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Never Negative Paths in Weighted Graphs
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Question: from a can you reach g via a path that is never negative ?

a

g

YES!

a b c e d g2 3 -2 4 -5

2 / 10



Never Negative Paths in Multi-Weighted Graphs
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Question: from a can you reach g via a path that is never negative on any component ?
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Never Negative Paths in Multi-Weighted GraphsCoverability in Vector Addition Systems with States

Coverability in Vector Addition Systems with States
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Coverability problem: from p can you reach q via a path that is never negative on any component ?

VASS =∆ dimension is not fixed d-VASS =∆ dimension d is fixed

Size of a transition is the absolute
value of its maximum weight.

Size of a VASS n is the number of
states plus sizes of all transitions.
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History of Coverability
Theorem: Coverability in VASS is EXPSPACE-hard. [Lipton ’76]

Theorem: Coverability in VASS is in EXPSPACE. [Racko� ’78]

“Lipton’s construction”: there are instances only admitting n2�(d)
length runs.

=∆ Coverability in VASS requires 2�(d) · log(n)-space.

“Racko�’s bounding technique”: argue (inductively) that there are always n2O(d log d)
length runs.

=∆ Coverability in VASS can be decided in 2O(d log d) · log(n)-space.
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Vector Addition Systems (without states)

Theorem: States and transitions can be simulated by 3 non-negative counters. [Hopcroft and Pansiot ’79]

1 2

3 4 5

Fix k = 6, one more than the number of states.

( x, y, z )

state number
system information and state number

temporary work

Precondition
x Ω 2, y Ω k(k ≠ 2), z Ω 0

Postcondition
x Ω 4, y Ω k(k ≠ 4), z Ω 0

three steps
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Motivation to Revisit Coverability

WORD PROBLEMS FOR SEMIGROUPS 325 

-the uniform word problem for commutative semigroups and the 
membership problem for polynomials ideals over the rationals. These 
examples illustrate the significance of questions about the computational 
complexity of algebraic problems and reveal that methods are available to 
provide robust answers to such questions. Experience in mathematical logic 
and automata theory 19, 291 suggests that wherever effective decidability is 
of interest, analysis of computational complexity can provide further fruitful 
information. We expect this to be the case also in subsequent studies of 
algebraic decision problems. We close by listing a few open problems related 
to the results presented above. 

1. What is the computational complexity of PI? The reduction of CSG 
to PI implies that PI is exponential space hard, but the best upper bound on 
the complexity appears to be double exponential or more. 

2. Let .?[a] =def (/I; a =/I(Y)}, w h ere .Y is a commutative semigroup 
presentation. Results of 12, 421 imply that it is decidable whether 
,< [a, ] c. Y? [a?], What is the complexity of this containment problem? 

Vector replacement systems (VRSs), also known as Petri nets of 
commutative semi-Thue systems, were described in Section 2. 

For any VRS Y”, let 7 ‘[a] =der (/?;p is derivable from u in 7 ‘}. 

3. In 135 ] it has been shown that the VRS covering problem, to decide 
given (a, /3,7 ‘) whether /?r E 7 .[ a] for some word y, is decidable in space 
c~““~“. Our reduction of ESC to CSG implies a lower bound of space d” for 
some d > 1. (This lower bound was originally obtained by Lipton 1241.) 
Improve these bounds. 

4. In [ 281 it has recently been shown that the VRS reachability problem, 
to decide whether p E iy ‘[a], is decidable, but the decision procedure is not 
primitive recursive (261. What is the computational complexity of the 
reachability problem? 

5. Another natural problem about finitely presented commutative 
semigroups is whether two presentations define isomorphic semigroups. This 
problem is not even known to be decidable 1431. 

APPENDIX: DEGREE BOUNDS FOR SOLUTIONS OF 
LINEAR EQUATIONS OVER Q[x,,...,x~,] 

Let 

+ fijgj=bi, 
,‘T, 

i = l,..., t, 

[Mayr and Meyer ’82]

[Racko� ’78]

Coverability in VAS can be decided
in 2O(d log d) · log(n)-space.

Coverability in bidirected VAS
requires 2�(d) · log(n)-space.

[Lipton ’76]

[Rosier and Yen ’85]

**later refined by multiparameter analysis.

** **

YES!
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Improving Racko�’s Space Upper Bound
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and WÍgrzycki ’23]

Main idea is to carefully use “Racko�’s bounding technique” with sharper counter value bounds.

Racko�’s bound

Counter 1

Co
un

te
r2

◊

Improved bound

Counter 1

Co
un

te
r2 ◊

=∆ Coverability in VASS can be decided in 2O(d) · log(n)-space. OPTIMAL!

=∆ Coverability in VASS can be decided in n2O(d)
-time.
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Conditionally Optimal Time Bound
=∆ Coverability in VASS can be decided in n2O(d)

-time.

Theorem: Assuming the Exponential Time Hypothesis, there are no n2o(d)
-time algorithms for

coverability in VASS. [Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and WÍgrzycki ’23]

Exponential Time Hypothesis =∆ there are no no(k)-time algorithms for finding a k-clique in a graph.

Main idea is to reduce the problem of finding a k = 2d-clique in a graph to coverability in O(d)-VASS.

=∆ Coverability in VASS conditionally requires n2�(d)
-time.

CONDITIONALLY OPTIMAL!
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Conclusion
1976: Coverability in VASS requires 2�(d) · log(n)-space**.

1978: Coverability in VASS can be decided in 2O(d log d) · log(n)-space**.

1985: **Refined by multiparameter analysis of coverability in VASS.

2023: Coverability in VASS can be decided in 2O(d) · log(n)-space and can be decided in n2O(d)
-time.

2023: Coverability in VASS requires n2�(d)
-time, under the Exponential Time Hypothesis.

Thank You!
Presented by Henry Sinclair-Banks
Warwick FoCS Theory Day 2023
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