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what silmple pro€rams
are We considering?

Karol L 00P

Non-negative integer counters. X+=5,y -=1, z += 2

Integer additive updates.

Non-deterministic (not nested) loops.

Zero tests outside of loops.
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Precondition: x
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Postcondition: x = 5v, y

We can Multiply!
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Show me an example!

Precondition: x
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Postcondition: x = 5v, y

We can Multiply!

We can also Divide!
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what ie the termination

decision proplem?

Karol

INPUT: A program and initial values (vi v, ..).
QUESTION: Can the program terminate?

In this example, suppose v, = 0, then
the program terminates < v; 1s divisible by 5.

Importantly, everything is encoded in unary!

Instance size: sum of absolute values of all updates.
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Initialisation:

We can test for
non-divieibility!

X=Vv,y=20

The program terminates
=

v 1s not divisible by 5.
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Initialisation:

We can test for
non-divieibility!

The program terminates
=

v 1s not divisible by 5. X =

NON-DIV[x, 5]

Example: suppose v = 23. X
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We can test SOAT using

conjunctions of non-divieibility tests!

Suppose ¢ contains n variables.

Associate the first n primes to the variables: -‘Dm'ltr'j.

X1 <P1s X2 P2y oy Xnp < Pn-

An assignment will be represented by ve|[0, p; -p2:..-p,), where
v=0 mod p; & x;= false, and
v=1 mod p; & x; = true.

Idea: 1/ Guess v (Chinese Remainder Theorem = v exists for every assignment)
2/ Check v corresponds to an assignment.
3/ Check the evaluation under v’s assignment.
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We can test SOAT using

conjuhctions of non-divisibility tests!

2/ Check v corresponds to an assignment.

Want to check: for each i, either v=0 mod p; or v=1 mod p;. Dmitry

= v Z 2 mod p;, v # 3 mod p;, ., and v # (p; — 1) mod p;.
> v—2%0 mod p;, v—3 %0 mod p;, .., and v— (p; — 1) £ 0 mod p;.

= p; does not divide v—-2, and
p; does not divide v—-3, and
.., and
p; does not divide v— (p;—1).
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We can test SOAT using

conjunctions of non-divieibility tests!

3/ Check the evaluation under v’s assignment:

The only way to fail a clause (x;VX;V¥x3) is to set: Dmitry
xq = false, x, = true, and x3 = true.

That means v=0 mod p;, v=1 mod p,, and v=1 mod ps3.
Precisely, v=0mod 2, v=1mod 3, and v=1 mod 5.
= v =16 mod 30.

So (x;vXx3;Vx3) 1S not satisfied 1f v—16 =0 mod 30.
Therefore, this clause 1s satisfied 1f 30 does not divide v -—16.
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We can use our silnple programs to
implement &-SAT using nonh-divisibility.

Initialisation:
1/ Guess vE[0, py P2 ... - Pn)- X=0,y=0

Henry
LOOP
We will store v on counter x.

X += 1
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We can use our silnple programs to
implement &-SAT using nonh-divisibility.

Initialisation:
2/ Check v represents an assignment: x=0,y=0

LOOP

X += 1

NON-DIV[x-2, p;]
NON-DIV[x-3, p,]

Check v represents
an assignment

NON-DIV[x- (p;—1), pi]

NON-DIV[x-2, p,]
NON-DIV[x-3, p,]

NON-DIV[X- (p,—1), p.l]
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We can use our silnple programs to
implement &-SAT using nonh-divisibility.

3/ Check the evaluation under v’s assignment:

Suppose clause 1 = (x;Vx;VXx3), then try
NON-DIV[x-16, 30] to test satisfaction.
Check v represents
an assignment
Clause 1: NON-DIV[x-16,

Clause 2: NONSDEVIXSra, n; X Check the evaluation
i under v’s assignment
Clause m: NON-DIV[X- 714, p;
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We can Use dur simple programs to
implement &-SAT using noh-divisibility.

The program terminates

Henry o

there exists v that v represents
an assignment that satisfies ¢

=

¢ 1s satisfiable.

Theorem: Termination for simple programs with two counters
and zero-tests between loops 1s NP-hard.

Check v represents

an assignment

Check the evaluation
under v’s assignment
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We can rePlace the Zero—tests betweeh

loope with just ohe additional counter!

LEMMA 25, Let src —— trg be arun of a(d + 1)-VASS V and let

SIC = €p.C1.....Cn-1.Cn = trg be some of the configurations on p.
R % 5 Let p, for j € [1,n] be the parts of the run p starting in c,—y and
Lower Bounds for the Reachability Problem in Fixed finishing in . namely
”m ” Dn -1 n
Dimensional VASSes G e S e e,
Let $y,....S4 G [0.n] be the sets of indices of ¢,. in which we want
Wojciech Czerwinski Eukasz Orlikowski to zero-test counters numbered 1, . . . . d. respectively and let N, | =
wezerwin@mimuw.edu.pl 10418363@students.mimuw.edu.pl Wk 2 j1ke S} forie[1.d]j € [0.n] be the number of zero-
Uni itv of Wi S Univers fW W tests, which we want to perform on the i-th counter starting from
mversn)ty Glanaisay UGS l)ty ahvvarsa configuration c, (in other words after the run p, for j > 0). Then if:
Poland Poland () sreld+ 1] = T4, Na - srelil:

ABSTRACT and the most clear evidence for that is the existence of big com- @ f"’;“c"f € [1.n] we haveeff(p,.d+1) = TiL| N,y efllp,. i)

We study the complexity of the reachability problem for Vector Ad- plexity gaps for the problem in small fixed dimensions. The promi- o ;’;[d e

dition Systems with States (VASSes) in fixed dimensions. We provide nent example here is the dimension three with complexity gap g

then for each i € [1.d) and for each j € S, we have c,[i] = 0.

Theorem: Termination for simple programs with two counters
and zero-tests between loops i1s NP-hard.

Corollary: Termination for simple programs with three counters is NP-hard.
(with no zero tests at all!)
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Corollary: Termination for simple programs with three counters is NP-hard.

gtarring...

Karo]
a8 Karo] a8 tukasz a8 Wajtek

Thank youl
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