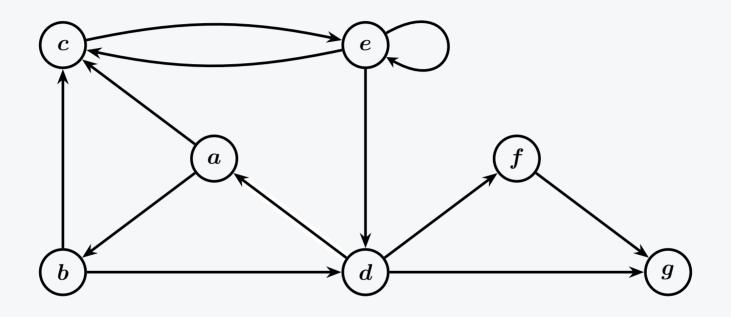
The Tractability Border of Reachability in Simple Vector Addition Systems with States

Henry Sinclair-Banks

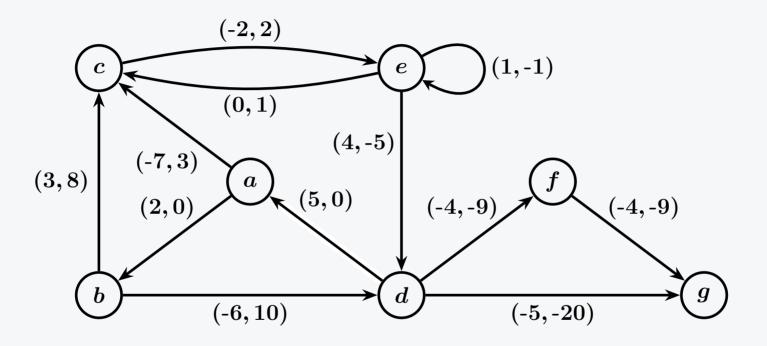
Based on work with Dmitry Chistikov, Wojciech Czerwiński, Filip Mazowiecki, Łukasz Orlikowski, and Karol Węgrzycki to appear in FOCS'24.

Algorithms & Complexity Seminar
27th August 2024
KIT, Karlsruhe, Germany

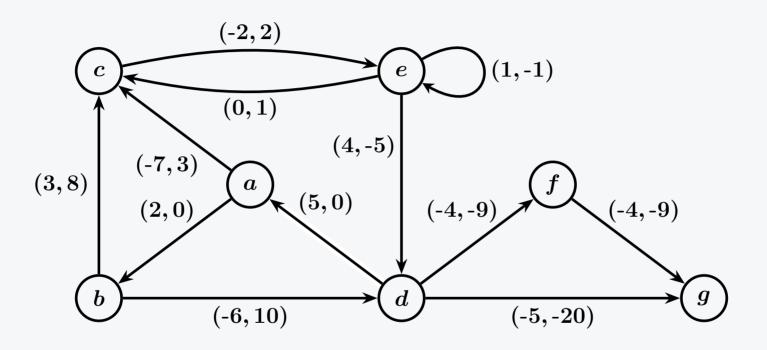
2-Dimensional Vector Addition System with States

