
Simple Programs with
NP-hard Termination

About a part of ongoing work with Dmitry Chistikov,
Wojciech Czerwiński, Łukasz Orlikowski, and Karol Węgrzycki.

Henry Sinclair-Banks

Warwick Postgraduate Colloquium in Computer Science
Theory and Foundations
11th December 2023

• Non-negative integer counters.

• Integer additive updates.

• Non-deterministic (not nested) loops.

• Zero tests outside of loops.

Karol

what simple programs
are we considering?

x += 5, y -= 1, z += 2 x += 5, y -= 1, z += 2

LOOP

y =? 0

x += 5, y -= 1, z += 2

LOOP

2/9

Wojtek

Show me an example!

LOOP

x -= 1, y += 1

LOOP

x =? 0

x += 5, y -= 1

y =? 0

Precondition: x = v, y = 0.

Postcondition: x = 5v, y = 0.

We can Multiply!

3/9

Wojtek

Show me an example!

LOOP

x -= 1, y += 1

LOOP

x =? 0

x += 5, y -= 1

y =? 0

Precondition: x = v, y = 0.

Postcondition: x = 5v, y = 0.

We can Multiply!

We can also Divide!

LOOP

x -= 5, y += 1

LOOP

x =? 0

x += 1, y -= 1

y =? 0

3/9

INPUT: A program and initial values (v1, v2, …).
QUESTION: Can the program terminate?

In this example, suppose v2 = 0, then
the program terminates ⟺ v1 is divisible by 5.

Importantly, everything is encoded in unary!
Instance size: sum of absolute values of all updates.

Karol

what is the termination
decision problem?

Initialisation:

 x = v1, y = v2

LOOP

x -= 5, y += 1

LOOP

x =? 0

x += 1, y -= 1

y =? 0

4/9

x -= 4

LOOP

x += 1, y -= 1

y =? 0

LOOP

x -= 5, y += 5

x =? 0

The program terminates
⟺

v is not divisible by 5.

Henry

we can test for
non-divisibility!

x = 23, y = 0

x += 1, y += 3

LOOP

x += 1, y -= 1

Initialisation:

 x = v, y = 0

5/9

x -= 4

LOOP

x += 1, y -= 1

y =? 0

LOOP

x -= 5, y += 5

x =? 0

The program terminates
⟺

v is not divisible by 5.

Henry

we can test for
non-divisibility!

Example: suppose v = 23.

x = 24, y = 3

x = 25, y = 2

x = 0, y = 27

x = 27, y = 0

x = 23, y = 0

x = 23, y = 0

x += 1, y += 3

LOOP

x += 1, y -= 1

Initialisation:

 x = v, y = 0x = 23, y = 0

NON-DIV[x, 5]

5/9

Dmitry

Suppose 𝝓 contains 𝒏 variables.

Associate the first 𝒏 primes to the variables:
 𝒙𝟏 ← 𝒑𝟏, 𝒙𝟐 ← 𝒑𝟐, …, 𝒙𝒏 ← 𝒑𝒏.

An assignment will be represented by 𝒗 ∈ 𝟎, 𝒑𝟏 ⋅ 𝒑𝟐 ⋅ … ⋅ 𝒑𝒏 , where
 𝒗 ≡ 𝟎	 mod	 𝒑𝒊 	 ⟺	 𝒙𝒊 =	 false, and
 𝒗 ≡ 𝟏	 mod	 𝒑𝒊 	 ⟺	 𝒙𝒊 =	 true.

Idea: 1/ Guess 𝒗 (Chinese Remainder Theorem ⇒ 𝒗 exists for every assignment)
 2/ Check 𝒗 corresponds to an assignment.
 3/ Check the evaluation under 𝒗’s assignment.

we can test 3-SAT using
conjunctions of non-divisibility tests!

6/9

Dmitry

2/ Check 𝒗 corresponds to an assignment.

Want to check: for each 𝒊, either 𝒗 ≡ 𝟎	 mod	 𝒑𝒊 or 𝒗 ≡ 𝟏	 mod	 𝒑𝒊.

⇒ 𝒗 ≢ 𝟐	 mod	 𝒑𝒊, 𝒗 ≢ 𝟑	 mod	 𝒑𝒊, …, and 𝒗 ≢ 𝒑𝒊 − 𝟏 	mod	 𝒑𝒊.

⇒ 𝒗 − 𝟐 ≢ 𝟎	 mod	 𝒑𝒊, 𝒗 − 𝟑 ≢ 𝟎	 mod	 𝒑𝒊, …, and 𝒗 − (𝒑𝒊 − 𝟏) ≢ 𝟎	mod	 𝒑𝒊.

