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Abstract—Serverless computing offers attractive scalability,
elasticity and cost-effectiveness. However, constraints on memory,
CPU and function runtime have hindered its adoption for data-
intensive applications and machine learning (ML) workloads.
Traditional ‘server-ful’ platforms enable distributed computation
via fast networks and well-established inter-process communica-
tion (IPC) mechanisms such as MPI and shared memory. In
the absence of such solutions in the serverless domain, parallel
computation with significant IPC requirements is challenging.
We present FSD-Inference, the first fully serverless and highly
scalable system for distributed ML inference. We explore poten-
tial communication channels, in conjunction with Function-as-a-
Service (FaaS) compute, to design a state-of-the-art solution for
distributed ML within the context of serverless data-intensive
computing. We introduce novel fully serverless communication
schemes for ML inference workloads, leveraging both cloud-
based publish-subscribe/queueing and object storage offerings.
We demonstrate how publish-subscribe/queueing services can be
adapted for FaaS IPC with comparable performance to object
storage, while offering significantly reduced cost at high paral-
lelism levels. We conduct in-depth experiments on benchmark
DNNs of various sizes. The results show that when compared
to server-based alternatives, FSD-Inference is significantly more
cost-effective and scalable, and can even achieve competitive
performance against optimized HPC solutions. Experiments also
confirm that our serverless solution can handle large distributed
workloads and leverage high degrees of FaaS parallelism.

I. INTRODUCTION

Besides its popular stand-alone usage, ML inference is em-
bedded in every step of data-intensive applications. There are
a range of options for hosting large-scale inference workloads,
including GPU clusters and HPC platforms. Such systems
typically offer fast connectivity and IPC solutions such as MPI
(Message Passing Interface) [1] and shared memory. These
platforms are suitable for low latency and high utilization
workloads, but are expensive to commission and maintain.
Server-based cloud compute resources are typically provi-
sioned in two ways; ‘job-scoped’ (i.e., starting resources for
the duration of a processing job, and then shutting them down),
or ‘always-on’. The startup time under the former (often
several minutes) would rule out interactive inference query
performance. In the always-on case, while response times
may meet requirements (although not necessarily for provider-
managed inference endpoints [2]), costs can be high [3].

*Also with Amazon Web Services. This publication describes work per-
formed at the University of Warwick and is not associated with Amazon.

Serverless computing is a resource delivery model in
which the cloud provider is responsible for the provision
and management of underlying infrastructure and services.
A core serverless offering is Function-as-a-Service (FaaS),
which allows users to build and run applications as functions
in stateless containers. Commercial FaaS offerings include
AWS Lambda [4], Google Cloud Functions [5] and Azure
Functions [6]. The attractive properties of serverless comput-
ing include elasticity, cost-effectiveness with granular billing,
and high availability. However, FaaS also presents challenges
beyond those typically faced when using provisioned compute
resources. These include capacity limits imposed by the cloud
providers (e.g., on runtime and memory), a lack of direct inter-
function communication, and ‘cold starts’, leading to delayed
invocation. FaaS is thus limited by its design and service
constraints when applied to (distributed) data-intensive work-
loads. Novel serverless communication and data management
solutions are needed to address these challenges and adapt
serverless for a wider range of data-intensive use cases.

Serverless computing has recently been identified as a
viable option for ML inference [7]–[9]. Cloud providers
have introduced commercial serverless inference solutions.
AWS offers SageMaker Serverless Inference [10] based on
its Lambda FaaS service. Azure Databricks Serverless Real-
Time Inference is a similar solution. While these products
act as alternatives to provisioned endpoints for serving in-
ference requests, they are subject to the inherent challenges
summarized above. For example, each request is executed
by a single, resource-constrained FaaS instance, limiting the
model size. Large models and input data are increasingly
utilized, due to their improved predictive performance. Hence,
a distributed ML solution is required, as the models are bigger
than can be accommodated in a single instance’s memory. The
significant compute, memory and inter-process communication
(IPC) requirements associated with processing such models
makes it challenging to apply FaaS to this popular use case.

In this paper, we present FSD-Inference, the first fully
serverless scalable solution for distributed ML inference that
can also exploit sparsity in the underlying data and employ ef-
fective point-to-point communication. We achieve intra-layer
model parallelism to mitigate the limited memory of FaaS
instances, utilize many concurrent function invocations to scale
out compute, and introduce fully serverless IPC schemes. The



latter enables the required data-intensive function-to-function
interactions associated with inference over large and deep
ML models. FSD-Inference leverages the benefits of cloud
publish-subscribe/queueing and object storage offerings with a
smart communication mechanism. We also provide a rigorous
cost model for FSD-Inference, which informs our serverless
inference design recommendations. Experiments confirm that
our solution achieves low latency and high throughput, while
scaling to large data workloads at low cost. We identify pub-
sub/queueing as the most cost-effective approach as compute
parallelism increases, object storage as the leading choice for
very large inference tasks, and serial FaaS execution as the
preferred option for small models/inference batch sizes.

In situations where inference workloads are sporadic in
nature or varying in requirements (e.g., large/small models,
few/many inference samples), neither an always-on, server-
based platform, nor a commercial single-instance FaaS end-
point, are good fits. Müller et al. [3] describe data analyt-
ics settings where ad-hoc, interactive queries are performed
sporadically. Analogous inference use cases are common,
where queries are irregular, and require support for flexi-
ble model/input sizes. Further, sporadic requests can often
be buffered before being processed as a batch. In such a
workload, the trigger point for initiating inference may be
unpredictable, and can occur in periods of bursty traffic or
in response to a dynamic event. A serverless solution may
be more suitable here than pre-provisioned resources, due to
its short start-up time, scalability, and low cost. However,
performing batch inference brings the additional challenges
of scaling up the compute, memory and IPC capacities. Our
solution therefore exploits data parallelism to efficiently pro-
cess large batch inference requests concurrently, and supports
larger batch sizes than commercial serverless offerings [11].

We further improve our solution’s performance with addi-
tional optimizations. To mitigate I/O bottlenecks, we design a
novel approach which distributes communication requests over
multiple instances of cloud resources (e.g., publish-subscribe
topics, object storage containers), and overlaps communi-
cation with computation. We develop an efficient point-to-
point communication mechanism to transmit only the required
intermediate results to each target processor in each layer.
Given the limited compute resources of FaaS instances, we
offload processing (e.g., message filtering and distribution) to
back-end cloud services. Our solution aims both to minimize
the time taken to construct and publish message payloads, and
to maximize the utilization of provider-restricted capacities.
Another optimization is our model partitioning strategy for
distributed ML. We adapt hypergraph partitioning [12] in this
new context of FaaS-based distributed inference, and show its
effectiveness when compared to simpler partitioning schemes.
The goals of partitioning (i.e., reducing data volumes shared
between processors and balancing their workloads) align well
with the constraints inherent in model-parallel serverless ML.
Finally, within each function instance, the use of compute
resources is optimized via multi-threading to parallelize non-
dependent processes such as message publication.

There are no prior serverless inference solutions with fully
serverless communication (vs relying on serverful compo-
nents) and intra-layer model parallelism (vs simpler layer-
wise partitioning). Our FaaS-based engine provides a high-
performance MPI-style platform for distributed ML infer-
ence, using off-the-shelf components. It features fine-grained
data/model-parallelism suitable for many architectures, includ-
ing NLP models/LLMs. Our main contributions are:

• FSD-Inference is the first fully serverless and highly
scalable system for distributed ML inference.

• We design novel serverless point-to-point communication
schemes, using both pub-sub/queueing and object storage
services. These are applicable to many cloud-based ma-
chine learning and data-intensive applications.

• We introduce a hierarchical function launch mechanism
to minimize startup delays and enable instances to auto-
matically determine their position in the execution tree.