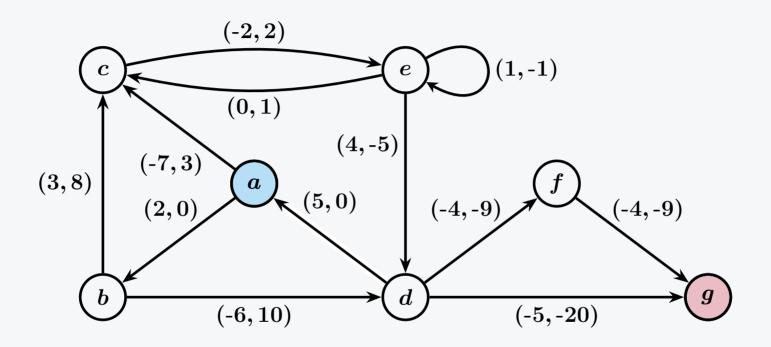


2-Dimensional Vector Addition System with States

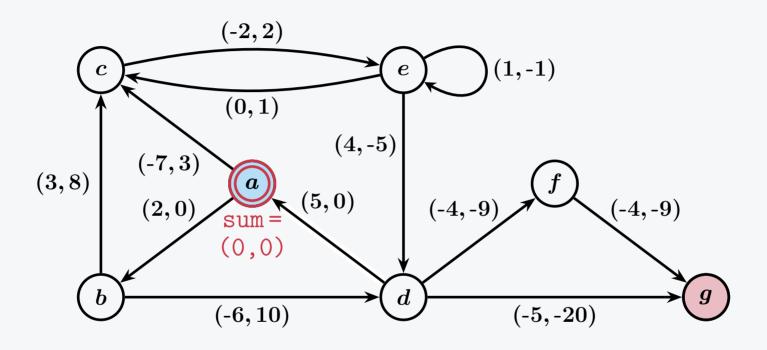


2-Dimensional VASS

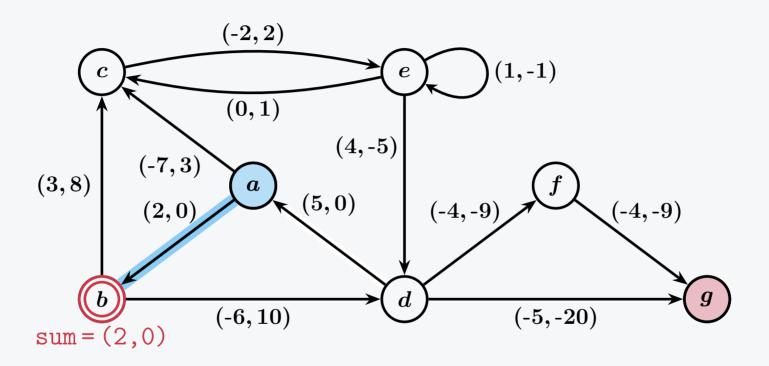




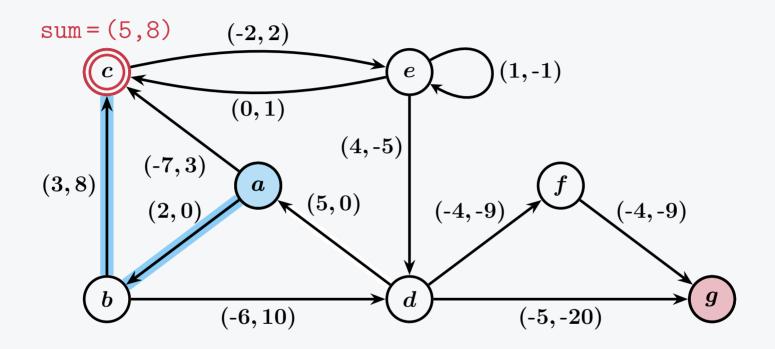
Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?



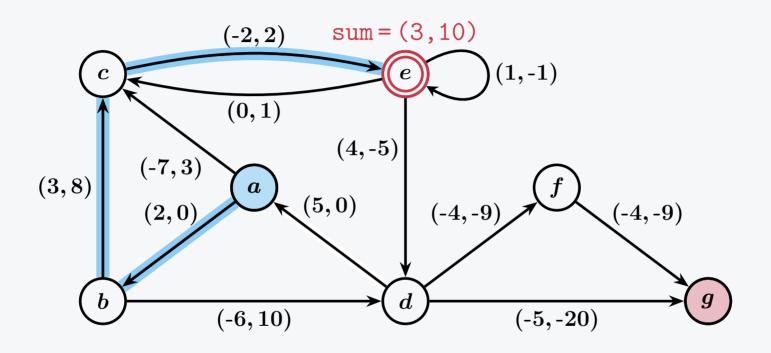
Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?



