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SINGLE THREAD SPEEDUP IS DEAD – MUST EXPLOIT PARALLELISM



THE HAIL MARY PASS !

“The semiconductor industry threw the equivalent of a Hail Mary pass when it switched from making
microprocessors run faster to putting more of them on a chip - doing so without any clear notion of
how such devices would in general be programmed.”

David Patterson, University of California - Berkeley 2010

http://www.theemike.com/mikes-free-football-comic-book-hail-mary-pass/



DIVERSE HARDWARE LANDSCAPE – COMPOUNDED BY THE RACE TO EXASCALE !

❑ Traditional CPUs

▪ Intel, AMD, ARM, IBM

▪ multi-core (> 20 currently)

▪ Deep memory hierarchy (cache levels and RAM)

▪ longer vector units (e.g. AVX-512)

❑ GPUs

▪ NVIDIA (A100), AMD (MI200) , Intel (Xe GPUs)

▪ Many-core (> 1024 simpler SIMT cores)

▪ CUDA cores, Tensor cores  

▪ Cache, Shared memory, HBM (3D stacked DRAM)

❑ Heterogeneous Processors  

▪ Different core architectures over the past few years

▪ ARM big.LITTLE

▪ NVIDIA Grace.Hopper

❑ XeonPhi (discontinued) 

▪ Many-core – based on simpler x86 cores

▪ MCDRAM (3D stacked DRAM)

❑ FPGAs

▪ Xilinx (AMD) and Intel 

▪ Various configurations

▪ Low-level language / HLS tools for programming

▪ Significant energy savings

❑ DSP Processors 

▪ Matrix 2000+ (MTP) DSP accelerator

▪ [Yet to be announced Chinese Exascale system ?]

❑ TPUs (e.g. from Google), IPUs …

… Custom ASICs driven by AI  ... in the cloud. 

❑ Domain specific Hardware …

❑ Quantum [?]



BUT .. EVEN MORE DIVERSE WAYS TO PROGRAMMING THEM !

OpenMP, SIMD, CUDA, OpenCL, OpenMP4.0, OpenACC, SYCL/OneAPI, HIP/ROCm,
MPI, PGAS, Task-based (e.g Legion) ….

❑ Open standards (e.g OpenMP, SYCL)

▪ So far have not been agile to catch up with changing architectures

❑ Proprietary models (e.g. CUDA, OpenACC, ROCm, OneAPI) 

▪ Restricted to narrow vendor specific hardware

❑ Need different code-paths/parallelization schemes to get the best performance
▪ E.g. Coloring vs atomics vs SIMD vs MPI vs Cache-blocking tiling for unstructured mesh class of applications

❑ What about legacy codes ? There is a lot of FORTRAN code out there !



SOFTWARE CHALLENGE – A MOVING TARGET

❑ What would an Exa-scale machine architecturally look like  ?

▪ Perlmutter - Over 100 PFLOP/s - AMD EPYC CPUs (Milan) with NVIDIA A100 GPUs

▪ Aurora - 1 EFLOP Intel Xeon CPUs (Sapphire Rapids) with Intel Xe GPUs

▪ Frontier - 1.5 EFLOP/s AMD EPYC CPUs (Milan) with AMD Instinct GPUs

▪ El Capitan - 2 EFLOP/s AMD EPYC CPUs (Genoa) with AMD Instinct GPUs

▪ LUMI - 0.5 EFLOP/s AMD EPYC CPUs with AMD Instinct GPUs

▪ LEONARDO - 0.3 EFLOP/s - Intel Xeon CPUs (Sapphire Rapids) with NVIDIA A100 GPUs

▪ MareNostrum5 - 2 distinct 100+ PFLOP/s systems possibly based on ARM/RISC-V

▪ ARCHER2- 28 PFLOP/s AMD EPYC CPUs (Rome)

▪ Many Tier-2 systems in the UK - Isambard-2 – ARM A64FX | Baskerville - NVIDIA A100 GPUs



SOFTWARE CHALLENGE – A MOVING TARGET

❑ Each new platform requires new performance tuning effort 

▪ Deeper memory/cache hierarchies and/or shared-memory (including non-coherent)