• We formalize and validate a cost model for distributed
serverless ML inference, and offer optimized design
recommendations for workloads of various scales.

• Our solution can effectively exploit sparsity, achieves
both model and data parallelism, and is further improved
via hypergraph partitioning across FaaS instances. No
prior work addresses intra-layer parallelism of model
architectures for scalable serverless machine learning.

• We investigate the communication patterns of cloud-
based pub-sub/queueing and object storage IPC channels,
and categorize the workloads where each solution would
be most performant and cost-effective.

• We experimentally compare FSD-Inference against sev-
eral cloud/server-based alternatives and an optimized
HPC solution, using benchmark DNNs of various sizes.
Experiments show that our FaaS-based solution achieves
significant scalability, as well as an attractive cost-to-
performance ratio.

The rest of this paper is organized as follows. Section II
introduces the key building blocks of a distributed serverless
inference system. Section III presents the design of FSD-
Inference, and its novel elements and methods. Section IV
illustrates our cost model, and provides design recommenda-
tions for various ML and data-intensive workloads. Section V
presents related work. Section VI describes the experimental
evaluation. Finally, Section VII concludes the paper.

II. DESIGNING A CLOUD-BASED SERVERLESS ML
SOLUTION

In this section, we consider several key building blocks
underpinning a scalable solution for serverless ML. These in-
clude the choice of compute engine, distributed processing and
IPC patterns, model partitioning strategy, and communication
channel design.

A. Serverless Compute

We target ‘scaled-by-request’ FaaS offerings such as AWS
Lambda and Azure Functions, where all aspects of infrastruc-
ture provision are taken care of by the cloud provider, and



TABLE I
FEATURES OF POTENTIAL INTER-WORKER COMMUNICATION CHANNELS. ASTERISKS INDICATE PARTIAL SUPPORT.

Stream Stream (ETL) NoSQL Pub-Sub Queues Pub-Sub+Queues Object Storage
Serverless ✓* ✓ ✓* ✓ ✓ ✓ ✓

Low latency/high thrpt. ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cost-effective ✓* ✓ ✓ ✓ ✓ ✓*
Flexible payloads/messages ✓

Many producers/consumers ✓* ✓ ✓ ✓ ✓ ✓ ✓

Service-side filtering ✓ ✓ ✓ ✓ ✓

Direct consumer access ✓ ✓ ✓ ✓ ✓

where each function instance runs in a dedicated, lightweight
container. This has become a mature, widely-used technology
with known performance characteristics, and has been the
basis of other studies around serverless ML [7], [8].

B. Cloud-based Distributed ML

There are many ways to enable parallel and distributed
ML on cloud compute services. An ecosystem of open-source
and commercial toolsets is available, aiming to simplify the
running of parallel ML workloads [13]. These solutions cater
for a variety of hardware configurations; multi-CPU/multi-
GPU architectures on single servers; multi-container config-
urations; multi-VM clusters and large HPC clusters. They
range from generic interoperability/IPC solutions such as
Message Passing Interface (MPI), to those more focused on
data analysis and ML tasks, such as Ray [14], Spark [15],
Kserve [16], Dask [17], and Horovod [18]. However, they
all require direct node-to-node communication over (usually)
TCP/IP. In the case of ‘scaled-by-request’ FaaS offerings,
however, no such instance-to-instance communication is cur-
rently available, which means none of the above distributed
computing services can be used.

Whilst interesting recent studies [19], [20] work around the
lack of direct FaaS inter-communication via mechanisms such
as NAT hole punching, they come without provider support
and hence lack SLOs and robustness guarantees. Our approach
is instead to build a distributed communication solution using
off-the-shelf services. Our objectives are:

1) Construction of a flexible invocation tree of co-operating
FaaS instances.

2) For the required tree of FaaS instances to be launched as
quickly as possible, by spreading the responsibility for
starting instances across all internal nodes (each such
node invokes its sub-tree of instances as a precursor to
executing its compute role).

3) For each instance to have a ‘rank’ (in MPI terminology)
and to understand its place in the tree (root/internal
node/leaf).

4) For each instance to understand which other instances it
must communicate with in each layer.

5) For each instance to be able to communicate with its
required targets via a high-throughput, fully serverless
communication channel.

6) For a nominated root instance to coordinate collective
data transfer operations of various types (Barrier, Re-
duce, AllReduce etc.)

C. Model Partitioning in FaaS Settings

Since serverless functions are constrained in terms of
memory and compute, we need to partition the per-layer
weights and inputs of large ML models across FaaS work-
ers. This would also help balance the computational work-
load while minimizing the overall communication volume.
A variety of partitioning schemes have been successfully
employed on traditional HPC systems. However, in contrast
to HPC settings, serverless brings challenges of slower invo-
cation/communication, resource-constrained instances and the
requirement to reload large model weights for each request.
Hence, it is particularly important to develop an effective
partitioning scheme in this new context, in order to reduce
both cost and run-time jointly.

D. Serverless Communication

There are currently no native and direct serverless FaaS-to-
FaaS communication solutions analogous to the mechanisms
used in the HPC setting. Reasons for this include function
isolation and fast container switching [21], [22]. To support
distributed serverless inference, an ideal inter-function cloud
communication channel should have the following properties:

• Serverless (i.e., elasticity, pay-as-you-use, rapid auto-
matic scale up/down)

• Low latency and high aggregate throughput
• Cost effectiveness
• Flexible payload type and message size
• Scalable to many concurrent producers and consumers
• Service-side message filtering
• Direct access to messages for consumers
We consider here a range of cloud service categories which

could potentially be adapted to support the IPC element of a
fully serverless distributed ML solution.

1) Data Streaming Systems: These solutions offer high
throughput and low latency event logs. For an ML inference
workload, parallel FaaS workers could act as both producers
and consumers. A stream is usually partitioned in such a
way that it can be distributed across multiple processing
nodes. Commercial cloud data streaming offerings include



AWS Kinesis Data Streams, Azure Event Hubs and Google
Datastream.

2) ETL on Streaming Data: Cloud providers also offer
extract-transform-load (ETL) solutions on streaming data (e.g.,
AWS Kinesis Data Firehose). Transformation features include
data disaggregation and filtering, key-based partitioning, and
compression.

3) NoSQL Databases: These services typically offer low
latency and high scalability (often auto-scaling based on read
and write throughput). Several design options could be devel-
oped for an ML inference workload, including the maintenance
of a ‘global’ intermediate output vector/matrix, as well as a
message passing approach.

4) Publish-Subscribe: Pub-Sub services offer a simple
communication approach in which messages are distributed
from any number of producers to unlimited subscribing con-
sumers. Service-side filtering policies reduce the computa-
tional load on parallel consumers, which can be particularly
beneficial in resource-constrained FaaS use cases.

5) Message Queues: Cloud-based message queues offer
low latency and cost-effective enqueue and dequeue function-
ality, as well as adjustable polling settings to cater for varying
message arrival rates. They can also act as a destination for
pub-sub services in a ‘fan-out’ design.

6) Object Storage: Object storage offers immutable and
scalable repositories catering for very large individual file
sizes. Such services provide high aggregate throughput, when
used in conjunction with parallel FaaS instances [23].

Table I illustrates that, of the offerings described above,
the categories most suitable for our use case are publish-
subscribe (pub-sub) in conjunction with message queues,
and object storage. They are both fully serverless, with rapid
scale up and down, and no ‘hangover costs’ (i.e., slow scaling
down of burst-provisioned capacity units). They also offer flex-
ibility of FaaS parallelism without requiring reconfiguration
of communication resources, as well as service-side message
filtering to reduce the computational load on parallel workers.