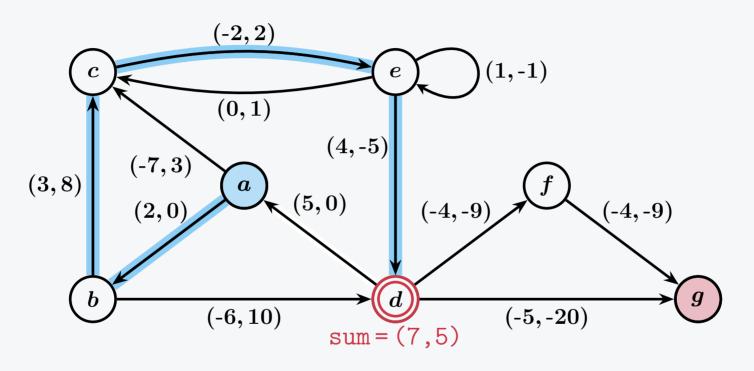
Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?



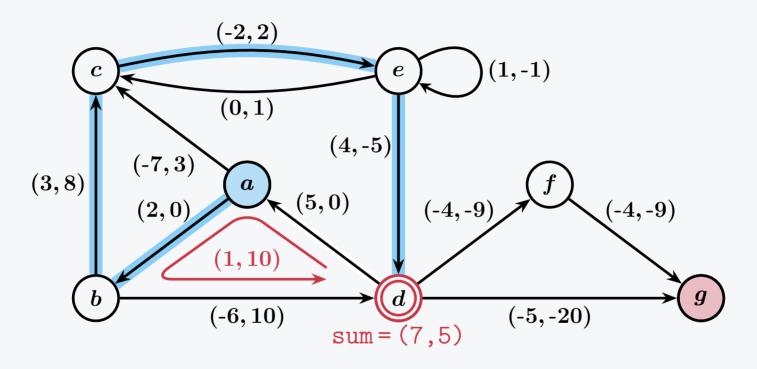
Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?



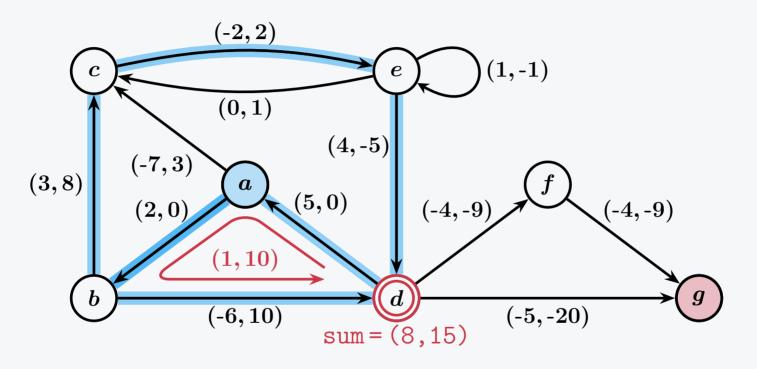
Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?



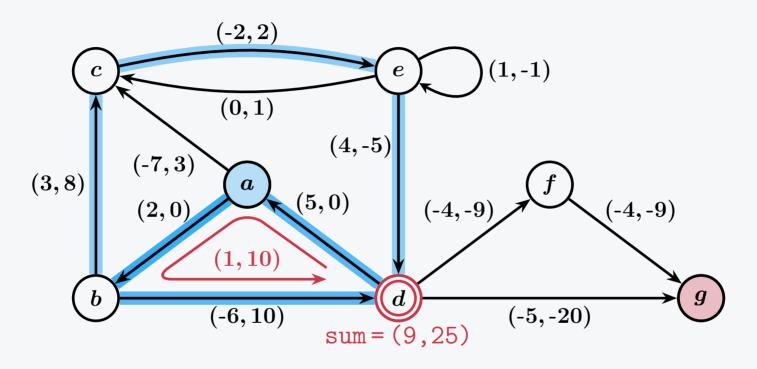
Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?