▪ Multiple (heterogeneous) memory spaces (device memory/host memory/near-chip memory)

▪ Complex programming skills set needed to extract best performance on the newest architectures

❑ Not clear which architectural approach is likely to win in the long-term

▪ Cannot be re-coding applications for each new type of architecture or parallel system

▪ Nearly impossible for re-writing legacy codes

❑ Need to future-proof applications for their continued performance and portability

▪ If not – significant loss of investment 

▪ Applications will not be able to make use of emerging architectures



OUTLINE

❑ Motivation 

❑ Raising the Level of Abstraction

❑ Oxford Parallel Libraries [OP-DSLs] – OP2 and OPS

❑ Evolving Production Codes – Hydra to OP2-Hydra

❑ Projects and Codes Using OP-DSLs

❑ Lessons Learnt

❑ Future Work

❑ Conclusions



THE LEVEL OF ABSTRACTION

❑ Classical compiler has two halves 

▪ Analysis – gather information about the programme 

▪ Synthesis – generate target code

❑ The higher you can get to in analysis the bigger the space for code synthesis possibilities 

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London) 
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THE LEVEL OF ABSTRACTION

❑ If you start at a lower level – climbing higher is a struggle

▪ Difficult to ensure optimizations are safe  (e.g. data races, pointer aliasing)

▪ Sometimes, impossible to extract richer information (e.g. data partitioning/layouts, memory spaces) 

▪ Limits the optimizations possible

❑ Compounding the issue - the way code is written by (most) people will not be easy to analyze !

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London) 
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C/C++, Fortran, Java, C#



THE LEVEL OF ABSTRACTION

❑ If you can start higher

▪ Results in a bigger space of code synthesis possibilities

▪ Could they give the same (or better) performance as code written by hand ? 

▪ Could these possibilities include targeting different (parallel) architectures ?

C/C++, Fortran, Java, C#

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London) 



DOMAIN SPECIFIC ABSTRACTIONS

❑ Rise the abstraction to a specific domain of variability

❑ Concentrate on a narrower range (class) of computations

▪ Computation-Communications skeletons - Structured-mesh, Unstructured-mesh, …  7 Dwarfs [Colella 2004] ?

▪ (higher) Numerical Method - PDEs, FFTs, Monte Carlo  …

▪ (even higher) Specify application requirements, leaving implementation to select radically different solution approaches

C/C++, Fortran, Java, C#

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London) 

Comp-comm skeletons 

Numerical Method



DOMAIN SPECIFIC ABSTRACTIONS

❑ If you get the abstraction right, then:

▪ Can isolate numerical methods from mapping to hardware

▪ Can reuse a body of optimizations/code generation expertise/techniques for this class (or numerical method) to match target 
hardware

C/C++, Fortran, Java, C#

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London) 

Comp-comm skeletons 

Numerical Method



HOW DO WE RAISE THE LEVEL OF ABSTRACTION ?

❑ Domain Specific API

▪ Get application scientists to pose the solution using domain specific constructs – provided by the API

▪ Handling data done only using API – contract with the user

❑ Restrict writing code that is difficult (for the compiler) to reason about and optimize  

▪ “OP2 and OPS are a straightjacket” – Mike Giles

❑ Implementation of the API left to a lower level 

▪ Target implementation to hardware - automatically generate implementation from specification for the context

▪ Generate code in best parallelization model – open standards or proprietary !

▪ We know how to best optimize to that specific hardware – reuse these best optimizations

▪ Exploit domain knowledge for better optimisations



OP2 – UNSTRUCTURED-MESH APPLICATIONS DOMAIN

node-x

node-y



OP2 – APPLICATION DEVELOPMENT WORKFLOW

HIP/ROCm

SYCL

OpenCL

MPI

Source-to-Source translator (Python / Clang-LLVM)

OP2/OPS Platform Specific 
Optimized Backend libraries

Conventional Compiler (e.g. icc, nvcc, pgcc, clang, XL, Cray) + 
compiler flags

Hardware

Link

OpenMP

Application OP2 / OPS Application (Embedded API in Fortran/C/C++)

Modified Platform Specific 
OP2/OPS Application

Platform Specific Optimized 
Application Files

Mesh 
(hdf5)

Platform Specific 
Binary Executable

CUDA

SIMD/Vectorized

Sequential for testing



AUTOMATIC CODE GENERATION

❑ Simplest code generation / translation 

▪ Intermediate representation is simply the loop descriptions + elemental kernels

▪ Generated parallel code can be viewed and understood by a human !

