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Never Negative Paths in Weighted Graphs

Question: from @ can you reach @ via a path that is never negative? YESI
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Never Negative Paths in Multi-Weighted Graphs
('2’2)
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sum= (4,5)

YES!
Question: from @ can you reach @ via a path that is never negative on any component ?
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Coverability in Vector Addition Systems with States

Coverability problem: from p can you reach q via a path that is never negative on any component 7
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Motivation
Resource Management Model of Concurrency

VASS are equivalent to Petri nets

Sy
&—0—3

Road cost: (—1L fuel, +2kWh battery)

Testing Safety Related Problems
Positive instance of coverability Unboundedness
J
Some action sequence reaches a ‘bad’ state Reachability
J
System is unsafe! Word problems for (commutative) semi-groups
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History and Complexity

Theorem: Coverability in VASS is EXPSPACE-hard.

Richard Lipton

Theorem: Coverability in VASS is in EXPSPACE.

i Z.

/),
Charles Rac

koff

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).
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History and Complexity

. Lipton '76]
Example of Long Coverability Runs

R

Richard Eip (170707070) ('231707070) (07'2717070) (0303'27170) (070707'271)
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Any coverability run from p to g has length 22().

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).
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History and Complexity
Theorem: Coverability in VASS requires 29 . log(n)-space. [Lipton '76]

. . . . Q(d) i“ - 7 - 124
Idea: find instances only admitting n? length runs. Lipton’s construction

Theorem: Coverability in VASS can be decided in 2€(¢1ogd) -log(n)-space. [Rackoff '78]

20(dlogd)
/% ldea: argue that there are always 10

length runs.  “Rackoff’s bound”
Charles Rackoff

Open Problem

g Refined via a multiparameter
25

N9 analysis.
__________________ Q y

[Mayr and Meyer '82] Loﬁis Rosier Hsu-Chun Yen [Rosier and Yen '85]

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).
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Contributions

o(d
Theorem: Coverability in VASS is always witnessed by n? (@

length runs.

— Coverability in VASS can be decided in 294 .1og(n)-space.| OPTIMAL!

—> Coverability in VASS can be decided in n?

O(d)

-time.

Theorem: Assuming ETH, coverability in VASS requires n?

CONDITIONALLY OPTIMAL!

Q(d)

-time.

Theorem: Under the k—cycle hypothesis, coverability in VASS requires n2~°(M)-time, for d = 2.

Theorem: Under the k—hyperclique hypothesis,

requires n%27°(1)_time.

Henry Sinclair-Banks

coverability in linearly bounded VASS
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Improving Rackoff’s Upper Bound

o
Theorem: Coverability in VASS is always witnessed by n? (@ length runs.

Idea: Carefully use Rackoff’'s bounding technique with sharper counter value bounds.

Counter 2

Rackoff's bound

.

Y

Counter 1
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Improved bound

X

/

Counter 2

Counter 1
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Improving Rackoff’s Upper Bound
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Improving Rackoff’s Upper Bound
Theori [this paper]

Idea:

| Counter 1
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Bounding the Length of Coverability Runs

— T —

Consider the shortest coverability run @ —> w0, where W > U.

Split 7r at first “non-thin” configuration: 4 N T} 4
JLY Py S—— ;

p is the thin part of the run, its length is bounded by the

number of thin configurations.

len(p) < d'(Mjy - My - ... - M)

7 is the tail of the run, at least one component had a

large value at &, so can then be ‘ignored".

len(T) < My

20(d)

len(w) = len(p) + len(7) < 2-d'(My-Ms-...- My) <N
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Conditionally Optimal Time Bound

— Coverability in VASS can be decided in 70

20(d)

-time.

Theorem: Assuming ETH, coverability in VASS requires n?

CONDITIONALLY OPTIMAL!

Q(d)

-time. [this paper]

Exponential Time Hypothesis

|

There are no n°)-time algorithms for finding a k-clique in a graph.

Idea: Reduce the problem of finding a k = 2%-clique in a graph to coverability in VASS.

Henry Sinclair-Banks
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Coverability in VASS Revisited: Improving Rackoff’s
Bound to Obtain Conditional Optimality

20(d)

Theorem: Coverability in VASS is always witnessed by T length runs. [this paper]

— Coverability in VASS can be decided in 294 .1og(n)-space.

20(d)

—> Coverability in VASS can also be decided in 1 -time.

Q(d
Theorem: Assuming ETH, coverability in VASS requires n? ( )-time. [this paper]

Open problem: Can coverability in VASS with d = 1 be decided in o(n?)-time?

Thank You!
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