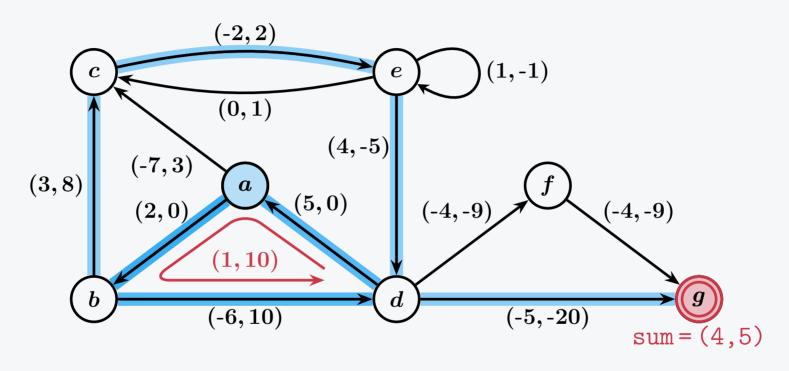
Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?



Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?

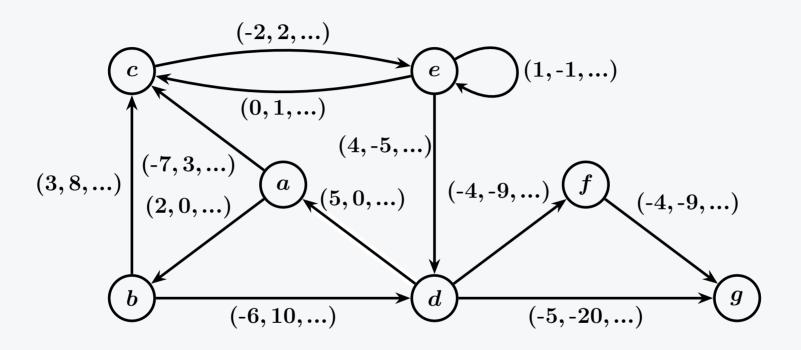


Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?

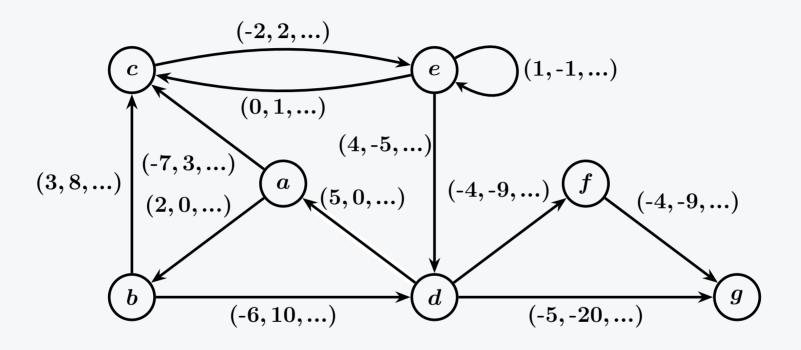


Does there exist a run from a with counter values (0,0) to g with counter values (4,5)?