❑ Multi-layered – no opaque / black box layers 

❑ Built with well supported / long-term technologies  - Python, Clang/libtooling, [flang?, mlir?]

Fortran 

application

C/C++ 

application

OP2/OPS 

Fortran  API

OP2/OPS 

C/C++ API

Language agnostic 
common IR 

(Info about loops)

CUDA Fortran

OpenMP

OpenACC

Paralleization Templates for Fortran

CUDA

OpenMP

SYCL/OneAPI

Paralleization Templates for C/C++

Fortran 

parallel code

C/C++ 

parallel code
C/C++ elemental Kernel 

transformations
clang/libtooling

MPI + 
CUDA, OpenMP, 

SYCL/OneAPI, HIP

……

MPI + 
CUDA Fortran, 

OpenMP

……Python+fparser2

Python+clang

Fortran elemental 
Kernel transformations
flang/mlir(?)



OP2 – GENERATED CODE - CPU

https://github.com/OP-DSL/OP2-APPS/blob/main/apps/fortran/airfoil/airfoil_hdf5/res_calc_seqkernel.F90

https://github.com/OP-DSL/OP2-APPS/blob/main/apps/fortran/airfoil/airfoil_hdf5/res_calc_seqkernel.F90


HANDLING DATA-RACES

❑ Distributed memory parallelization

▪ Mesh partitioning

▪ Standard halo exchange methods

▪ Redundant computation

❑ Single node – Inter-thread-block

▪ Coloring 

▪ No two blocks of the same color 
update the same memory location

❑ Single node – Intra-thread block

▪ Coloring

▪ No two edges of the same colour
update the same node

▪ Use atomics

Thread 0

Threads 0 and 2 can run in parallel

Thread 1

Thread 2

MPI boundary

Proc 0

Proc 1



OP2 – GENERATED CODE – GPU WITH CUDA

https://github.com/OP-DSL/OP2-APPS/blob/main/apps/fortran/airfoil/airfoil_hdf5/res_calc_kernel.CUF

https://github.com/OP-DSL/OP2-APPS/blob/main/apps/fortran/airfoil/airfoil_hdf5/res_calc_kernel.CUF


PARALLELIZING ON MULTI-CORE CPUS : SIMD VECTORIZATION – THE PROBLEM

❑ Aim – execute computation on multiple edges simultaneously 

❑ For DP mathematics, multiple = 4 (256 bits vector length) or 8 (512 bits vector length)

SIMD lanes

write conflict

computeSIMD 

loop

Incorrect solution!



PARALLELIZING ON MULTI-CORE CPUS : SIMD VECTORIZATION

❑ Technique : Gather / Scatters

▪ Gather edge data to vector length local arrays 

▪ Pass local arrays as arguments to kernel accepting “vectorized” arguments

▪ Apply nodal update as serial loop  !   

❑ Issues

▪ Need new kernel that accepts vectorized arguments 

▪ Extra overhead due to gather/ scatters 

▪ Not all kernels will benefit from vectorization 

▪ Best for only highly computationally intensive kernels 

https://github.com/OP-DSL/OP2-APPS/blob/main/apps/c/airfoil/airfoil_hdf5/dp/vec/res_calc_veckernel.cpp

SIMD 

compute

serial 

write

1 2 3 4

manually unpack SIMD 

result, serial write out

https://github.com/OP-DSL/OP2-APPS/blob/main/apps/c/airfoil/airfoil_hdf5/dp/vec/res_calc_veckernel.cpp
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OP2 –CPU VS GPU WITH SYCL (COLORING VS ATOMICS)

❑ MG-CFD – Multigrid CFG MiniAPP: 