⇒			𝒑𝒊 does not divide 𝒗 − 𝟐, and
⇒			𝒑𝒊 does not divide 𝒗 − 𝟑, and
 …, and
⇒			𝒑𝒊 does not divide 𝒗 − (𝒑𝒊 − 𝟏).

we can test 3-SAT using
conjunctions of non-divisibility tests!

6/9

Dmitry

3/ Check the evaluation under 𝒗’s assignment:

 The only way to fail a clause 	𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟑	 is to set:
 𝒙𝟏 =	 false, 𝒙𝟐 =	 true, and 𝒙𝟑 =	 true.

 That means 𝒗 ≡ 𝟎	 mod	 𝒑𝟏, 𝒗 ≡ 𝟏	 mod	 𝒑𝟐, and 𝒗 ≡ 𝟏	 mod	 𝒑𝟑.
 Precisely, 𝒗 ≡ 𝟎	 mod	 𝟐, 𝒗 ≡ 𝟏	 mod	 𝟑, and 𝒗 ≡ 𝟏	 mod	 𝟓.
 ⇒ 𝒗 ≡ 𝟏𝟔	 mod	 𝟑𝟎.

 So 	𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟑	 is not satisfied if 𝒗 − 𝟏𝟔 ≡ 𝟎	 mod	 𝟑𝟎.
 Therefore, this clause is satisfied if 𝟑𝟎 does not divide 𝒗 − 𝟏𝟔.

we can test 3-SAT using
conjunctions of non-divisibility tests!

6/9

Henry

we can use our simple programs to
implement 3-SAT using non-divisibility.

LOOP

x += 1

Initialisation:

 x = 0, y = 01/ Guess 𝒗 ∈ 𝟎, 𝒑𝟏 ⋅ 𝒑𝟐 ⋅ … ⋅ 𝒑𝒏 .

We will store 𝒗 on counter x.

7/9

Check 𝒗 represents
 an assignment

NON-DIV[x-2, 𝒑𝒏]

NON-DIV[x-3, 𝒑𝒏]

...

NON-DIV[x- (𝒑𝒏−𝟏), 𝒑𝒏]

. . .

Henry

we can use our simple programs to
implement 3-SAT using non-divisibility.

LOOP

x += 1

Initialisation:

 x = 0, y = 02/ Check 𝒗 represents an assignment:

NON-DIV[x-2, 𝒑𝟏]

NON-DIV[x-3, 𝒑𝟏]

...

NON-DIV[x- (𝒑𝟏−𝟏), 𝒑𝟏]

7/9

Check the evaluation
 under 𝒗’s assignment

Check 𝒗 represents
 an assignment

Henry

we can use our simple programs to
implement 3-SAT using non-divisibility.

LOOP

x += 1

Initialisation:

 x = 0, y = 03/ Check the evaluation under 𝒗’s assignment:

NON-DIV[x-𝟏𝟔, 𝟑𝟎]

NON-DIV[x- 𝒓𝟐, 𝒑𝒊 ⋅ 𝒑𝒋 ⋅ 𝒑𝒌]

NON-DIV[x- 𝒓𝒎, 𝒑𝒊(⋅ 𝒑𝒋(⋅ 𝒑𝒌(]

. . .

Clause 1:
Clause 2:

Clause 𝒎:

7/9

NON-DIV[x-𝟏𝟔, 𝟑𝟎]

Suppose clause 1 = 	𝑥$∨ 𝑥% ∨ 𝑥&	 , then try
to test satisfaction.

Check the evaluation
 under 𝒗’s assignment

Check 𝒗 represents
 an assignment

Henry

we can use our simple programs to
implement 3-SAT using non-divisibility.

LOOP

x += 1

Initialisation:

 x = 0, y = 0The program terminates
⟺

there exists 𝒗 that 𝒗 represents
an assignment that satisfies 𝝓

⟺
𝝓 is satisfiable.

Theorem: Termination for simple programs with two counters
 and zero-tests between loops is NP-hard.

7/9

Ł ukasz

we can replace the zero-tests between
loops with just one additional counter!

Theorem: Termination for simple programs with two counters
 and zero-tests between loops is NP-hard.

Corollary: Termination for simple programs with three counters is NP-hard.
 (with no zero tests at all!)

8/9

Thank you!
Presented by Henry Sinclair-Banks

Warwick Postgraduate Colloquium in Computer Science Winter 2023

Corollary: Termination for simple programs with three counters is NP-hard.

http://henry.sinclair-banks.com

Ł ukasz
as Ł ukasz

Henry
as Henry

Dmitry
as Dmitry

Karol
as Karol

starring…

9/9

Wojciech
as Wojtek