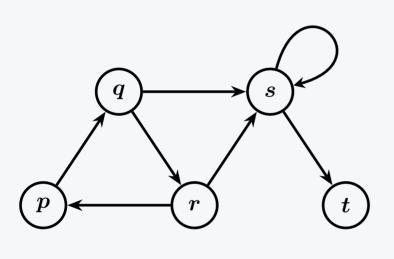
Reachability in VASS

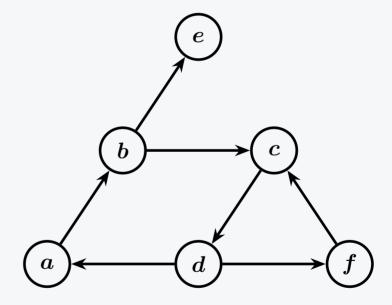


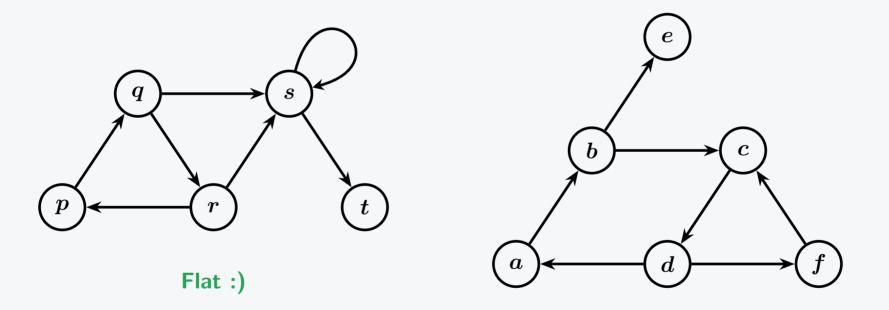
Reachability in VASS

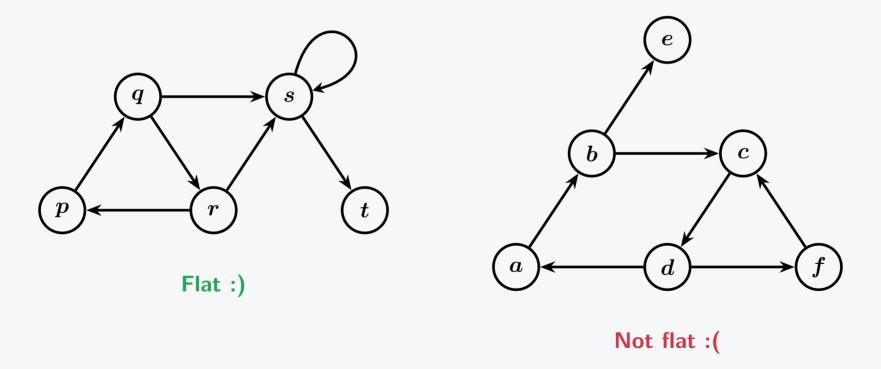


Reachability problem: does there exist a run from p(u) to q(v)?









Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

Proof sketch. Let $(\{x_1,\ldots,x_n\},t)$ be an instance of subset sum (with multiplicities).

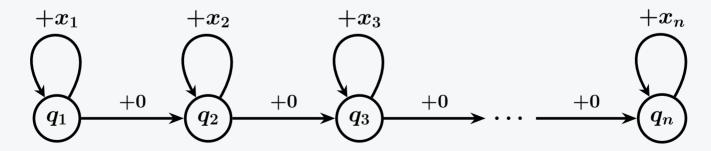
Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

Proof sketch. Let $(\{x_1,\ldots,x_n\},t)$ be an instance of subset sum (with multiplicities).



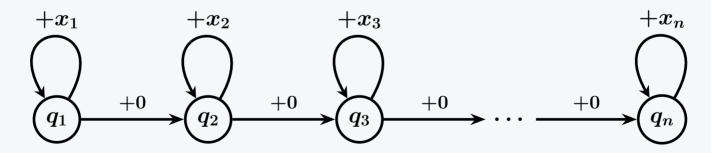
Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

Proof sketch. Let $(\{x_1,\ldots,x_n\},t)$ be an instance of subset sum (with multiplicities).



There exist k_1,\ldots,k_n such that $t=\Sigma k_i\cdot x_i$ if and only if there is a run from $q_1(0)$ to $q_n(t)$.

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

What is the complexity of reachability in unary flat VASS?

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

What is the complexity of reachability in unary flat VASS?