▪ NASA Rotor37, 4 multigrid levels, 8M edges

▪ Generate Parallelization using OP2 

▪ Intel compilers - from oneAPI

▪ Intel MPI - for MPI, SIMD, OpenMP, 
MPI+OpenMP

❑ GPUs – NVIDIA P100 and V100, AMS Radion VII, Intel Iris XE MAX

❑ CPUs – single socket only to avoid  NUMA issues: 

▪ Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 16 cores 

▪ Intel(R) Xeon(R) Platinum 8360Y @ 2.40 GHz, 36 cores

▪ SYCL compilers - Intel OneAPI 2021.4  and HipSYCL

I.Z. Reguly, A.M.B. Owenson, A. Powell, S.A. Jarvis, and G.R. Mudalige, Under the Hood of SYCL – An Initial Performance Analysis With an Unstructured-mesh CFD Application, International Supercomputing Conference 
(ISC 2021), June 2021.
I.Z. Reguly. Performance of DPC++ on Representative Structured/Unstructured Mesh Applications. Intel DevSummit at SC21



EVOLVING PRODUCTION CODES – ROLLS-ROYCE HYDRA TO OP2-HYDRA

❑ Virtual certification of Gas Turbine Engines – EPSRC Prosperity Partnership (ASIMOV)

▪ Main consortium with partners – EPCC, Warwick, Oxford, Cambridge, Bristol and Rolls-Royce plc.

❑ Grand Challenge 1 – Sliding Planes model of Rig250 (DLR test rig compressor)

▪ 4.5 stage rotor-stator (10-row full annulus) | 4.58B mesh nodes.

▪ Need to obtain 1 revolution of compressor in less than 24 hours

▪ Current production estimates at 7 days

❑ Setup 

▪ Moving rotor-stator – sliding planes interfaces 

▪ Rotors and Stators modelled with Hydra CFD suite – URANS (360 degree models)

▪ 10 rotor-stator interfaces

▪ Code coupling for sliding planes – move from current monolithic (Hydra only) production code to coupling

❑ Challenges

▪ Performance portability – run both CPUs and GPUs by multiple vendors

▪ Preserve production code’s scientific code and structure – cannot re-write, MUST “evolve” not overhaul !

▪ Convince users to adopt ! (Ongoing for nearly 10 years now) 



OP2-HYDRA PERFORMANCE *



OP2-HYDRA PERFORMANCE *

❑ ARCHER2 @ 80 nodes

▪ 88% parallel efficiency

▪ 8% coupling overhead

❑ Cirrus @ 22 nodes

▪ 94% parallel efficiency

▪ 12% coupling overhead
3.3 - 3.4x speedup

❑ ARCHER2 @ 34 nodes

▪ 94% parallel efficiency

▪ 10% coupling overhead

❑ ARCHER2 @ 82 nodes

▪ 82% parallel efficiency

▪ 20% coupling overhead
3.7- 4x speedup

❑ Cirrus @ 25 nodes

▪ 94% parallel efficiency

▪ 20% coupling overhead

❑ Cirrus @ 22 nodes

▪ 94% parallel efficiency

▪ 12% coupling overhead

* Results under review



OP2-HYDRA PERFORMANCE *

* Results under review

❑ 122 Cirrus nodes is power equivalent to 166 ARCHER2 nodes 

❑ ARCHER2 needs just over 3x more number of power equivalent nodes 

(512) to match Cirrus’s runtime (4.7 hours)

❑ ARCHER2 @ 512 nodes:

▪ 82% parallel efficiency (vs 107 node run)

▪ 15% coupling overhead



CROSS-LOOP TECHNIQUES

❑ Loop descriptors and user contract allows to delay the execution of loops until API call to return data to user

❑ Now we have information about a sequence of loops to analyze/reason about together 

▪ Access descriptors provide precise dependence iteration-to-iteration information