While any of the other services above could potentially
be adapted for a distributed ML solution, each has one or
more significant shortcomings for our use case. Data stream-
ing offerings can be restrictive in terms of the numbers of
producers/consumers allowed per provisioned resource, in time
lag when auto-scaling these resources, and in the maximum
number of API calls per second [24]–[26]. Streaming ETL
solutions do not offer direct polling of the delivery stream,
which adds an additional latency overhead as data must instead
be written to/read from an intermediate location. They also
have large minimum buffer sizes (both in terms of data volume
and time triggers). NoSQL databases suffer from restricted
item sizes, limited batch update functionality, and relatively
high cost compared to other offerings [27], [28].

In the context of serverless ML inference, we will examine
the trade-off between the lower cost but payload-restrictive
messaging supported by pub-sub/queueing based solutions,
with the more expensive but effectively size-independent data
transfers possible when using object storage.

III. FSD-INFERENCE DESIGN

FSD-Inference (Fully Serverless Distributed Inference) is
the first fully serverless system for distributed deep neural
network (DNN) inference. One of the first challenges is the ef-
ficient parallelization of fully-connected layers across multiple
FaaS instances, due to the large communication requirements
and lack of direct FaaS-to-FaaS connectivity. We therefore
introduce two fully serverless point-to-point data communica-
tion solutions for the cloud. The overall solution mitigates the
constraints of FaaS and achieves scalable performance for ML
inference at low cost, also maintaining its high performance
under sporadic workloads.
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Fig. 1. FSD-Inference high-level cloud architecture

Our solution is cloud-provider agnostic. In light of AWS
Lambda’s short ‘cold start’ time, relatively long maximum
runtime (15 minutes) and best-in-class performance [29], [30],
we present our design principles for FSD-Inference on AWS
Lambda. Hence, we also adapt AWS services for IPC channels;
namely, Simple Notification Service (SNS) and Simple Queue
Service (SQS) for pub-sub/queueing, and Simple Storage
Service (S3) for object storage. We characterize FSD-Inference
with these two communication approaches as FSD-Inf-Queue
and FSD-Inf-Object, respectively. It should be stressed that
equivalent solutions could readily be built on other cloud
platforms. Note that we also consider the use of FSD-Inference
with a single worker with no communication components; we
term this variant FSD-Inf-Serial.

The tree structure of parallel FaaS instances is built using a
worker_invoke_children()method, in which a worker
uses its parent-ID, ‘sibling number’ and a branching factor to
determine its own ID (similar to ‘rank’ in MPI), and then
to invoke its children. This process enables our point-to-point
communication schemes, and allows workers to identify the
weights/data partitions it should retrieve prior to commencing
inference. Experiments (not shown) also indicate that this
mechanism reduces the launch time for the fully populated
instance tree, compared to a centralized single-loop launch or
a two-level launch loop as used in Lambada [3].

The solution is fully parameterized, meaning that at infer-
ence time, a request can be run with any number of workers



k, provided that the model has been pre-partitioned offline for
that k. The user can select different k for consecutive requests,
if desired. We consider offline hypergraph partitioning as post-
processing of trained models (it is done a priori, not for each
request).

Figure 1 displays the high-level architecture of FSD-
Inference. Upon invocation, each FaaS instance (worker)
launches its children as above, then reads its share of the model
weights, inference data and per-layer send and receive maps.
Each worker then executes the FSI (Fully Serverless Inference)
routines presented in Algorithms 1 (FSD-Inf-Queue) and 2
(FSD-Inf-Object). FSD-Inference introduces a highly parallel
approach with an efficient communication mechanism to mit-
igate the inherent constraints of FaaS to achieve a scalable
serverless solution.

A. FSD-Inf-Queue Communication Channel

Figure 2 illustrates the FSD-Inf-Queue architecture. To
design a fast and scalable serverless communication scheme
for distributed ML inference, we aim to maximize the overall
communication throughput, whilst avoiding I/O bottlenecks
and minimizing the computational overhead on the resource-
constrained FaaS instances. Several design features of FSD-
Inf-Queue contribute to these goals. These include parallel
pub-sub topics to increase total throughput and avoid I/O
bottlenecks, and a dedicated message queue per FaaS instance
to minimize the number of service-to-service network con-
nections required. This also avoids the need for consumer-
side message filtering (and hence the parsing/discarding of
unwanted messages intended for other workers). We leverage
a ‘fan-out’ architecture to offload the targeted distribution of
messages onto the pub-sub service, helping to reduce compu-
tational overheads. Finally, the communication resources (pub-
sub topics, queues, etc.) are pre-created to avoid doing so at
inference time, at no additional provisioning or ongoing cost.
Further details on how this communication scheme is utilized
for ML inference are provided in Section III-C1.
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Fig. 2. FSD-Inf-Queue communication scheme. Demonstrated with AWS
services (SNS, SQS, Lambda).

B. FSD-Inf-Object Communication Channel

As in FSD-Inf-Queue, our key objectives are to maximize
communication throughput at minimal computational effort for
FaaS workers. In FSD-Inf-Object, we employ multiple object
containers and prefixes for the intermediate results files. This
helps avoid I/O bottlenecks, whilst staying within provider-
imposed API quotas [31]; in object storage solutions such as
S3, using k containers effectively increases the API request
limit k-fold [3]. Under this design, each worker only needs
to scan/read from a single object storage container and file
prefix. The unnecessary reading of empty files (i.e., where a
source had no information to transmit to a target in the current
layer) is avoided by the use of distinct suffixes for empty/non-
empty files. We also initiate object storage read operations
in multiple parallel threads per worker, to minimize delays
between folder scans. Figure 3 presents the FSD-Inf-Object
architecture, and Section III-C2 provides further details on its
use for ML inference.
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Fig. 3. FSD-Inf-Object communication scheme. Demonstrated with AWS
services.

C. FSI Algorithm

We propose two FSI (Fully Serverless Inference) algo-
rithms, each performing repeated distributed MVP (matrix-
vector product, for single sample inference) / MMP (matrix-
matrix product, for batch inference) in the form of W kxk−1

/ W kXk−1 for each layer k = 1, 2, . . . , L. Our inference al-
gorithms and communication schemes are designed to exploit
sparsity in DNN weight matrices/activations, but our ideas are
readily applicable to dense inference scenarios. We will hence-
forth present notation for MVP, but this should be understood
as also applying to MMP. Models are parallelized through the
row-wise hypergraph partitioning of (sparse) weight matrices
W k and input/output vectors xk−1, which we adapt in this
FaaS setting [12].

Algorithms 1 and 2 describe the execution of the serverless
FSI routine using the pub-sub/queueing (FSD-Inf-Queue) and
object storage (FSD-Inf-Object) communication channels, re-
spectively. In both algorithms, each FaaS processor Pm (for



m = 1, 2, . . . , P ) holds row-blocks W k
m and xk−1

m of W k and
xk−1, respectively. The hypergraph partitioning scheme also
provides each processor Pm with maps Xsendkm and Xrecvkm
which match row indices of xk−1

m to the target/source worker
IDs with which they should be shared [12].

In order to perform MVP W k
mxk−1

m , worker Pm must
receive all rows of xk−1 corresponding to the indices of the
nonzero weight matrix columns it holds for layer k, from the
workers which manage these rows.

The mechanism for sending and receiving intermediate
results using FSD-Inf-Queue and FSD-Inf-Object is as follows:

1) FSI with FSD-Inf-Queue: For each target Pn that source
worker Pm must communicate with in a given layer, we
construct messages to send to a pub-sub topic. Due to the
current provider-imposed constraints of the cloud pub-sub
service, these messages consist of size-limited byte strings.
We use the total number-of-nonzeros (NNZ), over the rows
to be communicated, as a heuristic to estimate the number of
byte strings required to encode x̄k−1

mn . This list of byte strings
is denoted as {x̄k−1

mni}. Our goal is to maximize the utilization
of the allowed pub-sub message size, whilst grouping and
compressing rows only once.