[Blondin, Finkel, Göller, Haase, and McKenzie '15]

[Englert, Lazić, and Totzke '16]

Binary encoding	Unary encoding
	Binary encoding

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	
2	NP-complete	

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	
2	NP-complete	
	: :	

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	NL-complete [Valiant and Paterson '73]
2	NP-complete	
	: :	

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	NL-complete [Valiant and Paterson '73]
2	NP-complete	NL-complete [Englert, Lazić, and Totzke '16]
	: :	

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	NL-complete [Valiant and Paterson '73]
2	NP-complete	NL-complete [Englert, Lazić, and Totzke '16]
	•	
	:	
		ND something
7	[Czerwiń	NP-complete ski, Lasota, Lazić, Leroux, and Mazowiecki '20]

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	NL-complete [Valiant and Paterson '73]
2	NP-complete	NL-complete [Englert, Lazić, and Totzke '16]
	•	
5	•	NP-complete
o o		[Dubiak '20]
7	[Czerwiń	NP-complete ski, Lasota, Lazić, Leroux, and Mazowiecki '20]

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	NL-complete [Valiant and Paterson '73]
2	NP-complete	NL-complete [Englert, Lazić, and Totzke '16]
	•	
	•	
5		NP-complete [Dubiak '20]
6		NP-complete
7	[Czerwiń	NP-complete ski, Lasota, Lazić, Leroux, and Mazowiecki '20]

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	NL-complete [Valiant and Paterson '73]
2	NP-complete	NL-complete [Englert, Lazić, and Totzke '16]
4	•	NP-complete [Czerwiński and Orlikowski '22]
5		NP-complete [Dubiak '20]
6		NP-complete
7	[Czerwiń	NP-complete ski, Lasota, Lazić, Leroux, and Mazowiecki '20]

Dimension	Binary encoding	Unary encoding
1	NP-complete [Rosier and Yen '85]	NL-complete [Valiant and Paterson '73]
2	NP-complete	NL-complete [Englert, Lazić, and Totzke '16]
3		NP-complete This presentation!
4	: :	NP-complete [Czerwiński and Orlikowski '22]
5		NP-complete [Dubiak '20]
6		NP-complete
7	[Czerwiń	NP-complete ski, Lasota, Lazić, Leroux, and Mazowiecki '20]

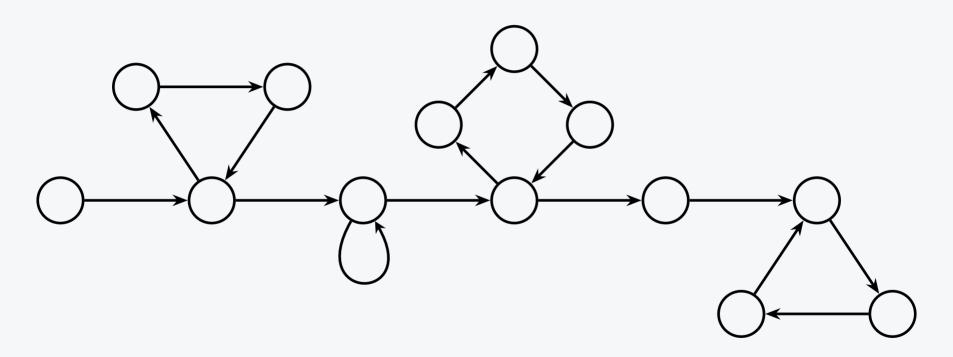
Elat VASS Linear Path Schemes

Elat VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Flat VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.



Elat VASS Linear Path Schemes

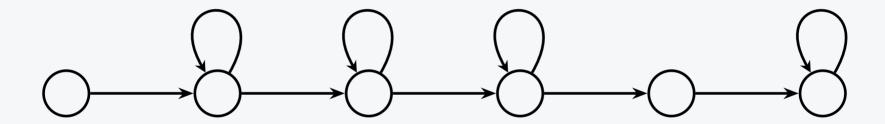
Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS). A *Simple* LPS has cycles of length one ("self-loops").

Elat VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

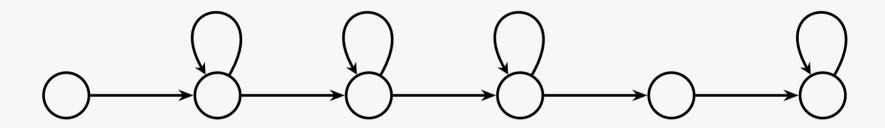
Definition (SLPS). A *Simple* LPS has cycles of length one ("self-loops").



