting more of them on a chip - doing so without any clear notion of
how such devices would in general be programmed.”

David Patterson, University of California - Berkeley 2010

http://www.theemike.com/mikes-free-football-comic-book-hail-mary-pass/

 Traditional CPUs
 Intel, AMD, ARM, IBM
 multi-core (> 20 currently)
 Deep memory hierarchy (cache levels and RAM)
 longer vector units (e.g. AVX-512)

 GPUs
 NVIDIA (A100), AMD (MI200) , Intel (Xe GPUs)
 Many-core (> 1024 simpler SIMT cores)
 CUDA cores, Tensor cores
 Cache, Shared memory, HBM (3D stacked DRAM)

 Heterogeneous Processors
 Different core architectures over the past few years
 ARM big.LITTLE
 NVIDIA Grace.Hopper

 XeonPhi (discontinued)
 Many-core – based on simpler x86 cores
 MCDRAM (3D stacked DRAM)

DIVERSE HARDWARE LANDSCAPE – COMPOUNDED BY THE RACE TO EXASCALE !

 FPGAs
 Dominated by Xilinx and Intel
 Various configurations
 Low-level language / HLS tools for programming
 Significant energy savings

 DSP Processors
 Phytium / The Chinese Matrix2000 GPDSP accelerator

(Yet to be announced Chinese Exascale system ?)

 TPUs, IPUs ….

 Quantum ?

OpenMP,
SIMD,
CUDA, OpenCL,
OpenMP4.0, OpenACC,
SYCL/OneAPI,
HIP/ROCm,
MPI, PGAS
Task-based (e.g Legion)
and others ….

 Open standards (e.g OpenMP, SYCL) – so far have not been agile to catch up with changing architectures

 Proprietary models (CUDA, OpenACC, ROCm, OneAPI) – restricted to narrow vendor specific hardware

 Need different code-paths/parallelization schemes to get the best performance
 E.g. Coloring vs atomics vs SIMD vs MPI vs Cache-blocking tiling for unstructured mesh class of applications

 What about legacy codes ? There is a lot of FORTRAN code out there !

BUT .. EVEN MORE DIVERSE WAYS TO PROGRAMMING THEM !

 What would an Exa-scale machine architecturally look like ?

 Each new platform requires new performance tuning effort
 Deeper memory/cache hierarchies and/or shared-memory (non-coherent)
 Multiple (heterogeneous) memory spaces (device memory/host memory)
 Complex programming skills set needed to extract best performance on the newest architectures

 Not clear which architectural approach is likely to win in the long-term
 Cannot be re-coding applications for each new type of architecture or parallel system
 Nearly impossible for re-writing legacy codes

 Need to future-proof applications for their continued performance and portability
 If not – significant loss of investment : applications will not be able to make use of emerging architectures

SOFTWARE CHALLENGE – A MOVING TARGET

 Motivation

 OP-DSLs

 Evolving Hydra to OP2 Hydra

 Challenges and Lessons Learnt

 Conclusions

OUTLINE

DOMAIN SPECIFIC ABSTRACTIONS

 Rise the abstraction to a specific domain of variability
 Concentrate on a narrower range (class) of computations

 Computation-Communications skeletons - Structured-mesh, Unstructured-mesh, … 7 Dwarfs [Colella 2004] ?
 (higher) Numerical Method - PDEs, FFTs, Monte Carlo …
 (even higher) Specify application requirements, leaving implementation to select radically different solution approaches

C/C++, Fortran, Java, C#

Comp-comm skeletons

Numerical Method

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity? Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

OP-DSL

 Separation of Concerns (… back in 2010 !)
 Specify the problem – not the implementation
 Leverage the best implementation for the target context
 Can be many contexts - hardware, programming model, parameters etc.

 Domain Specific API
 Get application scientists to pose the solution using domain specific constructs – provided by the API
 Handling data done only using API – contract with the user

 Restrict writing code that is difficult (for the compiler) to reason about and optimize
 “OP2 and OPS are a straightjacket” – Mike Giles
 Build in safe guards so that user cannot write bad code !