All byte strings are added to a send buffer Xsend listkm,
from which we populate a series of message batches (to reduce
API calls and hence cost); this process is multi-threaded in
each worker. Note that we also add several message attributes,
including the source worker ID, the total number of byte
strings to be sent to this target, and the message layer. Hav-
ing constructed these message batches, we then use parallel
threads to issue them to the pub-sub topic, which distributes
them to each target’s dedicated message queue using a filter
policy. We then perform local MVP zkm = W k

mxk−1
m to overlap

communication with computation (amortizing communication
overheads), before receiving inbound xk−1 rows from other
workers.

In order to receive messages from other workers (lines
9 to 15 in Algorithm 1), worker Pm repeatedly polls its
queue until all rows in Xrecvkm have been obtained. We poll
the message queue using ‘long’ polling. The AWS message
queueing solution caters for ‘long’ and ‘short’ polling, deter-
mined via a parameter W . ‘Short’ polling (W = 0) responds
to polls immediately, regardless of whether or not messages
were found. Note that SQS distributes messages over multiple
servers; ‘short’ polling does not guarantee that all servers are
queried, and so messages may be missed by a request. ‘Long’
polling ensures that all servers are visited. If messages are
not immediately found, the service waits for up to W seconds
(continuously checking for messages at no extra cost), and
can only return empty-handed after this period has elapsed.
Our analysis (not shown in this paper) confirms that long
polling outperforms short polling, and returns significantly
more messages per poll request, reducing costs.

For each message returned in the poll, we add its deseri-
alized and decompressed body to Xrecv listkm. We cater for
the case where source Pn needs to send multiple messages to
target Pm using message attributes, and only remove worker

Algorithm 1 FSI with FSD-Inf-Queue
Input: x0

m, {W k
m}, {Xsendkm}, {Xrecvkm }

1: for all FaaS workers Pm in parallel do
2: for k = 1, 2, . . . , L do
3: for all (Pn, x̄

k−1
mn ) ∈ Xsendkm do

4: x̄k−1
mn ← extract_rows(xk−1

m , x̄k−1
mn )

5: Xsend listkm ← Xsend listkm ∪ {(Pm, x̄k−1
mni)}

6: for all b ∈ pop_batches(Xsend listkm) do
7: topic-{m%10}.publish_batch(b)
8: zkm ←W k

mxk−1
m

9: while len(Xrecvkm) > 0 do
10: Xpollkm ← queue-{m}.poll()
11: for all (Pn, x̂

k−1
nmi) ∈ Xpollkm do

12: Xrecv listkm ← Xrecv listkm ∪ x̂k−1
nmi

13: if Xrecv listkm[Pn] == Xrecvkm[Pn] then
14: Xrecvkm ← Xrecvkm/(Pn, x̂

k−1
nm )

15: queue-{m}.delete(Xpollkm)
16: for all x̂k

nm ∈ Xrecv listkm do
17: zkm ← zkm +W k

mx̂k
nm

18: xk
m = f(xk

m)
19: barrier(Pall)
20: reduce(P0, x

L
m)

21: if FaaS Worker P0 then
22: return xL

Pn from Xrecvkm when all its expected byte strings for layer
k have been received.

2) FSI with FSD-Inf-Object: Due to the large file sizes
available with object storage solutions, each FaaS instance in
FSD-Inf-Object only needs to write a single object for each of
its targets in a given layer (in contrast, FSD-Inf-Queue experi-
ences far more constrained message sizes). Before performing
non-blocking sends (lines 5/8 in Algorithm 2), each worker
iterates through tuples (Pn, x̄

k−1
mn ) in its send map for the

current layer. For each row in x̄k−1
mn , we check if Pm has any

nonzero entries for that row. We maintain two sublists of row
indices in x̄k−1

mn , indicating for which rows Pm has nonzero
entries and for which rows it does not. Worker Pm sending
intermediate inference results to worker Pn in layer k would
write a file named:
s3://bucket-{n%10}/{k}/{n}/{m_n}.dat
When Pm has no nonzero entries to communicate to Pn in

layer k, it will instead write a 0-bytes file:
s3://bucket-{n%10}/{k}/{n}/{m_n}.nul
Workers do not attempt to retrieve files with the ".nul"

extension when they are identified in folder scans.
In order to retrieve data sent by source FaaS instances, a

worker will repeatedly scan the file handles in the location
“bucket-{m%10}/k/m/”. For all file names identified by
the scan, we remove (Pn, x̂

k−1
nm ) from Xrecvkm for files

ending “.nul”. Any “.dat” files from sources Pn where
(Pn, x̂

k−1
nm ) /∈ Xrecvkm are ignored, as data from Pn has

already been received. The remaining “.dat” files are then
read into memory, decompressed and added to Xrecv listkm.
(Pn, x̂

k−1
nm ) is then removed from Xrecvkm.



Algorithm 2 FSI with FSD-Inf-Object
Input: x0

m, {W k
m}, {Xsendkm}, {Xrecvkm }

1: for all FaaS workers Pm in parallel do
2: for k = 1, 2, . . . , L do
3: for all (Pn, x̄

k−1
mn ) ∈ Xsendkm do

4: if x̄k−1
mn == ∅ then

5: ObjStore.put_obj("m_n.nul", ∅)
6: else
7: x̄k−1

mn ← extract_rows(xk−1
m , x̄k−1

mn )
8: ObjStore.put_obj("m_n.dat", x̄k−1

mn )
9: zkm ←W k

mxk−1
m

10: while len(Xrecvkm) > 0 do
11: Xhandleskm ← ObjStore.list_files()
12: for all hk

nm ∈ Xhandleskm do
13: if hk

nm.ends_with(".nul") then
14: Xrecvkm ← Xrecvkm/(Pn, x̂

k−1
nm )

15: continue
16: else if n /∈ Xrecvkm then
17: continue
18: else
19: x̂k−1

nm = ObjStore.get_obj(hk
nm)

20: Xrecv listkm ← Xrecv listkm ∪ x̂k−1
nm

21: Xrecvkm ← Xrecvkm/(Pn, x̂
k−1
nm )

22: for all x̂k
nm ∈ Xrecv listkm do

23: zkm ← zkm +W k
mx̂k

nm

24: xk
m = f(xk

m)
25: barrier(Pall)
26: reduce(P0, x

L
m)

27: if FaaS Worker P0 then
28: return xL

3) Post-Communication Processing: This processing is
common to both communication channels. Once data from
all the row indices in Xrecvkm is stored in Xrecv listkm, we
iterate through each (sparse) matrix x̂k−1

nm ∈ Xrecv listkm and
perform operation zkm ← zkm + W k

mx̂k−1
nm , to complete the

distributed MVP for layer k. The final operation in each layer
is the application of an activation function f(·).

After layer L, we perform Barrier and Reduce operations to
synchronize all workers, and communicate all output vectors
xL
m to worker P0. P0 then aggregates them to calculate the

overall inference result xL. This entire process can then be
repeated across multiple successive inference samples/batches.

IV. FSD-INFERENCE COST MODEL

In this section, we first formalize the cost models of
FSD-Inf-Serial, FSD-Inf-Queue and FSD-Inf-Object. We then
introduce several optimizations, observing their effect on the
cost models. Finally, we give recommendations for the design
of serverless ML inference solutions. It should be noted that
while we henceforth refer to AWS terminology and pricing
models, the design principles are cloud-provider agnostic.

A detailed cost model is important due to the cost-to-
performance tradeoffs of serverless, and to show the viability
of FSD-Inference as an alternative to provisioned solutions.

While previous work [3] has evaluated the costs of object
storage-based exchange operators, our cost model is the first to
consider end-to-end distributed serverless inference expenses.

A. Serverless Inference Cost Analysis

Overviews of the cost models of FSD-Inf-Queue, FSD-Inf-
Object and FSD-Inf-Serial are shown in Equations 1, 2 and 3,
respectively. The following sections explore each in detail.

