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Never Negative Paths in Weighted Graphs
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Question: from a can you reach g via a path that is never negative ?
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Never Negative Paths in Multi-Weighted Graphs
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Question: from a can you reach g via a path that is never negative on any component ?
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Never Negative Paths in Multi-Weighted GraphsCoverability in Vector Addition Systems with States

Coverability in Vector Addition Systems with States
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Coverability problem: from p can you reach q via a path that is never negative on any component ?
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Motivation

Resource Management

town city

Road cost: (≠1L fuel, +2kWh battery)

Model of Concurrency

VASS are equivalent to Petri nets

Testing Safety

Positive instance of coverability

Some action sequence reaches a ‘bad’ state

System is unsafe!

∆
∆

Related Problems

Unboundedness

Reachability

Word problems for (commutative) semi-groups
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History and Complexity

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates.

(unary encoding)

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates (unary encoding).

[Lipton ’76]

Richard Lipton

Theorem: Coverability in VASS is EXPSPACE-hard.

Theorem: Coverability in VASS is in EXPSPACE. [Racko� ’78]

Charles Racko�

Theorem: Coverability in VASS requires 2�(d)
· log(n)-space.

Idea: find instances only admitting n2�(d)
length runs. “Lipton’s construction”

Theorem: Coverability in VASS can be decided in 2O(d log d)
· log(n)-space. [Racko� ’78]

Charles Racko�

Idea: argue that there are always n2O(d log d)
length runs. “Racko�’s bound”

Open Problem

[Mayr and Meyer ’82]Ernst Mayr Albert Meyer

Refined via a multiparameter

analysis.

[Rosier and Yen ’85]Louis Rosier Hsu-Chun Yen

Example of Long Coverability Runs
(1,0,0,0,0) (-2,1,0,0,0) (0, -2,1,0,0) (0,0, -2,1,0) (0,0,0, -2,1)

(0,0,0,0, -1)

d = 5

p q

◊1◊2◊4◊8◊16

Any coverability run from p to q has length 2�(d)
.
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Contributions
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.

=∆ Coverability in VASS can be decided in 2O(d)
· log(n)-space. OPTIMAL!

=∆ Coverability in VASS can be decided in n2O(d)
-time.

Theorem: Assuming ETH, coverability in VASS requires n2�(d)
-time.

CONDITIONALLY OPTIMAL!

Theorem: Under the k–cycle hypothesis, coverability in VASS requires n2≠o(1)
-time, for d = 2.

Theorem: Under the k–hyperclique hypothesis, coverability in linearly bounded VASS

requires nd≠2≠o(1)
-time.
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Improving Racko�’s Upper Bound
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs. [this paper]

Idea: Carefully use Racko�’s bounding technique with sharper counter value bounds.

Racko�’s bound

Counter 1
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Improved bound

Counter 1
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◊

d = 3
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Bounding the Length of Coverability Runs

M1

M2

M2

M1

ų

v̨

Consider the shortest coverability run ų
fi

æ w̨, where w̨ Ø v̨.

w̨

fi

Split fi at first “non-thin” configuration: ų
fl

æ x̨
·

æ w̨.

fl

·

x̨

fl is the thin part of the run, its length is bounded by the

number of thin configurations.

len(fl) Æ d!(M1 · M2 · ... · Md)

· is the tail of the run, at least one component had a

large value at x̨, so can then be ‘ignored’.

len(· ) Æ Md

len(fi) = len(fl) + len(· ) Æ 2 · d!(M1 · M2 · ... · Md) Æ n2O(d)
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Conditionally Optimal Time Bound

=∆ Coverability in VASS can be decided in n2O(d)
-time.

Theorem: Assuming ETH, coverability in VASS requires n2�(d)
-time. [this paper]

Exponential Time Hypothesis=
∆

There are no no(k)
-time algorithms for finding a k-clique in a graph.

Idea: Reduce the problem of finding a k = 2d
-clique in a graph to coverability in VASS.

CONDITIONALLY OPTIMAL!
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Coverability in VASS Revisited: Improving Racko�’s
Bound to Obtain Conditional Optimality

Theorem: Coverability in VASS is always witnessed by n2O(d)
length runs. [this paper]

=∆ Coverability in VASS can be decided in 2O(d)
· log(n)-space.

=∆ Coverability in VASS can also be decided in n2O(d)
-time.

Theorem: Assuming ETH, coverability in VASS requires n2�(d)
-time. [this paper]

Open problem: Can coverability in VASS with d = 1 be decided in o(n2)-time?

Thank You!
Presented by Henry Sinclair-Banks, University of Warwick, UK
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