Simple Programs with NP-hard Termination

Henry Sinclair-Banks

About a part of ongoing work with Dmitry Chistikov, Wojciech Czerwiński, Łukasz Orlikowski, and Karol Węgrzycki.

Warwick Postgraduate Colloquium in Computer Science
Theory and Foundations
11th December 2023

Karol

- Non-negative integer counters.
- Integer additive updates.
- Non-deterministic (not nested) loops.

- Zero tests outside of loops.

Show me an example!

$x-=1, y+=1 \quad$ Precondition: $x=v, y=0$.
Postcondition: $x=5 v, y=0$.
Wojtek
We can Multiply!

Show me an example!

$x-=5, y+=1 \quad$ Precondition: $x=v, y=0$.
Postcondition: $x=5 v, y=0$.
$y=? 0$

Karol

INPUT: A program and initial values ($\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots$...). QUESTION: Can the program terminate?

In this example, suppose $v_{2}=0$, then the program terminates $\Leftrightarrow \mathrm{v}_{1}$ is divisible by 5 .

Importantly, everything is encoded in unary!
Instance size: sum of absolute values of all updates.

Suppose $\boldsymbol{\phi}$ contains n variables.
Associate the first n primes to the variables:
Dmitry $x_{1} \leftarrow p_{1}, x_{2} \leftarrow p_{2}, \ldots, x_{n} \leftarrow p_{n}$.

An assignment will be represented by $\boldsymbol{v} \in\left[0, \boldsymbol{p}_{\mathbf{1}} \cdot \boldsymbol{p}_{\mathbf{2}} \cdot \ldots \cdot \boldsymbol{p}_{\boldsymbol{n}}\right.$), where
$v \equiv \mathbf{0} \bmod \boldsymbol{p}_{i} \Leftrightarrow \boldsymbol{x}_{\boldsymbol{i}}=$ false, and
$v \equiv \mathbf{1} \bmod p_{i} \Leftrightarrow x_{i}=$ true.

Idea: 1/ Guess v (Chinese Remainder Theorem $\Rightarrow v$ exists for every assignment)
2/ Check v corresponds to an assignment.
3/ Check the evaluation under v 's assignment.

2/ Check v corresponds to an assignment.
Want to check: for each \boldsymbol{i}, either $\boldsymbol{v} \equiv \mathbf{0} \bmod \boldsymbol{p}_{\boldsymbol{i}}$ or $\boldsymbol{v} \equiv \mathbf{1} \bmod \boldsymbol{p}_{\boldsymbol{i}}$.
$\Rightarrow v \not \equiv 2 \bmod p_{i}, \quad v \not \equiv 3 \bmod p_{i}, \quad \ldots$, and $v \not \equiv\left(p_{i}-1\right) \bmod p_{i}$.
$\Rightarrow v-2 \neq 0 \bmod p_{i}, v-3 \not \equiv \mathbf{0} \bmod p_{i}, \ldots$, and $v-\left(\boldsymbol{p}_{i}-\mathbf{1}\right) \not \equiv \mathbf{0} \bmod \boldsymbol{p}_{i}$.
$\Rightarrow \boldsymbol{p}_{\boldsymbol{i}}$ does not divide $\boldsymbol{v}-\mathbf{2}$, and
$\boldsymbol{p}_{\boldsymbol{i}}$ does not divide $\boldsymbol{v}-\mathbf{3}$, and
..., and
$\boldsymbol{p}_{\boldsymbol{i}}$ does not divide $\boldsymbol{v}-\left(\boldsymbol{p}_{\boldsymbol{i}}-\mathbf{1}\right)$.

3/ Check the evaluation under v's assignment:
The only way to fail a clause ($x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}$) is to set:
$x_{1}=$ false, $x_{2}=$ true, and $x_{3}=$ true.
That means $v \equiv 0 \bmod p_{1}, v \equiv \mathbf{1} \bmod p_{2}$, and $v \equiv \mathbf{1} \bmod p_{3}$.
Precisely, $v \equiv \mathbf{0} \bmod 2, \quad v \equiv \mathbf{1} \bmod 3, \quad$ and $v \equiv \mathbf{1} \bmod 5$.
$\Rightarrow v \equiv 16 \bmod 30$.
So ($\boldsymbol{x}_{\mathbf{1}} \vee \overline{\boldsymbol{x}_{2}} \vee \overline{\boldsymbol{x}_{3}}$) is not satisfied if $\boldsymbol{v} \mathbf{- 1 6} \equiv \mathbf{0} \bmod \mathbf{3 0}$.
Therefore, this clause is satisfied if $\mathbf{3 0}$ does not divide $v=16$.
 implement 3-SAT using non-divisibility.
Initialisation:
$x=0, y=0$

Henry

2/ Check v represents an assignment:

2/ Check v represents an assignment:

3/ Check the evaluation under v 's assignment: Henry

Suppose clause $1=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)$, then try NON-DIV[x-16, 30] to test satisfaction.

The program terminates

Henry

We can replace the Zero-tests between loops with just one additional counter!

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes

Wojciech Czerwiński wczerwin@mimuw.edu.pl University of Warsaw Poland
ABSTRACT
We study the complexity of the reachability problem for Vector Ad-
dition Systems with States (VASSes) in fixed dimensions. We provide

Łukasz Orlikowski
lo418363@students.mimuw.edu.pl
University of Warsaw
Poland
and the most clear evidence for that is the existence of big com plexity gaps for the problem in small fixed dimensions. The promi nent example here is the dimension three with complexity gap
L.emma 2.5. l.et sre $\xrightarrow{f} \operatorname{trg}$ be a run of $a(d+1)$-VASS V and let src $=c_{0}, c_{1} \ldots \ldots c_{n-1}, c_{n}=\operatorname{trg}$ be some of the configurations on ρ. l.et ρ, for $\} \in[1, n]$ be the parts of the run ρ starting in $c_{,-1}$ and finishing in \mathfrak{c}, namely

$$
c_{0} \xrightarrow{P_{1}} c_{1} \xrightarrow{P_{2}} \ldots \xrightarrow{p_{n}} c_{n-1} \xrightarrow{p_{n}} c_{n} .
$$

l.et $S_{1} \ldots, S_{d} \subseteq[0, n]$ be the sets of indices of c_{c}, in which we want to zero-test counters numbered $1, \ldots$, d. respectively and let $N_{\jmath, 1}=$ $\left|\left\{k \geq j \mid k \in S_{1}\right\}\right|$ for $i \in[1, d], j \in[0, n]$ be the number of zero tests, which we want to perform on the i-th counter starting from configuration c , (in other words after the run ρ, for $j>0$). Then if:
(1) $\operatorname{src}[d+1]=\sum_{i=1}^{d} N_{0,1} \cdot \operatorname{src}[i]:$
(2) for each $j \in[1, n]$ we have eff $(\rho, d+1)=\sum_{i=1}^{d} N_{1,1} \cdot \operatorname{eff}\left(\rho_{1}, i\right)$
and
(3) $\operatorname{trg}[d+1]-0$
then for each $i \in[1, d]$ and for each $j \in S_{1}$ we have $c,[i]=0$.

Theorem: Termination for simple programs with two counters and zero-tests between loops is NP-hard.

Corollary: Termination for simple programs with three counters is NP-hard. (with no zero tests at all!)

Corollary: Termination for simple programs with three counters is NP-hard.

starring...

Dmitry as Dmitry

Henry
as Henry

Karol as Karol

Łukasz
as Łukasz

Wojciech as Wojtek

Thank you!

Presented by Henry Sinclair-Banks
Warwick Postgraduate Colloquium in Computer Science Winter 2023