CQueue = Cλ + CSNS + CSQS (1)
CObject = Cλ + CS3 (2)

CSerial = Cλ (3)

1) FSD-Inf-Queue Cost Model Breakdown: We first con-
sider Cλ, which is common to all variants. The costs of the
pub-sub and queueing communication components will then
be subsequently described. Cλ is given as:

Cλ = PCλ(Inv) + PT̄MCλ(Run) (4)

Where P is the total number of Lambda instances, T̄ =
1
P

∑P
i=1 Ti is the average worker runtime (in seconds), and

128 ≤ M ≤ 10240 (at present) is the memory allocated to
each Pm. Cλ(Inv) is the static cost per Lambda invocation, and
Cλ(Run) is the cost per MB-second of Lambda runtime [32].
Since Lambda vCPU allocation is proportional to the allo-
cated memory, there is an inherent cost-to-performance trade-
off when sizing Lambda functions [33]. As FSD-Inf-Serial
does not feature a communication channel, Cλ makes up the
entirety of its cost profile.

Recall that the workflow of FSD-Inf-Queue is as follows:
Source workers publish messages to SNS topics (via SNS
publish requests), which distribute them to SQS queues. Target
workers then perform SQS API requests to poll their queue
to receive inbound messages. With this in mind, CSNS and
CSQS can be calculated as follows:

CSNS = SCSNS(Pub) + ZCSNS(Byte) (5)
CSQS = QCSQS(API) (6)

Where S is the number of billed publish requests, Z is
the total number of bytes transferred between the pub-sub
and queueing services, and Q is the number of API calls
to the queueing service. CSNS(Pub) is the cost per billed
publish request, CSNS(Byte) is the cost per byte transferred
from SNS to SQS, and CSQS(API) is the cost per SQS API
request. Note that while the current maximum payload size
for SQS is 256KB, publishes are billed in 64KB increments.
Hence, a publish containing 256KB of data (spread across up
to 10 messages) will be billed as 4 requests. In addition, AWS
currently only charges for data transfer from SNS to SQS, not
from Lambda to SNS or from SQS to Lambda, provided all
resources reside in the same AWS region.

2) FSD-Inf-Object Cost Model Breakdown: The compute
costs of FSD-Inf-Object (Cλ) are as described above. Its
communication costs, CS3, are calculated as:

CS3 = V CS3(Put) +RCS3(Get) + LCS3(List) (7)



In Equation 7, V represents the number of object storage
PUT requests, R is the number of GET requests, and L is the
number of LIST requests. PUT and GET requests are billed
irrespective of the size of the object being written/read.

B. FSD-Inference Optimizations

Our optimizations in FSD-Inference aim to reduce the costs
described in the above models. FSD-Inf-Queue benefits from
our approach to maximizing the publish payload utilization
when packing byte string lists {x̄k−1

mni}, hence minimizing
S. Further, the long polling mechanism illustrated in Sec-
tion III-C1 reduces Q when compared to alternative polling
approaches. The optimizations in Section III-C2 improve the
cost profile of FSD-Inf-Object (avoiding reading “.nul” files,
or performing redundant reads of any “.dat” files where
(Pn, x̂

k−1
nm ) /∈ Xrecvkm); these changes both reduce R. Further,

overlapping S3 reads with the write phases of other workers,
as illustrated in Algorithm 2, reduces the number of LIST
requests L.

Both FSD-Inf-Queue and FSD-Inf-Object utilize ZLIB
compression to reduce the communication volume. While
this directly reduces FSD-Inf-Queue communication costs (by
reducing Z, S and Q), the improved performance experienced
under the reduced IPC load benefits both variants by reducing
T̄ , and hence Cλ. Similarly, the overall communication volume
is reduced via hypergraph partitioning of the model across
parallel workers, improving several components of both cost
models (particularly by reducing S and Z for FSD-Inf-Queue).

C. Serverless Inference Design Recommendations

We conclude this section with several design recommen-
dations for fully serverless ML inference systems. For small
models which can comfortably fit into the memory of a single
FaaS instance, single-instance execution is the recommended
approach (i.e., FSD-Inf-Serial) as it avoids any communication
latency of FaaS IPC. For models which will not fit into the
memory of (or be efficiently processed by) a single FaaS
instance, our distributed solution using either of the proposed
serverless IPC channels is needed.

FSD-Inf-Queue is a highly cost-effective solution as paral-
lelism grows. This is especially true until multiple publishes
are consistently required for each target, based on the cloud
provider’s maximum publish payload capacity. At present, API
costs for CSNS(Pub) and CSQS(API) are ≈ 1 OOM less
than CS3(Put) and CS3(List). Further, a single SNS publish
can currently contain up to 10 messages, potentially satis-
fying layer-wise communication requirements for 10 targets
simultaneously. S3, on the other hand, always requires one
PUT per target, if redundant read/processing times for shared
files are to be avoided. Further, a single SQS poll can retrieve
payloads from up to 10 source workers (vs 1 read per source
with S3). Hence, in best-case conditions, pub-sub/queueing
API costs can be up to 2 OOM lower than corresponding
object storage requests, subject to message counts and sizes.
Hence, pub-sub/queueing costs will grow much more slowly

with increasing worker parallelism than object storage costs,
for a given data volume.

Object storage becomes the optimal communication ap-
proach when the data volumes begin to saturate pub-
sub/queueing resources. Inter-worker messages communicated
via object storage can be of almost unlimited size (TB scale),
and current pricing models do not charge for data transfer
between S3 and Lambda instances. Hence, object storage
communication channels have a favorable cost profile as data
volumes grow.

V. RELATED WORK

A. Serverless Computing

In recent years there has been increasing exploitation
of cloud-based serverless solutions for different types of
computing workloads [30], [34]–[38]. The range of use
cases now includes data management and analytics [3], [39],
DBMS/DBaaS [40], linear algebra [41], ML inference [8],
[42], ML training [43] and end-to-end ML pipelines [44].
Recent work addresses some of the challenges arising from the
use of serverless architectures for data-intensive applications.

1) Inter-Function Communication: The lack of direct
instance-to-instance communication in the serverless envi-
ronment is a key challenge. A common approach [3], [39]
has been to use object storage as an intermediate layer
for sharing state/data and message passing, via the design
of serverless exchange operators. As well as our optimized
object storage-based channel, we also design and evaluate
a pub-sub/queueing approach, and compare the two in-
depth, in terms of cost, performance and scalability. Several
works [43], [45] make use of distributed memory caching
solutions (e.g., Memcached, Redis), which can provide lower
latencies and higher throughputs than object storage, but unlike
our solution, they are not fully serverless. A NAT ‘hole-
punching’ approach is proposed [20], [46] which enables
direct communication between FaaS function instances via
an external provisioned proxy server. This is incorporated in
a wider serverless communication solution which emulates a
subset of MPI functionality [19]. Our work also implements
MPI primitives (Send, Recv, Broadcast, Reduce), but avoids
the use of an external provisioned server, achieving fully
serverless communication. One serverless distributed inference
solution [7] achieves coordinator-worker communication using
a fork-join launching mechanism, passing data via invocation
requests/responses, although limited payload capacities can
hinder scalability, and inter-worker communication is not
considered. Instead, our work focuses on the design of highly
parallel communication channels for inter-worker communi-
cation, for the purpose of intra-layer parallelism.

2) Container Control: Established FaaS offerings such as
AWS Lambda provide limited customizability of runtime
containers, hindering some use cases. Over recent years an
ecosystem around Docker-based, Kubernetes-managed cloud
compute services has also developed, with Knative and similar
solutions enabling FaaS offerings to be built on top of this
stack (e.g., Google Cloud Run [47], IBM Cloud Code Engine



[48]). Such FaaS services are usually ‘scaled-by-concurrency’,
enabling multiple function instances to share containers. These
solutions provide opportunities for container customization,
such as hosting web servers and shared storage, which could
be leveraged by the hosted functions for IPC. Another new
category of offerings incorporates ‘stateful functions’ [49]–
[52] based on elements of the Actor model [53]. These
offer state management and IPC mechanisms. However, they
typically rely on non-serverless infrastructure. While this is an
area of fluid change, our approach can readily adapt to such
emerging FaaS architectures.