Flat VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS). A *Simple* LPS has cycles of length one ("self-loops").



For $d \geq 3$, is reachability in unary d-dimensional linear path schemes in P?

[Englert, Lazić, and Totzke '16]

[Leroux '21]

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has k variables (x_1,\ldots,x_k) and m clauses.

1) Use "Chinese remainder encoding" for SAT.

Theorem. Reachability in unary 3-SLPS is NP-complete.

- 1) Use "Chinese remainder encoding" for SAT.
 - Let p_1, \ldots, p_k be the first k primes.
 - Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.

Theorem. Reachability in unary 3-SLPS is NP-complete.

- 1) Use "Chinese remainder encoding" for SAT.
 - Let p_1, \ldots, p_k be the first k primes.
 - Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.
- 2) Use a conjunction of non-divisibility tests to verify that n represents a valid assignment.

Theorem. Reachability in unary 3-SLPS is NP-complete.

- 1) Use "Chinese remainder encoding" for SAT.
 - Let p_1, \ldots, p_k be the first k primes.
 - Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.
- 2) Use a conjunction of non-divisibility tests to verify that n represents a valid assignment.
 - To verify that $n \equiv 0 mod p_i$ OR $n \equiv 1 mod p_i$, check $p_i \mid n$ OR $p_i \mid n-1$.

Theorem. Reachability in unary 3-SLPS is NP-complete.

- 1) Use "Chinese remainder encoding" for SAT.
 - Let p_1, \ldots, p_k be the first k primes.
 - Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.
- 2) Use a conjunction of non-divisibility tests to verify that n represents a valid assignment.
 - To verify that $n \equiv 0 mod p_i$ OR $n \equiv 1 mod p_i$, check $p_i \mid n$ OR $p_i \mid n-1$.
 - Instead, check $p_i \not\mid n-2$ AND $p_i \not\mid n-3$ AND \cdots AND $p_i \not\mid n-(p_i-1)$.

Theorem. Reachability in unary 3-SLPS is NP-complete.

- 1) Use "Chinese remainder encoding" for SAT.
 - Let p_1, \ldots, p_k be the first k primes.
 - Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.
- 2) Use a conjunction of non-divisibility tests to verify that n represents a valid assignment.
 - To verify that $n \equiv 0 mod p_i$ OR $n \equiv 1 mod p_i$, check $p_i \mid n$ OR $p_i \mid n-1$.
 - Instead, check $p_i \not\mid n-2$ AND $p_i \not\mid n-3$ AND \cdots AND $p_i \not\mid n-(p_i-1)$.
- 3) Again, use a conjunction of non-divisibility tests to verify that n represents a satisfying assignment.

Theorem. Reachability in unary 3-SLPS is NP-complete.

- 1) Use "Chinese remainder encoding" for SAT.
 - Let p_1, \ldots, p_k be the first k primes.
 - Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.
- 2) Use a conjunction of non-divisibility tests to verify that n represents a valid assignment.
 - To verify that $n \equiv 0 mod p_i$ OR $n \equiv 1 mod p_i$, check $p_i \mid n$ OR $p_i \mid n-1$.
 - Instead, check $p_i \not\mid n-2$ AND $p_i \not\mid n-3$ AND \cdots AND $p_i \not\mid n-(p_i-1)$.
- 3) Again, use a conjunction of non-divisibility tests to verify that n represents a satisfying assignment.
 - A clause $x_1 \vee \neg x_2 \vee x_3$ is satisfied if $n \equiv 1 \bmod 2$ OR $n \equiv 0 \bmod 3$ OR $n \equiv 1 \bmod 5$.

Theorem. Reachability in unary 3-SLPS is NP-complete.