▪ Reason about a chain (DAG) of parallel loops at runtime

❑ Cross-loop optimizations

▪ Cache-blocking Tiling 

▪ Distributed memory communication avoidance 

▪ Automated checkpointing – only checkpoint the absolutely necessary data

❑ No changes to the high-level user code 



CACHE-BLOCKING TILING

❑ Data sets too large to fit on cache : limited data reuse

❑ Improve reuse by considering multiple loops

❑ Need to make sure all data dependencies are satisfied

▪ Block iteration ranges of loops, 

▪ reorganize them so that data accessed by a given block in the 

first loop nest stays in cache and gets accessed by blocks of 

subsequent loop nests

▪ Parallelize within tiles

❑ Tiling done over many loops spread across  many  

compilation units

❑ Many complex loops 

❑ Can’t be done by existing (compiler) technology

AMD Milan-X (Azure HBv3)  vs A100
4TB/s L3 cache BW
* Recent runs done by Istvan Reguly PPCU.
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PROJECTS AND CODES USING OP-DSLS - OPENSBLI

❑ Compressible Navier-Stokes solver

▪ With shock capturing WENO/TENO

▪ 4th order Finite Difference 

▪ Single/double precision

❑ OpenSBLI is a Python framework

▪ Write equations in SymPy expressions

▪ OPS code generated

Jacobs, C. T., Jammy, S. P., Sandham N. D. (2017). OpenSBLI: A framework for the automated derivation and parallel 

execution of finite difference solvers on a range of computer architectures. Journal of Computational Science, 

18:12-23, DOI: 10.1016/j.jocs.2016.11.001

OpenSBLI
https://opensbli.github.io/



PROJECTS AND CODES USING OP-DSLS - OPENSBLI

❑ Taylor – Green Vortex Problem – ARCHER2 benchmark 

▪ Strong Scaling - 10243 Mesh

▪ Double precision

▪ 128 MPI processes per node

▪ Speedup calculated from 1000 iterations – includes start up time. 

From recent benchmarking runs done by 

Andrew Turner and the ExCALIBUR

Benchmarking team (Oct 2021)



OTHER USERS – UQ IN TSUNAMI SIMULATION – OP2-VOLNA

❑ Work with UCL and ATI

▪ Develop tsunami emulators with UQ

▪ Validate with simulation 

▪ Almost real-time simulation on GPUs

https://github.com/reguly/volna

Reguly, I. Z., Giles, D., Gopinathan, D., Quivy, L., Beck, J. H., Giles, M. B., Guillas, S., and Dias, F.: The 
VOLNA-OP2 tsunami code (version 1.5), Geosci. Model Dev., 11, 4621–4635, 
https://doi.org/10.5194/gmd-11-4621-2018, 2018.

https://github.com/reguly/volna


CHALLENGES – COST / EFFORT OF CONVERSION

❑ Converting legacy code is time consuming 

▪ Large code base

▪ Defunct 3rd party libs 

▪ Fortran 77 or older !

❑ Difficult to validate code 

▪ New code giving the same accurate scientific output ?

▪ What code should I certify ? High-level code/generated code ?

▪ Difficult to convince users to use new code  - fear of an opaque compiler / intermediate representation / black box !

❑ Incremental conversion – loop by loop

▪ Simpler than CUDA, but more difficult than OpenACC/OpenMP

▪ Automated conversion ? 

❑ Changing user requirements

▪ Wanting to use a DSL for doing things beyond what it was intended for !

▪ Asking for “back-doors” / “escape hatches”  -- leads to poor performance



CHALLENGES – COST / EFFORT OF CONVERSION

❑ Tools not entirely mature

▪ Currently source-to-source with Python

▪ Pushing clang/LLVM source-to-source to do what we want  

▪ What about Fortran  - may be F18/Flang ?  

▪ MLIR appearing to give some advance capabilities – see ExCALIBUR xDSL project (Tobias Grosser, Paul Kelly et al.) 

❑ Code-generation for more exotic architectures – e.g. FPGAs

▪ Large design space 

▪ Complex source transformations –cross loop, loop fusion and unrolling to create longer and longer pipelines !

❑ Maintainable/long term source-to-source technologies

▪ Domain Scientists not having expertise to understand / maintain DSLs



CHALLENGES – COST / EFFORT OF CONVERSION

❑ Currently purely done via academic and (small/short term) industrial funding 

❑ Long term funding and maintenance

▪ Once established probably will not be different to any other classical library

▪ Will require compiler expertise to maintain code generation tools

❑ What DSL to choose ?

▪ Re-use technologies / DSLs – especially code-gen tools (best not to reinvent !)