3) Cold Starts and Inconsistent Performance: Methods are
proposed [54]–[57] for quickly launching many function in-
stances while reducing the ‘cold-start’ overhead this can entail,
for example by pre-analyzing task chains and pre-launching
resource instances. Our work uses a multi-level, hierarchical
launch design which can mitigate the cold start issue. The issue
of ‘straggler’ worker instances is also addressed by various
methods including pre-emptive read/write retries [39] and by
the use of local error-correcting codes [58], [59].

4) Hybrid Solutions: Several studies opt to mitigate the
challenges of serverless by unifying serverless and serverful
components [60]–[62]. Gupta et al. [63] address the integration
of edge devices with multi-cloud FaaS instances and secure
data stores in a fault-tolerant manner. In contrast, our work
addresses a fully serverless design objective.

B. Serverless Data Analytics and ML

1) Serverless Data Analytics: Lambada [3] presents ef-
ficient scan, sort and transfer operations for data analytics,
using object storage as a communication channel. Whilst
Lambada uses queues for sending short result messages, we
show that a pub-sub/queueing approach can also be viable for
large scale data shuffling operations (i.e., moving data across
partitions held on distributed nodes). We also leverage hyper-
graph partitioning to minimize communication requirements
and ensure balanced workloads across parallel workers. Our
pub-sub/queueing approach also offloads the distributions and
filtering of messages to the back-end cloud service.

Other works explore the use of serverless for Linear Algebra
(LA) workloads. PyWren [23] provides a MapReduce-style ca-
pability for data analytics workloads. NumPyWren [41] lever-
ages PyWren and LAmbdaPACK (a domain-specific language
for coordinating LA algorithm tasks). Unlike these works,
which study dense linear algebra, we focus on scalable ML
inference. We are also able to leverage sparse data structures
and point-to-point communication techniques which exploit
the sparsity of the underlying data, i.e. both weight matrices
and input vectors. This improves computational performance
while reducing IPC overheads. Further, NumPyWren [41] only
mimics a serverless runtime, whereas FSD-Inference uses a
true, off-the-shelf, fully serverless architecture.

2) Serverless Machine Learning Systems: A number of
recent works consider the suitability of serverless platforms
for ML workloads. There has been a particular interest in
serverless ML inference use cases [2]. Park et al. [9] consider

optimal FaaS configurations for inference, but do not cater
for per-request parallelism. Tetris and Photons [64], [65]
adapt Kubernetes-based FaaS offerings to enable runtime and
tensor sharing to reduce memory usage, whilst our work
achieves this via model and data partitioning. AWS now
offers a commercial serverless inference endpoint as part
of its SageMaker suite [10]. Whilst this service can scale
upwards (currently to 6GB memory) and outwards (via auto-
scaling in response to demand levels), it does not yet address
the challenges of per-request data parallelism, or ML model
parallelism, which is a requirement for very large DNNs. A
small number of studies have attempted distributed serverless
inference. AMPS-Inf [8] partitions trained models in a layer-
wise fashion over multiple FaaS instances, and then runs
them sequentially. Gillis [7] adopts ‘layer grouping’ algorithms
which co-locate layers which should be processed together,
thus avoiding substantial inter-instance communication. It then
performs ‘coarse-grained partitioning’ by assigning segments
of some layers to small numbers of sub-worker instances,
launched synchronously in a fork-join manner; communication
only occurs via invocation requests/responses. In contrast, our
work is the first to employ intra-layer (i.e., tensor) model par-
allelism in the serverless setting, distributing consecutive fully-
connected layers over multiple disconnected FaaS instances.

Another important area of interest is batch serverless in-
ference, as there are real-world use cases where an imme-
diate response to an inference request is not required, and
where request arrival is sporadic and/or bursty. This type
of workload is a sweet-spot for serverless inference, as it
can often be more cost-effective than sample-by-sample pro-
cessing. BATCH identifies an SLO-optimal FaaS deployment
(batch size, memory config) to carry out batch inference [66].
Ali et al. [67] propose a performance and cost estimator to
efficiently batch together heterogeneous serverless inference
requests. Hybrid server-based/serverless batch inference solu-
tions, which use serverless to supplement IaaS resources when
handling bursty workloads, have also been proposed [68]. In
contrast, our solution caters for batch inference processing as
part of the core serverless design, although we assume that
requests have been buffered and batched by an appropriate
mechanism prior to FSD-Inference processing.

VI. EXPERIMENTAL ANALYSIS

A. Experimental Setup and Datasets

We first compare FSD-Inference against two server-based
baselines, an HPC solution, as well as a commercial serverless
inference offering, before contrasting our two fully serverless
communication channels. We consider three variants of FSD-
Inference; FSD-Inf-Serial (which runs on a single FaaS
instance without communication), FSD-Inf-Queue (publish-
subscribe/queueing) and FSD-Inf-Object (object storage).

We run the experiments on the popular benchmark pro-
vided by the MIT/IEEE/Amazon Sparse Deep Neural Network
Graph Challenge [69]. The objective of this benchmark is to
facilitate the controlled evaluation of distributed solutions for
large and deep networks, which is our primary area of interest.



Our approaches can readily be generalized to other models
and/or prediction tasks.

We use L = 120 layers for all experiments, and evaluate
performance with DNNs of per-layer neuron counts N =
1024, 4096, 16384 and 65536. For inference data, we process
batches of 10,000 samples, which are scaled to 32 × 32,
64×64, 128×128 and 256×256 in accordance with N . These
samples are thresholded and flattened into column vectors to
conform with the input layers of the synthetic (sparse) DNNs.
We then prepare the data for batch inference by concatenating
these column vectors into a matrix for consecutive distributed
MMP. We confirm our inference results match the ground
truths provided by the benchmark to ensure correctness. For
all experiments, we report the median results of 3 runs.

1) FaaS Worker Configuration: All experiments are
performed using AWS Lambda as the compute service. For
FSD-Inf-Serial, we create a Lambda application which runs
Algorithm 1 with all communication steps removed, and loads
the unpartitioned DNN model and inference data into memory.
We allocate the current maximum allowed memory M =
10240MB, to enable whole models to fit into memory until
the neuron count makes this infeasible. For FSD-Inf-Queue
and FSD-Inf-Object, we create two Lambda applications
per variant, a ‘coordinator’ and a ‘worker’. The lightweight
coordinator (M = 128MB) parses user input and invokes the
first layer of workers. The worker function is configured with
the maximum allowed runtime limit (15 minutes at the time
of writing), and executes Algorithm 1 (FSD-Inf-Queue) or 2
(FSD-Inf-Object). Boto3 (the AWS SDK for Python) is used
to interact with AWS communication services. We invoke
concurrent workers P = 8, 20, 42 and 62. We allocate M =
1000, 1500, 2000 and 4000MB for N = 1024, 4096, 16384
and 65536, respectively. We sized Lambda functions such
that the partitioned model weights could fit into memory, and
allowed a small overhead beyond this. We employ Python’s
concurrent.futures.ThreadPoolExecutor() in
each worker to parallelize communication as discussed in
Section III-C. We built FSD-Inference using Python 3.8.
ReLU was selected as the non-linear activation function
f(·), biases of -0.30, -0.35, -0.40 and -0.45 were applied
for N = 1024, 4096, 16384 and 65536, respectively, and
neuron activations were thresholded to 32 (as per the Graph
Challange). The hypergraph partitioning is implemented
offline using PaToH [70].

