Coverability in 2-VASS with One Unary Counter

Filip Mazowiecki

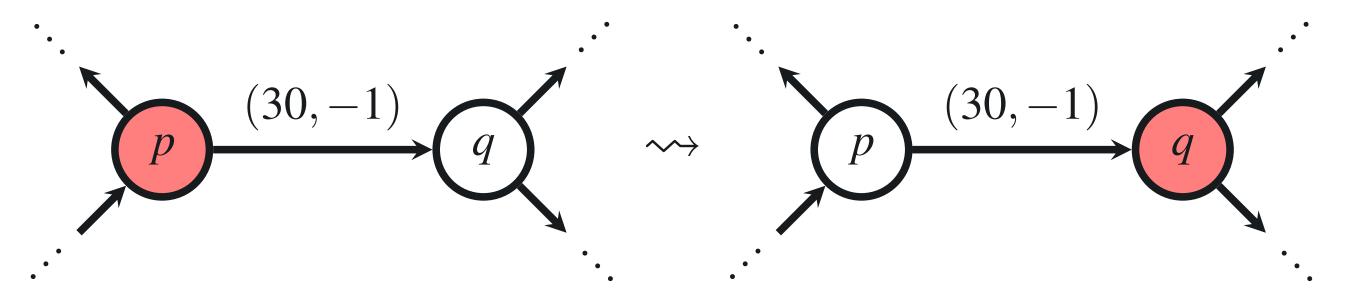
University of Warsaw, Poland

Henry Sinclair-Banks

- Saarland University & Max Planck Institute for Informatics, Saarbrücken, Germany

PROBLEM STATEMENT

Vector Addition Systems with States (2-VASS)



Configuration: $p(21,8) \in Q \times \mathbb{N}^2$ Configuration: $q(51,7) \in Q \times \mathbb{N}^2$

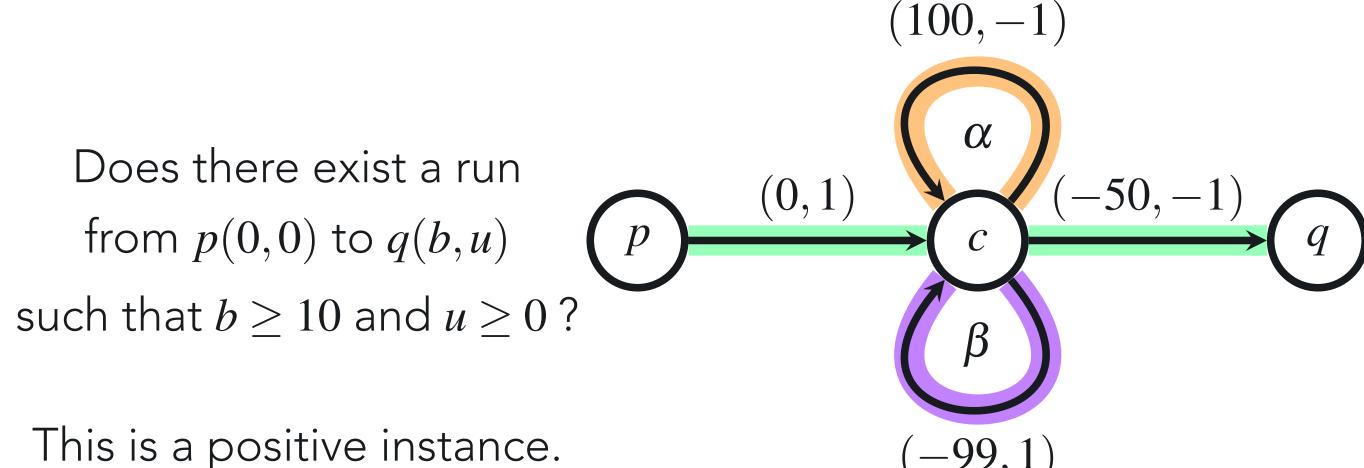
Given initial configuration $p(\mathbf{u})$ and target configuration $q(\mathbf{v})$...

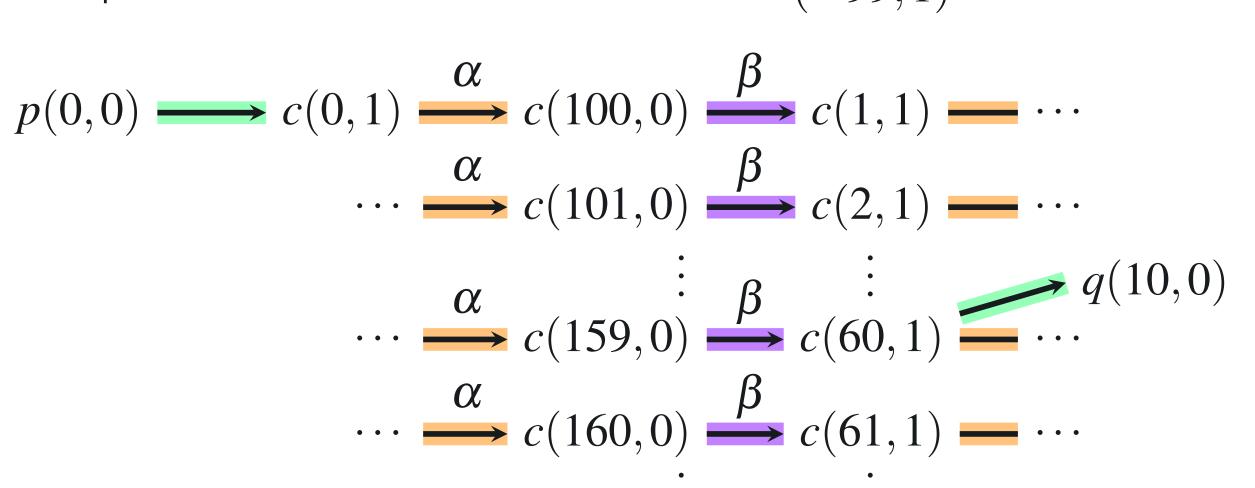
Reachability does there exist a run from $p(\mathbf{u})$ to $q(\mathbf{v})$?

