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2-Dimensional Vector Addition System with States

a

b

c

d

e

f

g

(-7, 3)

(2, 0)
(3, 8)

(-2, 2)

(0, 1)

(5, 0)

(-6, 10)

(4, -5)

(1, -1)

(-4, -9) (-4, -9)

(-5, -20)

2-Dimensional VASS

Instance of Coverability in 2-Dimensional VASS

Question: from a can you reach g via a path that is never negative on any component ?

a

g

sum =
(0,0)

sum = (2,0)

sum = (5,8) sum = (3,10)

sum = (7,5)

(1, 10)

sum = (8,15)sum = (9,25)

YES!

sum = (4,5)
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Motivation

Resource Management

town city

Road cost: (≠1L fuel, +2kWh battery)

Model of Concurrency

VASS are equivalent to Petri nets

Testing Safety

Positive instance of coverability

Some action sequence reaches a ‘bad’ state

System is unsafe!

∆
∆

Related Problems

Unboundedness

Reachability

Word problems for (commutative) semi-groups
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Overview of this Presentation

1. The history and complexity of coverability.

2. Our improvement over Racko�’s upper bound.
Main concepts: introducing ‘thin configurations’ and using Racko� ’s bounding technique.

3. Obtaining an optimal space algorithm and a conditionally optimal time algorithm.

4. Our Exponential Time Hypothesis conditional lower bound.
Main concepts: reducing clique detection to coverability and simulating bounded counter machines.
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History and Complexity

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates.
(unary encoding)

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).

[Lipton ’76]

Richard Lipton

Theorem: Coverability in VASS is EXPSPACE-hard.

Theorem: Coverability in VASS is in EXPSPACE. [Racko� ’78]

Charles Racko�

Theorem: Coverability in VASS requires 2�(d)
· log(n) space.

Idea: find instances only admitting n2�(d)
length runs. “Lipton’s construction”

Theorem: Coverability in VASS can be decided in 2O(d log d)
· log(n) space. [Racko� ’78]

Charles Racko�
Idea: argue that there are always n2O(d log d)

length runs. “Racko�’s bound”

Open Problem

[Mayr and Meyer ’82]Ernst Mayr Albert Meyer

Refined via a multiparameter
analysis.

[Rosier and Yen ’85]Louis Rosier Hsu-Chun Yen

Example of Long Coverability Runs
(1,0,0,0,0) (-2,1,0,0,0) (0, -2,1,0,0) (0,0, -2,1,0) (0,0,0, -2,1)

(0,0,0,0, -1)

d = 5

p q

◊1◊2◊4◊8◊16

Any coverability run from p to q has length 2�(d).
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Vector Addition Systems with(out) States

d-VASS d-VAS

( Q, T )
Q is a finite set of states.

T ™ Q ◊ Zd
◊ Q are the transitions.

( V )

V ™ Zd is just a set of vectors.

Configurations are in Q ◊ Nd. Configurations are in Nd.

John
Hopcroft

Jean-Jacques
Pansiot

[Hopcroft and Pansiot ’79]Lemma: A d-VASS can be simulated by a (d + 3)-VAS.
Idea: maintain invariants containing information about the number of states and

the current state on three dedicated additional counters.

Takeaway: we will work with VAS because we do not fix the dimension.
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Improving Racko�’s Upper Bound
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Idea: Carefully use Racko�’s bounding technique with sharper counter value bounds.

Racko�’s bound

Counter 1

Co
un

te
r2

◊

Improved bound

Counter 1

Co
un

te
r2

◊

d = 3
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Thin Configurations

Definition: A configuration v̨ œ Nd is thin if, after sorting
the components, v̨[1] < M1, v̨[2] < M2, ..., v̨[d] < Md.

M1

M2

M2

M1

v̨

Importantly, to get an improvement over Racko�’s bound:
M1 << M2 << . . . << Md.

Precisely,
M1 = n · n40

, M2 = n · n41
, . . . , Md = n · n4d≠1.

How many thin configurations exist?

Æ d! · M1 · M2 · ... · Md

Æ d! · M1 · M2 · ... · Md = d! · (n · n40) · (n · n41) · . . . · (n · n4d≠1).
= d! · nd

· n
qd≠1

i=0 4i.
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Bounding the Length of Coverability Runs

M1

M2

M2

M1

ų v̨

Consider the shortest coverability run ų
fi

æ w̨, where w̨ Ø v̨.

w̨

fi

Split fi at first “non-thin” configuration: ų
fl

æ x̨
·

æ w̨.

fl

·

x̨

fl is the thin part of the run, its length is bounded by the
number of thin configurations.
Claim 1: len(fl) Æ d! · nd

· n
qd≠1

i=0 4i.
Proof idea: there cannot be any zero e�ect cycles in fi.

