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2-Dimensional Vector Addition System with States
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(2, 0)
(3, 8)
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(5, 0)
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(1, -1)

(-4, -9) (-4, -9)

(-5, -20)

2-Dimensional VASSReachability in 2-Dimensional VASS

Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?

(the counters must remain nonnegative at all times)

a

g

sum =
(0,0)

sum = (2,0)

sum = (5,8) sum = (3,10)

sum = (7,5)

(1, 10)

sum = (8,15)sum = (9,25)

YES!

sum = (4,5)
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Reachability in VASS

a

b

c

d

e

f

g

(-7, 3, ...)
(2, 0, ...)

(3, 8, ...)

(-2, 2, ...)

(0, 1, ...)

(5, 0, ...)

(-6, 10, ...)

(4, -5, ...)

(1, -1, ...)

(-4, -9, ...) (-4, -9, ...)

(-5, -20, ...)

Reachability problem: does there exist a run from p(u) to q(v) ?

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 3 / 11



Reachability in VASS

a

b

c

d

e

f

g

(-7, 3, ...)
(2, 0, ...)

(3, 8, ...)

(-2, 2, ...)

(0, 1, ...)

(5, 0, ...)

(-6, 10, ...)

(4, -5, ...)

(1, -1, ...)

(-4, -9, ...) (-4, -9, ...)

(-5, -20, ...)

Reachability problem: does there exist a run from p(u) to q(v) ?

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 3 / 11



Flat VASS

Definition (Flat). For every state q œ Q, there is at most one simple cycle that contains q.

p

q

r

s

t

a d f

b c

e

Flat :)

Not flat :(

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén ’97]
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen ’85]

Proof sketch. Let ({x1, . . . , xn}, t) be an instance of subset sum (with multiplicities).

q1

+x1

q2

+x2

q3

+x3

· · · qn

+xn

+0 +0 +0 +0

There exist k1, . . . , kn such that t = �ki · xi if and only if there is a run from q1(0) to qn(t).

What is the complexity of reachability in unary flat VASS?
[Blondin, Finkel, Göller, Haase, and McKenzie ’15]

[Englert, LaziÊ, and Totzke ’16]
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Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding

1 NP-complete
[Rosier and Yen ’85]

2 NP-complete

··
·

NL-complete
[Valiant and Paterson ’73]

NL-complete
[Englert, LaziÊ, and Totzke ’16]

7 NP-complete
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

5 NP-complete
[Dubiak ’20]

6 NP-complete

4 NP-complete
[CzerwiÒski and Orlikowski ’22]

3 NP-complete
This presentation!

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11



Flat VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS). A Simple LPS has cycles of length one (“self-loops”).

For d Ø 3, is reachability in unary d-dimensional linear path schemes in P?
[Englert, LaziÊ, and Totzke ’16]

[Leroux ’21]
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Main Contribution

Theorem. Reachability in unary 3-SLPS is NP-complete.
Proof approach. Reduce from 3-SAT. Suppose Ï has k variables (x1, . . . , xk) and m clauses.

1) Use “Chinese remainder encoding” for SAT.
- Let p1, . . . , pk be the first k primes.
- Let n œ N such that n © 0 mod pi ≈∆ xi is false and n © 1 mod pi ≈∆ xi is true.

2) Use a conjunction of non-divisibility tests to verify that n represents a valid assignment.
- To verify that n © 0 mod pi OR n © 1 mod pi, check pi | n OR pi | n ≠ 1.
- Instead, check pi ” | n ≠ 2 AND pi ” | n ≠ 3 AND · · · AND pi ” | n ≠ (pi ≠ 1).

3) Again, use a conjunction of non-divisibility tests to verify that n represents a satisfying assignment.
- A clause x1 ‚ ¬x2 ‚ x3 is satisfied if n © 1 mod 2 OR n © 0 mod 3 OR n © 1 mod 5.
- Instead, check 2 · 3 · 5 ” | n ≠ 10.
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Non-Divisibility Testing Simple Linear Path Schemes

Suppose we want to perform a non-divisibility test v ” | 7.

Let’s construct a 2-SLPS with zero tests that:
- starts with x = v, y = 0,
- can only be passed if v ” | 7, and
- ends with x = v, y = 0.

(+1, +5)

zero-test( x )

zero-test( y )

(+6, 0)

(+1, ≠1)

(≠7, +7)

(+1, ≠1)(i) Choose r œ {1, 2, 3, 4, 5, 6} ...

(ii) ... such that 7 | v + r.

(iii) Restore x = v, y = 0.
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Simulating Zero Tests

[CzerwiÒski and Orlikowski ’21] [Chistikov, CzerwiÒski, Mazowiecki, Orlikowski, S., and WÍgrzycki ’24]

Takeway message: A “small” number of zero tests can be simulated by an additional counter.

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 9 / 11



Simulating Zero Tests

[CzerwiÒski and Orlikowski ’21] [Chistikov, CzerwiÒski, Mazowiecki, Orlikowski, S., and WÍgrzycki ’24]

Takeway message: A “small” number of zero tests can be simulated by an additional counter.

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 9 / 11



Simulating Zero Tests

[CzerwiÒski and Orlikowski ’21] [Chistikov, CzerwiÒski, Mazowiecki, Orlikowski, S., and WÍgrzycki ’24]

Takeway message: A “small” number of zero tests can be simulated by an additional counter.

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 9 / 11



Recap – Proof of Main Theorem

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.

- Obtain an equivalent conjunction of non-divisibility tests.

- For each non-divisibility test, construct the corresponding unary 2-SLPS with zero tests.

- Prepend a x +1 self-loop to allow the assignment value x = v to be guessed.

- Use the controlling counter technique to obtain unary 3-SLPS for the SAT instance.
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The Tractability Border of Reachability in

Simple Vector Addition Systems with States

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary ultraflat 4-VASS is NP-complete.

Theorem. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Thank You!
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