2) Server Configurations: Our rationale for sizing our
server-based baselines was to use the smallest server with
greater total vCPU and memory than the sum of the equivalent
FSD-Inference resources, to ensure fairness. Note that official
figures on Lambda vCPU allocation per unit of memory are not
published by AWS, so we rely on external analysis [71]. For
Server-Always-On, we use AWS EC2 c5.12xlarge compute-
optimized instances (48 vCPU, 96 GiB memory). For Server-
Job-Scoped, we utilize suitably-sized instances for each neuron
count N . Namely, for N = 1024 and N = 4096 c5.2xlarge (8
vCPU, 16 GiB memory), for N = 16384 c5.9xlarge (36 vCPU,
72 GiB memory), and for N = 65536 c5.12xlarge (48 vCPU,

96 GiB memory). We use the same codebase as FSD-Inf-Serial
for these experiments. With these configurations, the relative
disadvantages that FSD-Inference experiences vs job-scoped
baselines in terms of memory and vCPU are as follows (for
each neuron count). Memory: 0.625x, 0.625x, 0.556x, 0.833x.
vCPU: 0.721x, 0.721x, 0.639x, 0.963x.

B. Baselines

First, we implement two server-based approaches for cloud-
based ML inference: Server-Always-On (large VMs capable of
handling peak load, left running between queries) and Server-
Job-Scoped (VMs of a suitable size for a given request, in-
voked upon request arrival and closed down after termination).

We also consider H-SpFF [12] as a non-cloud based ap-
proach, the results of which were achieved on an on-premise
distributed HPC platform. H-SpFF results reflect the process-
ing of 60,000 samples, as opposed to 10,000 in all other
experiments (such results were not available). Note that cost
information is also not available for H-SpFF. Finally, we evalu-
ate AWS SageMaker Serverless Inference [10] (denoted Sage-
SL-Inf), using a PyTorch implementation of FSD-Inf-Serial.
This ran on Lambda endpoints with the maximum allowed
memory (6GB) to make it as competitive as possible. However,
we omit this approach from Section VI-C; it could not load all
models into memory, while its restrictive maximum payload
size (6MB) and function runtime (60s) prevented it from
processing the required 10,000 samples for any model size. We
also applied Gillis [7] to partition the models, and found that
it only created Lambda resources for a single function which
handles all layers, i.e., no layer grouping or parallelization.
This configuration is equivalent to FSD-Inf-Serial execution,
and hence we discount it as an explicit baseline.
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Fig. 4. Daily cost of FSD-Inference, Server-Always-On and Server-Job-
Scoped for various query volumes. Queries are evenly spread between
N = 1024, 4096, 16384 and 65536.

C. Handling Sporadic Inference Workloads

1) Overview of Sporadic Inference Workloads: We first
consider the cost and performance of FSD-Inference, server-
based baselines and H-SpFF on sporadic inference workloads.
Under such a query pattern, requests may arrive at irregular



and/or infrequent intervals, with varying model sizes. The
execution of ML inference in response to a metric exceeding a
threshold (e.g., in an e-commerce context, user retention time,
no. of clicks on site, % of basket items that lead to purchases)
is a common example of such a use case. Other practical
examples include financial trading, regional energy usage
monitoring, real-time traffic forecasting, or social network
analysis. In these scenarios, the frequency and distribution of
inference requests is unknown, and numerous different ML
models could be invoked across queries.

2) Modelling Sporadic Inference Workloads: We model
queries arriving over a 24-hour period, evenly spread over
multiple per-layer neuron counts N . For each query, we select
the FSD-Inference variant offering the best balance of cost
and performance. For the always-on server baselines, we
provision two of the specified instances, to handle overlapping
queries and to offer redundancy. We also present ‘hot’ and
‘cold’ always-on results. The former assumes that for 50%
of requests, the given ML model will already be in memory.
In the other half of cases, the model is loaded from a high-
performance EBS [72] block storage volume, attached to the
instance. In the case of ‘cold’ results, the model is instead
fetched from object storage. This behaviour mimics Sage-
Maker Multi-Model Endpoints [73], which retain in memory
the most recently-invoked models, with less in-demand models
moved to EBS, and then S3, as capacity dictates.

3) Cost and Performance Analysis: As shown in Figure 4,
FSD-Inference is significantly cheaper than Server-Always-
On until high daily query volumes are reached (approx. 4M
samples per day). While Server-Job-Scoped is marginally
more cost-effective than FSD-Inference, it is seen in Figure
5 that it suffers from very high query latency for all model
sizes. For smaller models (N = 1024, 4096), FSD-Inference
offers competitive performance compared to AO-Cold (Server-
Always-On-Cold), but lags behind AO-Hot (Server-Always-
On-Hot) and H-SpFF. This is in part due to overheads in
reading unpartitioned weights from S3. For N = 16384, FSD-
Inference is able to achieve superior performance compared
to AO-Hot. Finally, for N = 65536, the scalability of FSD-
Inference means it significantly outperforms AO-Hot, AO-
Cold and JS, and has only ≈ 40% higher latency than H-SpFF,
an optimized HPC solution. These results show that serverless
ML inference solutions can offer impressive scalability as
well as an attractive cost-to-performance ratio, particularly for
sporadic inference workloads.

D. Analysis of Serverless Inference Platforms

Having established our solution as a scalable inference plat-
form, we now explore the differences in performance between
its variants (FSD-Inf-Serial, FSD-Inf-Queue, FSD-Inf-Object),
as well as Sage-SL-Inf. Figure 6 and Table II show that
for smaller neuron counts (N = 1024, 4096), using fewer
workers is optimal both in terms of cost and performance (note
that FSD-Inf-Parallel refers to the best configuration between
FSD-Inf-Queue/FSD-Inf-Object). In particular, the FSD-Inf-
Serial configuration, with no communication overhead, would
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Fig. 5. Query latency for FSD-Inference, server-based baselines and H-SpFF.
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Fig. 6. Per-sample runtime and cost of FSD-Inf-Queue and FSD-Inf-Object.

be preferred, in line with our design recommendations in
Section IV-C. The parallel configurations (for both FSD-Inf-
Queue and FSD-Inf-Object) have similar performance profiles,
although FSD-Inf-Object costs grow more quickly with in-
creasing worker parallelism than those of FSD-Inf-Queue. As
per Section IV, this behaviour is expected when parallelism
increases while data volumes are low.

We also observe that Sage-SL-Inf is outperformed by FSD-
Inf-Serial for all model sizes. It should also be noted that Sage-
SL-Inf was only able to perform inference with 8,000, 2,500
and 1,000 samples for N = 1024, 4096, 16384, respectively.

For N = 16384, increasing parallelism yields improvements
in performance up to ∼ 20 workers (FSD-Inf-Object) and ∼ 40
workers (FSD-Inf-Queue), but beyond that, a slow degradation
is seen. For these optimal parallelism levels, costs are similar
between the FSD-Inference variants. For this N , parallel



TABLE II
END-TO-END PER-SAMPLE RUNTIME (MS) OF OPTIMAL PARALLEL
FSD-INFERENCE VARIANT, FSD-INF-SERIAL AND SAGE-SL-INF

N FSD-Inf-Parallel FSD-Inf-Serial Sage-SL-Inf
1024 6.43 2.00 2.26*
4096 8.22 7.88 10.06*

16384 12.97 32.62 37.07*
65536 23.53 - -

configurations significantly outperform FSD-Inf-Serial.
For N = 65536, performance consistently improves as

parallelism approaches P = 60. At this level of parallelism,
FSD-Inf-Queue costs are far lower than those of FSD-Inf-
Object. Experiments with P > 60 then show a slow decline in
performance with increasing cost (not shown). Neither Sage-
SL-Inf nor FSD-Inf-Serial were able to perform inference with
this model, due to exceeding FaaS memory limits. FSD-Inf-
Queue was also unable to run within the maximum FaaS
runtime for P = 8, as the extreme communication volume
saturated the small number of pub-sub/queueing resources.

