Coverability in VASS Revisited: Improving Rackoff's Bound to Obtain Conditional Optimality

Marvin Künnemann RPTU Kaiserslautern-Landau Germany

Filip Mazowiecki University of Warsaw Poland

Lia Schütze Max Planck Institute for Software Systems Germany

Henry Sinclair-Banks University of Warwick United Kingdom

Saarland University and Max Planck Institute for Informatics Germany

ICALP'23: Track B Best Paper

12th July 2023

Heinz Nixdorf MuseumsForum, Paderborn, Germany

Never Negative Paths in Weighted Graphs

Never Negative Paths in Multi-Weighted Graphs

Question: from a can you reach g via a path that is *never negative on any component*?

Coverability in Vector Addition Systems with States

Coverability problem: from p can you reach q via a path that is never negative on any component?

Motivation

History and Complexity

Theorem: Coverability in VASS is EXPSPACE-hard.

[Lipton '76]

Theorem: Coverability in VASS is in EXPSPACE.

[Rackoff '78]

Charles Rackoff

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates (unary encoding).

History and Complexity

d is the dimension: number of components. n is the size: number of states plus the absolute values of all updates (unary encoding).

History and Complexity

Theorem: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space. [Lipton '76]

Idea: find instances only admitting $n^{2^{\Omega(d)}}$ length runs. "Lipton's construction"

Theorem: Coverability in VASS can be decided in $2^{\mathcal{O}(d \log d)} \cdot \log(n)$ -space. [Rackoff '78] **Idea:** argue that there are always $n^{2^{\mathcal{O}(d \log d)}}$ length runs. "Rackoff's bound"

Charles Rackoff

Ernst Mayr

Albert Meyer

Louis Rosier Hsu-Chun Yen

Refined via a multiparameter analysis.

[Rosier and Yen '85]

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates (unary encoding).

Contributions

Theorem: Assuming ETH, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

Theorem: Under the k-cycle hypothesis, coverability in VASS requires $n^{2-o(1)}$ -time, for d=2.

Theorem: Under the k-hyperclique hypothesis, coverability in *linearly bounded* VASS requires $n^{d-2-o(1)}$ -time.

Improving Rackoff's Upper Bound

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

[this paper]

Idea: Carefully use Rackoff's bounding technique with sharper counter value bounds.

Improving Rackoff's Upper Bound

Improving Rackoff's Upper Bound

Bounding the Length of Coverability Runs

Consider the shortest coverability run $\vec{u} \xrightarrow{\pi} \vec{w}$, where $\vec{w} \geq \vec{v}$.

Split π at first "non-thin" configuration: $\vec{u} \xrightarrow{\rho} \vec{x} \xrightarrow{\tau} \vec{w}$.

 ρ is the *thin part* of the run, its length is bounded by the number of thin configurations.

 $len(
ho) \leq d!(M_1 \cdot M_2 \cdot ... \cdot M_d)$

au is the *tail* of the run, at least one component had a large value at $ec{x}$, so can then be 'ignored'. $len(au) < M_d$

 $\mathit{len}(\pi) = \mathit{len}(
ho) + \mathit{len}(au) \leq 2 \cdot d! (M_1 \cdot M_2 \cdot ... \cdot M_d) \leq n^{2^{\mathcal{O}(d)}}$

Conditionally Optimal Time Bound

$$\implies$$
 Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time.

CONDITIONALLY OPTIMAL!

Theorem: Assuming ETH, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

[this paper]

Idea: Reduce the problem of finding a $k = 2^d$ -clique in a graph to coverability in VASS.

Coverability in VASS Revisited: Improving Rackoff's Bound to Obtain Conditional Optimality

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space.

 \implies Coverability in VASS can also be decided in $n^{2^{\mathcal{O}(d)}}$ -time.

Theorem: Assuming ETH, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

Open problem: Can coverability in VASS with d = 1 be decided in $o(n^2)$ -time?

Thank You!

Presented by Henry Sinclair-Banks, University of Warwick, UK ICALP'23 in Heinz Nixdorf MuseumsForum, Paderborn, Germany

11 / 11

[this paper]