· is the tail of the run, at least one component had a
large value at x̨, so can then be ‘ignored’.
Claim 2: len(· ) Æ n4d≠1.
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Using Racko�’s Inductive Technique

M1

M2

M2

M1

v̨
w̨

·

x̨

Claim 2: len(· ) Æ n4d≠1. (Proof by induction on d)

Sort the components x̨[1] Æ x̨[2] Æ . . . Æ x̨[d].
There exists i œ {1, . . . , d} such that Mi Æ x̨[i].
Moreover, Mi = n · n4i≠1

Æ x̨[i] Æ . . . Æ x̨[d].

Example: x̨[1] < M1 but x̨[2] Ø M2.

Use induction, focussing just on the first i ≠ 1 components.
There is an alternative su�x · Õ with len(· Õ) Æ n4i≠1 and
(x[1], . . . , x[i ≠ 1]) · Õ

≠æ (y̨[1], . . . , y̨[i ≠ 1])
Ø (v̨[1], . . . , v̨[i ≠ 1]).

y̨

· Õ

We know that · Õ has at least ≠n · (len(· Õ) ≠ 1) e�ect on each
of the remaining components.

We know that · Õ has at least ≠n · (len(· Õ) ≠ 1) e�ect on each
of the remaining components. Fortunately, (n · n4i≠1

, . . . , n · n4i≠1) Æ (x̨[i], . . . , x̨[d]).

So, (x̨[i], . . . , x̨[d]) · Õ

≠æ (y̨[i], . . . , y̨[d])

n

n

v̨

So, (x̨[i], . . . , x̨[d]) · Õ

≠æ (y̨[i], . . . , y̨[d]) Ø (n, . . . , n)

So, (x̨[i], . . . , x̨[d]) · Õ

≠æ (y̨[i], . . . , y̨[d]) Ø (n, . . . , n) Ø (v̨[i], . . . , v̨[d]).

⇤
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Proof of Main Theorem
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Proof: Let fi be the shortest run witnessing coverability.

len(fi) = len(fl) + len(· )

Æ d! · nd
· n

qd≠1
i=0 4i + n4d≠1

(By Claim 1 and Claim 2)

Æ 2 · d! · nd
· n

qd≠1
i=0 4i

(when n Ø 2, 2 · d! · nd
Æ n2d )Æ n2d

· n
qd≠1

i=0 4i

(when d Ø 1, 2d + qd≠1
i=0 4i

Æ 4d )Æ n4d

= n22d = n2O(d).
⇤
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Algorithms for Coverability
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Corollary 1: Coverability in VASS can be decided in 2O(d)
· log(n) space.

Proof idea: Nondeterministically search through the configuration space, each configuration can be
expressed with 2O(d)

· log(n) bits.

OPTIMAL!

Corollary 2: Coverability in VASS can be decided in n2O(d)
time.

Proof idea: Deterministically search through the configuration space.

CONDITIONALLY OPTIMAL!
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Conditionally Optimal Time Bound
Corollary 2: Coverability in VASS can be decided in n2O(d)

time.

Theorem: Assuming the Exponential Time Hypothesis, coverability in VASS requires n2�(d)
time.

[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Conjecture (Exponential Time Hypothesis): 3-SAT with k-variables requires 2�(k) time.

=
∆

Detecting whether there is a k-clique in an n-vertex graph requires n�(k) time.

Detecting whether there is a k-clique in a k-partite n-vertex graph requires n�(k) time.
[Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia ’05]

[Chen, Huang, Kanj, and Xia ’06]

[Cygan, Fomin, Kowalik, Lokshtanov, Marx, Ma. Pilipczuk, and Mi. Pilipczuk ’15]

Idea: Reduce detecting a 2d-clique in a 2d-partite n-vertex directed graph to coverability.
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Bounded Two-Counter Machines
Idea: Reduce detecting a 2d-clique in a 2d-partite n-vertex directed graph to coverability.

First, reduce to coverability in a n2O(d)-bounded two-counter machine.

Then, simulate a n2O(d)-bounded two-counter machine using an O(n)-state O(d)-VASS.

An n2O(d)-bounded two-counter machine has two counters x, y œ {0, 1, . . . , n2O(d)
} that can be

added to ( x + = 2 ), subtracted from ( y ≠ = 3 ), and zero-tested ( x = ? 0 ).

1. LOOP (x ≠ = 1, y + = 1)
2. x = ? 0
3. LOOP (x + = 5, y ≠ = 1)
4. y = ? 0

Pre: x = x, y = 0

Post: x = x · 5, y = 0

x = ? 0 y = ? 0

x ≠ = 1
y + = 1

x + = 5
y ≠ = 1

MULTIPLY(x, 5)

1. LOOP (x ≠ = 8, y + = 1)
2. x = ? 0
3. LOOP (x + = 1, y ≠ = 1)
4. y = ? 0

Post: x = x ÷ 8, y = 0

x ≠ = 8
y + = 1

x + = 1
y ≠ = 1

DIVIDE(x, 8)
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Detecting Cliques using Divisibility Tests
Let (V1 fi V2 fi · · · fi Vk, E) be a k-partite n-vertex graph.