1) Discussion: We observe that FSD-Inf-Object costs in-
crease linearly with worker parallelism P , and are largely
independent of N . As shown in Section IV-A2, current object
storage pricing models charge only based on the number of
requests, and not on the volume of data transferred. On the
contrary, FSD-Inf-Queue costs grow much more slowly with
P for a given N , due to ≈ 1 OOM cheaper API requests.
For smaller N (1024, 4096, 16384), the compressed x̄k−1

mn

is handled by a small number of publishes. However, for
N > 16384, multiple publishes are increasingly required
for each target at each layer, explaining the higher costs for
these workloads (although, costs grow slowly with P even at
N = 65536). These findings reinforce our recommendations
in Section IV-C; FSD-Inf-Serial is the most performant and
cost-effective solution for small models (N = 1024, 4096),
while FSD-Inf-Queue offers an competitive performance for
moderately-sized models (N = 16384), as well as a favourable
cost profile for increasing parallelism. Finally, FSD-Inf-Object
is the leading approach for large models (N = 65536). As
further work, these findings (with our cost model) could enable
automatic runtime selection of the optimal configuration for
specific workloads, given latency and cost priorities.

E. Hypergraph Partitioning Performance

In Table III, we compare the performance of our hypergraph
partitioning scheme (HGP-DNN) against RP, the PaToH [70]
random partitioning scheme, for N = 16384, P = 42. Using
HGP-DNN we achieve a reduction in overall data volume sent
between parallel FaaS instances of almost 1 OOM, as well as
a significant improvement in per-sample runtime.

F. Cost Model Validation

To validate our cost model, we programmatically capture
fine-grained metrics (51 per-layer and 26 per-batch), and
use them to calculate our predicted costs. We capture actual

TABLE III
FSD-INF-OBJECT COMMUNICATION VOLUMES UNDER HGP-DNN AND
RANDOM PARTITIONING (RP). EVALUATED WITH N = 16384, P = 42

Partitioning
Scheme

Data Volume
Sent (Bytes)

NNZ Sent Per
Target

Per-Sample
Runtime (ms)

HGP-DNN 3,895,079,200 17,888 11.78
RP 36,374,240,000 86,020 27.90

charges via detailed AWS Cost and Usage reports. We filter
the reports to include only relevant items (i.e., communica-
tion/Lambda invocation and runtime/data transfer) in the ap-
propriate time window, sum the charges, and compare against
predicted costs. As an example, we consider N = 16384,
P = 20 (10000 samples). FSD-Inf-Queue: Pred. (Comp.
$0.10, Comms. $0.25, Total $0.35), Actual (Comp. $0.10,
Comms. $0.25, Total $0.35). FSD-Inf-Object: Pred. (Comp.
$0.09, Comms. $0.28, Total $0.37), Actual (Comp. $0.09,
Comms. $0.28, Total $0.37). Note that we ran all experiments
in a dedicated AWS account, to ensure no extraneous activity.
We confirmed that the real AWS costs incurred for each
configuration matched those predicted by the model.

VII. CONCLUSION

In this work, we present FSD-Inference, the first fully
serverless and highly scalable system for distributed ML
inference. We demonstrate the suitability of fully serverless
compute and communication offerings for distributed ML.
We offer recommendations for designing high throughput/low
latency serverless inference solutions, supported by a formal-
ized and validated cost model. We introduce optimizations
to address scalability and performance challenges associated
with distributed inference. We perform a rigorous experimental
evaluation of FSD-Inference and compare it with several
potential alternative cloud and server-based approaches, anal-
ogous to popular ML inference solutions. We show that FSD-
Inference offers impressive cost-effectiveness and scalability,
achieving competitive performance even against optimized
HPC solutions. Further, we show that publish-subscribe and
queueing offerings can be adapted to offer an attractive cost
profile for increasing compute parallelism, and hence are a
viable alternative to object storage for FaaS inter-process com-
munication. Unlike provisioned systems, FSD-Inference can
dynamically scale up/down to accommodate varying model
sizes and sporadic inference settings. We further enhance the
performance of FSD-Inference using hypergraph partitioning.
This further reduces communication by almost 1 order-of-
magnitude when compared to alternatives, and achieves com-
putational load balance across parallel FaaS workers. The
combined model and data-parallelism enables FSD-Inference
to accommodate much larger ML workloads than would
otherwise be possible in the resource-constrained FaaS setting.

ACKNOWLEDGMENTS

This research is supported in part by the Feuer International
Scholarship in Artificial Intelligence.



REFERENCES

[1] D. Walker and J. Dongarra, “Mpi: A standard message passing inter-
face,” Supercomputer, vol. 12, 12 1995.

[2] Y. Wu, T. T. A. Dinh, G. Hu, M. Zhang, Y. M. Chee, and B. C.
Ooi, “Serverless data science - are we there yet? a case study of
model serving,” in Proceedings of the 2022 International Conference
on Management of Data, ser. SIGMOD ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1866–1875. [Online].
Available: https://doi.org/10.1145/3514221.3517905

[3] I. Müller, R. Marroquı́n, and G. Alonso, “Lambada: Interactive
data analytics on cold data using serverless cloud infrastructure,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 115–130. [Online].
Available: https://doi.org/10.1145/3318464.3389758

[4] Amazon. Aws lambda. Accessed: 2023-11-30. [Online]. Available:
https://aws.amazon.com/lambda/

[5] Google. Google cloud functions. Accessed: 2023-11-30. [Online].
Available: https://cloud.google.com/functions?hl=en

[6] Microsoft. Azure functions overview. Accessed: 2023-11-30. [Online].
Available: https://azure.microsoft.com/en-gb/products/functions

[7] M. Yu, Z. Jiang, H. C. Ng, W. Wang, R. Chen, and B. Li, “Gillis:
Serving large neural networks in serverless functions with automatic
model partitioning,” in 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), 2021, pp. 138–148.

[8] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “Amps-inf: Automatic model
partitioning for serverless inference with cost efficiency,” in Proceedings
of the 50th International Conference on Parallel Processing, ser. ICPP
’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3472456.3472501

[9] S. Park, J. Choi, and K. Lee, “All-you-can-inference: Serverless dnn
model inference suite,” in Proceedings of the Eighth International
Workshop on Serverless Computing, ser. WoSC ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 1–6. [Online].
Available: https://doi.org/10.1145/3565382.3565878

[10] A. Mishra. Machine learning in the aws cloud: Add intelligence
to applications with amazon sagemaker and amazon rekognition.
Accessed: 2023-11-30. [Online]. Available: https://docs.aws.amazon.co
m/sagemaker/latest/dg/serverless-endpoints.html

[11] Amazon. Aws serverless inference. Accessed: 2023-11-30. [Online].
Available: https://docs.aws.amazon.com/sagemaker/latest/dg/serverless
-endpoints.html

[12] G. V. Demirci and H. Ferhatosmanoglu, “Partitioning sparse deep neural
networks for scalable training and inference,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’21. ACM, Jun.
2021. [Online]. Available: http://dx.doi.org/10.1145/3447818.3460372

[13] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” ACM
Computing Surveys, vol. 53, no. 2, mar 2020. [Online]. Available:
https://doi.org/10.1145/3377454

[14] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” in Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’18. USA: USENIX Association, 2018, p.
561–577.

[15] Apache. Apache spark. Accessed: 2023-11-30. [Online]. Available:
https://spark.apache.org

[16] Kubeflow. Kserve. Accessed: 2023-11-30. [Online]. Available: https:
//www.kubeflow.org/docs/external-add-ons/kserve/kserve/

[17] Dask. Accessed: 2023-11-30. [Online]. Available: https://www.dask.org
[18] Horovod. Accessed: 2023-11-30. [Online]. Available: https://horovod.ai
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