 Implementation of the API left to a lower level
 Target implementation to hardware – can use best optimizations
 Automatically generate implementation from specification for the context
 Exploit domain knowledge for better optimisations - reuse what we know is best for each context

OP2 API - EXAMPLE

node-x

node-y

HIP/ROCm

SYCL

APPLICATION DEVELOPMENT

OpenCL

MPI

Source-to-Source translator (Python / Clang-LLVM)

OP2/OPS Platform Specific
Optimized Backend libraries

Conventional Compiler (e.g. icc, nvcc, pgcc, clang, XL, Cray) +
compiler flags

Hardware

Link

OpenMP

Application OP2 / OPS Application (Embedded API in Fortran/C/C++)

Modified Platform Specific
OP2/OPS Application

Platform Specific Optimized
Application Files

Mesh
(hdf5)

Platform Specific
Binary Executable

CUDA

SIMD/Vectorized

Sequential for testing

OP2/OPS CODE GENERATION

Fortran

application

C/C++

application

OP2/OPS

Fortran API

OP2/OPS

C/C++ API

Language agnostic
common IR

(Info about loops)

CUDA Fortran

OpenMP

OpenACC

Paralleization Templates for Fortran

CUDA

OpenMP

SYCL/OneAPI

Paralleization Templates for C/C++

Fortran

parallel code

C/C++

parallel code
C/C++ elemental Kernel

transformations
clang/libtooling

MPI +
CUDA, OpenMP,

SYCL/OneAPI, HIP

……

MPI +
CUDA Fortran,

OpenMP

……Python+fparser2

Python+clang

Fortran elemental
Kernel transformations
flang/mlir(?)

 Simplest Code generation / translation
 Intermediate representation is simply the loop descriptions + elemental kernels
 Generated parallel code can be viewed and understood by a human !

 Multi-layered – no opaque / black box layers
 Built with well supported / long-term technologies - Python, Clang/libtooling, [flang?, mlir?]

EPSRC PROSPERITY PARTNERSHIP – ASIMOV [HYDRA TO OP2-HYDRA]

 Virtual certification of Gas Turbine Engines
 Main consortium with partners – EPCC, Warwick, Oxford, Cambridge,

Bristol and Rolls-Royce plc.

 Grand Challenge 1 – Sliding Planes model of Rig250 (DLR test rig compressor)
 4.5 stage rotor-stator (10-row full annulus) | 4.58B mesh nodes.
 Need to obtain 1 revolution of compressor in less than 24 hours
 Current production estimates at 7 days

 Setup
 Moving rotor-stator – sliding planes interfaces
 Rotors and Stators modelled with Hydra CFD suite – URANS (360 degree models)
 10 rotor-stator interfaces
 Code coupling for sliding planes – move from current monolithic (Hydra only) production code to coupling

 Challenges
 Performance portability – run both CPUs and GPUs by multiple vendors
 Preserve production code’s scientific code and structure – cannot re-write, MUST “evolve” not overhaul !
 Convince users to adopt ! (Ongoing for nearly 10 years now)

OP2-HYDRA PERFORMANCE

OP2-HYDRA PERFORMANCE *

 ARCHER2 @ 80 nodes

 88% parallel efficiency

 8% coupling overhead

 Cirrus @ 22 nodes

 94% parallel efficiency

 12% coupling overhead
3.3 - 3.4x speedup

 ARCHER2 @ 34 nodes

 94% parallel efficiency

 10% coupling overhead

 ARCHER2 @ 82 nodes

 82% parallel efficiency

 20% coupling overhead
3.7- 4x speedup

 Cirrus @ 25 nodes

 94% parallel efficiency

 20% coupling overhead

 Cirrus @ 22 nodes

 94% parallel efficiency

 12% coupling overhead

* Results under review

(15) (25)(20) (22)(17)

OP2-HYDRA PERFORMANCE

* Results under review

 122 Cirrus nodes is power equivalent to 166 ARCHER2 nodes

 ARCHER2 needs just over 3x more number of power equivalent nodes

(512) to match Cirrus’s runtime (4.7 hours)