Coverability does there exist a run from $p(\mathbf{u})$ to $q(\mathbf{v}')$ for some $\mathbf{v}' \geq \mathbf{v}$?

We consider the restricted variant 2-VASS with one unary counter, where one counter only receives unary updates $\{-1, 0, +1\}$.

COVERABILITY EXAMPLE





MOTIVATION

Similar Problems

The complexities of coverability in fixed, low dimension VASS:

	Unary counters	Binary counters
1-VASS	NL-complete [Valiant and Patterson '75] [Rosier and Yen '85]	NL-hard and in $NC^2 \subseteq P$ [Almagor, Boker, Hofman, and Totzke '20]
2-VASS	NL-complete [Englert, Lazić, and Totzke '16]	PSPACE-complete [Blondin, Finkel, Göller, Haase, and McKenzie '15]

Complexities of reachability coincide, except for 1-VASS with a binary counter that is NP-complete.

Related Work

1-VASS with a binary counter and a pushdown stack (1-PVASS):

- Coverability is decidable.
- [Leroux, Sutre, and Totzke '15]
- Reachability and coverability are PSPACE-hard.

[Englert, Hofman, Lasota, Lazić, Leroux, and Straszyński '21]

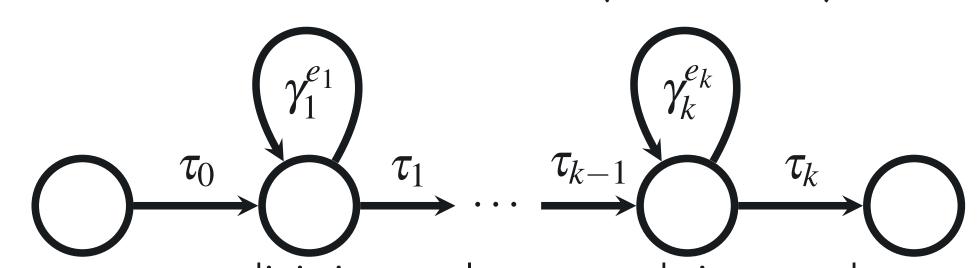
VASS where one counter can be zero tested (TVASS):

- Reachability is decidable.
- [Reinhardt '08], [Bonnet '11]
- Reachability in 2-TVASS is PSPACE-complete.

[Leroux and Sutre '20]

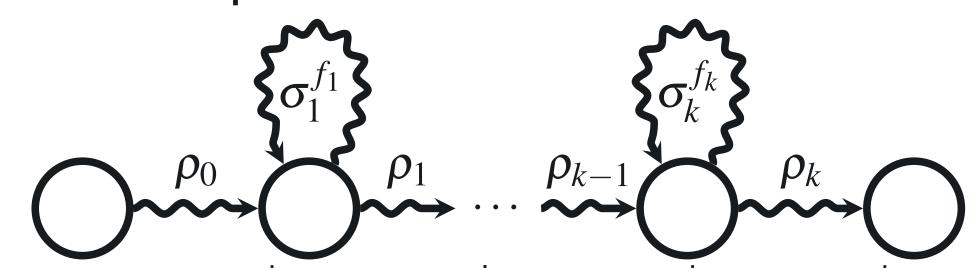
DEFINITIONS

Linear Form Paths (Standard)



The paths τ_i connect disjoint cycles γ_i , each iterated e_i many times.

Compressed Linear Form Paths



The paths ρ_i connect disjoint cycles σ_i , each iterated f_i many times. Each path and cycle is in linear form (hence compressed).

OUR CONTRIBUTION

Theorem: Suppose there exists a run from from $p(\mathbf{u})$ to $q(\mathbf{v})$ in a given 2-VASS with one unary counter, then there exists a compressed linear form path of polynomial size that induces a run from $p(\mathbf{u})$ to $q(\mathbf{v}')$ for some $\mathbf{v}' \ge \mathbf{v}$.

⇒ Coverability in 2-VASS with one unary counter is in NP.

PROOF APPROACH

There exists a polynomial size compressed linear form path:

- \bullet ρ , σ , and τ are linear form paths and cycles.
- ullet σ has positive and zero effect on the two counters.
- ullet f is large enough such that one counter becomes irrelevant.
- ullet au is a path for an instance of coverability with one counter.