···

·
·
·

V1

V2

V3

Vi

Associate the first n primes with the verticies.

2

3

5

7
11

13

17

19

23
29

A candidate k-clique is represented by a product of k primes.

Example: c = 2 · 7 · 13 · . . . · 23.

2

7

13

23 To check if v represents a clique, use divisibility tests to
verify all nodes are adjacent.

Example: (2 · 7)|c ?Example: (2 · 7)|c ? (2 · 13)|c ?Example: (2 · 7)|c ? (2 · 13)|c ? (7 · 13)|c ?

Example: (2 · 7)|c ? (2 · 13)|c ? (7 · 13)|c ? . . .

(2 · 23)|c ?(2 · 23)|c ? (7 · 23)|c ?

(2 · 23)|c ? (7 · 23)|c ? (13 · 23)|c ?

There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk)There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E

There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E such that (p · q)| p1 · . . . · pk

There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E such that (p · q)| p1 · . . . · pk ≈∆ there exists a k-clique.
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Bounded Two-Counter Machine Implementation
There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E such that (p · q)| p1 · . . . · pk ≈∆ there exists a k-clique.

Guessing with Nondeterministic Branching

Pre: x = x

1. GUESS: c œ {1, 2, 3}

2. x + = c

Post: x = x + 1, or
x = x + 2, or
x = x + 3.

x + = 1

x + = 2

x + = 3

Part one: Guess a candidate clique.
Pre: x = 1, y = 0.

1. GUESS: p1 œ Primes(V1)
2. MULTIPLY(x, p1)

...
2k-1. GUESS: pk œ Primes(Vk)

2k. MULTIPLY(x, pk)
Post: x = p1 · . . . · pk, y = 0.

Part two: Check the candidate is a clique.
Pre: x = p1 · . . . · pk, y = 0.

1. GUESS: {p1, p2} œ (V1 ◊ V2) fl E

2. DIVIDE(x, p1 · p2)
3. MULTIPLY(x, p1 · p2)

...
<3k2. GUESS: {pk≠1, pk} œ (Vk≠1 ◊ Vk) fl E

<3k2. DIVIDE(x, pk≠1 · pk)
<3k2. MULTIPLY(x, pk≠1 · pk)

Post: x = p1 · . . . · pk, y = 0.
This two-counter program terminates

≈∆ there exists a k-clique.
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VASS can Simulate Bounded Two-Counter Machines

Counter bound of k-clique detecting two-counter machine: O(pk
max)Counter bound of k-clique detecting two-counter machine: O(pk
max) Æ O(nk log(n)k)

Counter bound of k-clique detecting two-counter machine: O(pk
max) Æ O(nk log(n)k) Æ O(n2k).

Size of k-clique detecting two-counter machine: O(n11) Æ poly(n).

Louis Rosier Hsu-Chun Yen [Rosier and Yen ’85]

Lemma: In poly(n) time, one can construct a O(log(k))-VASS that can
simulate an O(nk)-bounded O(1)-counter machine of poly(n) size.

If we set k = 2d, the poly(n)-size two-counter machine for detecting 2d-cliques is O(n2d)-bounded.

=∆ In poly(n) time, one can construct an O(d)-VASS for detecting 2d-cliques.

Remark: Here, termination is coverability.

“Can I get to the end of the program with any (at least zero) value on each of the counters?”
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Reducing to Coverability in VASS

Detecting 2d-cliques in an n-vertex graph requires n�(2d) time under the Exponential Time Hypothesis.

Via divisibilty tests of a product of primes encoding.

First, construct an instance of termination in a poly(n)-size O(n2d)-bounded two-counter machine.

Using Rosier and Yen’s simulation lemma.

Then, in poly(n) time, construct an instance of coverability in an O(d)-VASS.

Theorem: Assuming the Exponential Time Hypothesis, coverability in VASS requires n2�(d)
time.

[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]
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Coverability in VASS Revisited: Improving Racko�’s
Bound to Obtain Conditional Optimality

Theorem: Coverability in VASS is always witnessed by n2O(d)
length runs.

[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Corollary 1: Coverability in VASS can be decided in 2O(d)
· log(n) space. OPTIMAL!

Corollary 2: Coverability in VASS can be decided in n2O(d)
time.

Theorem: Assuming the Exponential Time Hypothesis, coverability in VASS requires n2�(d)
time.

[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

CONDITIONALLY OPTIMAL!

Thank You!
Presented by Henry Sinclair-Banks, University of Warwick, UK

Verification Seminar in IRIF, Paris, France
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