 ARCHER2 @ 512 nodes:

 82% parallel efficiency (vs 107 node run)

 15% coupling overhead

OTHER PRODUCTION APPLICATIONS – OPENSBLI (UNI. OF SOUTHAMPTON)

 Compressible Navier-Stockes solver
 With shock capturing WENO/TENO
 4th order Finite Difference
 Single/double precision

 OpenSBLI is a Python framework
 Write equations in SymPy expressions
 OPS code generated

Jacobs, C. T., Jammy, S. P., Sandham N. D. (2017). OpenSBLI: A framework for the automated derivation and parallel
execution of finite difference solvers on a range of computer architectures. Journal of Computational Science,
18:12-23, DOI: 10.1016/j.jocs.2016.11.001

OpenSBLI
https://opensbli.github.io/

OPENSBLI ON ARHCER2

 Taylor – Green Vortex Problem – ARCHER2 benchmark
 Strong Scaling - 10243 Mesh
 Double precision
 Speedup calculated from 1000 iterations – includes start up time.

From recent benchmarking runs done by

Andrew Turner and the ExCALIBUR

Benchmarking team (Oct 2021)

OTHER PROJECTS USING OP2/OPS

 ETH Zurich – BASEMENT code (Basic Simulation Environment for Computation of Environmental Flows
and Natural Hazard Simulations)
 Flood forecast and mitigation, River morphodynamics, Design of hydraulic structures
 Finite volume discretisation, cell centred
 Targeting OP2 for GPU and multi-core parallelisation

 STFC – HiLeMMS project (High-Level Mesoscale Modelling System):
 high-level abstraction layer over OPS for the solution of the Lattice Boltzmann method
 Adaptive mesh refinement - Chombo (Lawrence Berkeley National Labs)

 University of Nottingham – CFD code development with OPS
 Simulation of Turbomachinery flows
 Implicit solvers using OPS’s Tridiagonal Solver API

 Converting legacy code is time consuming
 Large code base,
 Defunct 3rd party libs,
 Fortran 77 or older !

 Difficult to validate code
 New code giving the same accurate scientific output ?
 What code should I certify ? High-level code/generated code ?
 Difficult to convince users to use new code - fear of an opaque compiler / intermediate representation / black box !

 Incremental conversion – loop by loop
 Simpler than CUDA, but more difficult than OpenACC/OpenMP
 Automated conversion ?

 Changing user requirements
 Wanting to use a DSL for doing things beyond what it was intended for !
 Asking for “back-doors” / “escape hatches” -- leads to poor performance

CHALLENGES – COST / EFFORT OF CONVERSION

 Tools not entirely mature
 Currently source-to-source with Python
 Pushing clang/LLVM source-to-source to do what we want
 What about Fortran - may be F18/Flang ?
 MLIR appearing to give some advance capabilities – see ExCALIBUR xDSL project (Tobias Grosser, Paul Kelly et al.)

 Code-generation for more exotic architectures – e.g. FPGAs
 Large design space
 Complex source transformations –cross loop, loop fusion and unrolling to create longer and longer pipelines !

 Maintainable/long term source-to-source technologies
 Domain Scientists not having expertise to understand / maintain DSLs

CHALLENGES – CODE-GENERATION

 Currently purely done via academic and (small/short term) industrial funding

 Long term funding and maintenance
 Once established probably will not be different to any other classical library
 Will require compiler expertise to maintain code generation tools

 What DSL to choose ?
 Re-use technologies / DSLs – especially code-gen tools (best not to reinvent !)

 Skills Gap
 Programme in C/C++/Fortran (at a minimum)
 Knowledge of compilers / code-generation
 Compete for applicants – Communicate what we do better | impact of HPC / Computational Sciences
 [In the UK] Salary

 [In the UK] Contracts

CHALLENGES – WHO MAINTAINS THE DSL, WHAT DSL TO CHOOSE ?