❑ Skills Gap 

▪ Programme in C/C++/Fortran  (at a minimum)

▪ Knowledge of compilers / code-generation 

▪ Compete for applicants – Communicate what we do better | impact of HPC / Computational Sciences 

▪ Salary  

▪ Contracts 



DSLS / HIGH-LEVEL ABSTRACTIONS GAINING TRACTION

❑ FEniCS - PDE solver package - https://fenicsproject.org/

❑ Firedrake - automated system for the portable solution of PDEs 
using the finite element method 
https://www.firedrakeproject.org/

❑ PyFR - Python based framework for solving advection-diffusion 
type problems on streaming architectures using the Flux 
Reconstruction approach - http://www.pyfr.org/

❑ Devito - prototype DSL and code generation framework based 
on SymPy for the design of highly optimised finite difference 
kernels for use in inversion methods  -
http://www.opesci.org/devito-public

❑ GungHO project - Weather modelling codes (MetOffice)
❑ STELLA – DSL for stencil codes(Metro Swiss)

❑ Liszt – Stanford University : DSL for solving mesh-based PDEs  -
http://graphics.stanford.edu/hackliszt/

❑ Kokkos – C++ template library – SNL
❑ RAJA - C++ template libraries - LLNL

C/C++, Fortran,

Motifs / Parallel patterns

Numerical Method

FeniCS, Firedrake, 

PyFR, OpenSBLI, Devito

OP2 / OPS

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London) 

Kokkos, RAJA

SYCL / OneAPI

https://fenicsproject.org/
https://www.firedrakeproject.org/
http://www.pyfr.org/
http://www.opesci.org/devito-public
http://graphics.stanford.edu/hackliszt/


ONGOING WORK AND FUTURE PLANS

❑ CCP-Tubulance

▪ Direct solver libraries – Tri-, penta-, 7-, 9-, 11 diagonal, multi-dimensional solvers 

▪ Integrate directsolver libraries to be called within OPS

▪ OpenSBLI type high-level (Python) framework for XCompact3D – High Order FD framework

❑ ExCALIBUR Phase 1B – Turbulence at the Exascale

▪ Imperial, Warwick, Newcastle, Southampton, Cambridge, STFC collaboration | UKTC and UKCTRF Communities

▪ Xcompact3D and Wind Energy, OpenSBLI and Green Aviation, uDALES and Air Quality, SENGA+ and Net-Zero Combustion

▪ Extending OPS capability – robust code-gen tools and parallel transformations | support future-proof code development

▪ UQ, I/O, Coupling and Visualization

▪ Machine Learning Algorithms for Turbulent Flow

❑ Task-based parallelism (Legion from Stanford)

❑ In-situ visualization

❑ AMR – some on-going work, but difficult to get a good abstraction



CONCLUSIONS

❑ Utilizing domain knowledge will expose things that the compiler does not know

▪ Iterating over the same mesh many times without change

▪ Mesh is partitioned and colorable 

❑ Compilers are conservative 

▪ Force it to do what you know is right for your code !

❑ Let go of the conventional wisdom that higher abstraction will not deliver higher performance 

▪ Higher abstraction leads to a bigger space of code synthesis possibilities

▪ We can automatically generate significantly better code than what (most) people can (reasonably) write

▪ Do not destroy performance portability by (hand-) tuning at a very low level to a specific platform 

“Fundamentals and abstractions have more staying power than the 
technology of the moment” Alfred Aho and Jeffrey Ullman 

(Turing Award Recipients 2020)
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DOWNLOADS AND MORE INFORMATION

❑ GitHub Repositories

▪ OP2 – https://github.com/OP-DSL/OP2-Common

▪ OPS – https://github.com/OP-DSL/OPS

❑ OP-DSL Webpage - https://op-dsl.github.io/

❑ Contact

▪ Gihan Mudalige (Warwick) - g.mudalige@warwick.ac.uk

▪ Istvan Reguly (PPCU – Hungary) - reguly.istvan@itk.ppke.hu

https://github.com/OP-DSL/OP2-Common
https://github.com/OP-DSL/OPS
https://op-dsl.github.io/
mailto:g.mudalige@warwick.ac.uk
mailto:reguly.istvan@itk.ppke.hu