C/C++, Fortran,

Motifs / Parallel patterns

Numerical Method

FeniCS, Firedrake,

PyFR, OpenSBLI, Devito

OP2 / OPS

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

Kokkos, RAJA

SYCL / OneAPI

 FEniCS - PDE solver package - https://fenicsproject.org/
 Firedrake - automated system for the portable solution of PDEs

using the finite element method
https://www.firedrakeproject.org/

 PyFR - Python based framework for solving advection-diffusion
type problems on streaming architectures using the Flux
Reconstruction approach - http://www.pyfr.org/

 Devito - prototype DSL and code generation framework based
on SymPy for the design of highly optimised finite difference
kernels for use in inversion methods -
http://www.opesci.org/devito-public

 GungHO project - Weather modelling codes (MetOffice)
 STELLA – DSL for stencil codes, for solving PDEs (Metro Swiss)

 Liszt – Stanford University : DSL for solving mesh-based PDEs -
http://graphics.stanford.edu/hackliszt/

 Kokkos – C++ template library – SNL
 RAJA - C++ template libraries - LLNL

DSLS / HIGH-LEVEL ABSTRACTIONS GAINING TRACTION !

Separation of Concerns – One of the four pillars of ExCALIBUR

https://fenicsproject.org/
https://www.firedrakeproject.org/
http://www.pyfr.org/
http://www.opesci.org/devito-public
http://graphics.stanford.edu/hackliszt/

LESSONS LEARNT AND CONCLUSIONS

 Utilizing domain knowledge will expose things that the compiler does not know
 Iterating over the same mesh many times without change
 Mesh is partitioned and colourable

 Compilers are conservative
 Force it to do what you know is right for your code !

 Let go of the conventional wisdom that higher abstraction will not deliver higher performance
 Higher abstraction leads to a bigger space of code synthesis possibilities
 We can automatically generate significantly better code than what (most) people can (reasonably) write
 Do not destroy performance portability by (hand-) tuning at a very low level to a specific platform

“Fundamentals and abstractions have more staying power than the technology of the moment”

Alfred Aho and Jeffrey Ullman (Turing Award Recipients 2020)

Performance

Portability Productivity

DOWNLOADS AND MORE INFORMATION

 GitHub Repositories

 OP2 – https://github.com/OP-DSL/OP2-Common
 OPS – https://github.com/OP-DSL/OPS

 OP-DSL Webpage - https://op-dsl.github.io/

 Contact

Gihan Mudalige (Warwick) - g.mudalige@warwick.ac.uk
Istvan Reguly (PPCU – Hungary) - reguly.istvan@itk.ppke.hu

https://github.com/OP-DSL/OP2-Common
https://github.com/OP-DSL/OPS
https://op-dsl.github.io/
mailto:g.mudalige@warwick.ac.uk
mailto:reguly.istvan@itk.ppke.hu

ACKNOWLEDGEMENTS

 OP2 was part-funded by the UK Technology Strategy Board and Rolls-Royce plc. through the SILOET project, and the UK EPSRC projects
EP/I006079/1, EP/I00677X/1 on Multi-layered Abstractions for PDEs.

 OPS was part-funded by the UK Engineering and Physical Sciences Research Council projects EP/K038494/1, EP/K038486/1, EP/K038451/1 and
EP/K038567/1 on “Future-proof massively-parallel execution of multi-block applications” and EP/J010553/1 “Software for Emerging Architectures”
(ASEArch) project.

 This research is supported by Rolls-Royce plc., and by the UK EPSRC (EP/S005072/1) Strategic Partnership in ComputationalScience for
Advanced Simulation and Modelling of Engineering Systems (ASiMoV).

 Gihan Mudalige was supported by the Royal Society Industrial Fellowship Scheme (INF/R1/180012)

 Research was part-supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

 The research has been carried out within the project Thematic Research Cooperation Establishing Innovative Informatic and Info-communication
Solutions, which has been supported by the European Union and co-financed by the European Social Fund under grant number EFOP-3.6.2-16-2017-
00013.

 OpenSBLI was part-funded by EPSRC grants EP/K038567/1 and EP/L000261/1, and European Commission H2020 grant 671571 “ExaFLOW: Enabling
Exascale Fluid Dynamics Simulations