- 1) Use "Chinese remainder encoding" for SAT.
 - Let p_1, \ldots, p_k be the first k primes.
 - Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.
- 2) Use a conjunction of non-divisibility tests to verify that n represents a valid assignment.
 - To verify that $n \equiv 0 \bmod p_i$ OR $n \equiv 1 \bmod p_i$, check $p_i \mid n$ OR $p_i \mid n-1$.
 - Instead, check $p_i \not\mid n-2$ AND $p_i \not\mid n-3$ AND \cdots AND $p_i \not\mid n-(p_i-1)$.
- 3) Again, use a conjunction of non-divisibility tests to verify that n represents a satisfying assignment.
 - A clause $x_1 \vee \neg x_2 \vee x_3$ is satisfied if $n \equiv 1 \bmod 2$ OR $n \equiv 0 \bmod 3$ OR $n \equiv 1 \bmod 5$.
 - Instead, check $2 \cdot 3 \cdot 5 \not\mid n-10$.

Theorem. Reachability in unary 3-SLPS is NP-complete.

- 1) Use "Chinese remainder encoding" for SAT.
 - Let p_1, \ldots, p_k be the first k primes.
 - Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.
- 2) Use a conjunction of non-divisibility tests to verify that n represents a valid assignment.
 - To verify that $n \equiv 0 mod p_i$ OR $n \equiv 1 mod p_i$, check $p_i \mid n$ OR $p_i \mid n-1$.
 - Instead, check $p_i
 mid n-2$ AND $p_i
 mid n-3$ AND \cdots AND $p_i
 mid n-(p_i-1)$.
- 3) Again, use a conjunction of non-divisibility tests to verify that n represents a satisfying assignment.
 - A clause $x_1 \vee \neg x_2 \vee x_3$ is satisfied if $n \equiv 1 \bmod 2$ OR $n \equiv 0 \bmod 3$ OR $n \equiv 1 \bmod 5$.
 - Instead, check $2 \cdot 3 \cdot 5 \not\mid n-10$.

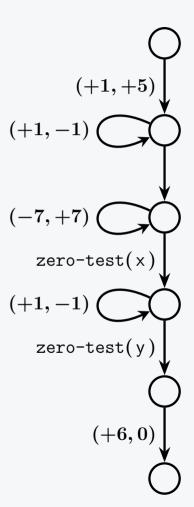
Suppose we want to perform a non-divisibility test $v \not \mid 7$.

Suppose we want to perform a non-divisibility test $v \not\mid 7$.

- starts with x = v, y = 0,
- can only be passed if $v \not\mid 7$, and
- ends with x = v, y = 0.

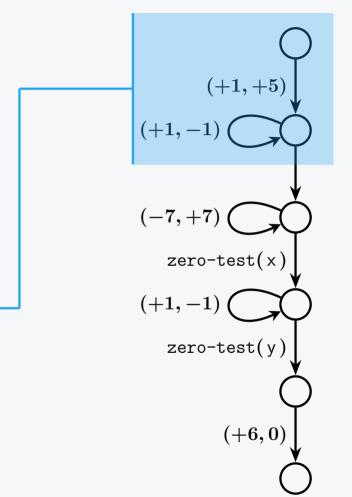
Suppose we want to perform a non-divisibility test $v \not\mid 7$.

- starts with x = v, y = 0,
- can only be passed if $v \not \mid 7$, and
- ends with x = v, y = 0.



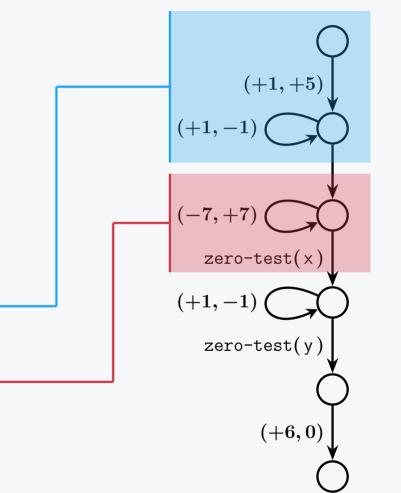
Suppose we want to perform a non-divisibility test $v \not \mid 7$.

- starts with x = v, y = 0,
- can only be passed if $v \not\mid 7$, and
- ends with x = v, y = 0.
- (i) Choose $r \in \{1,2,3,4,5,6\}$...



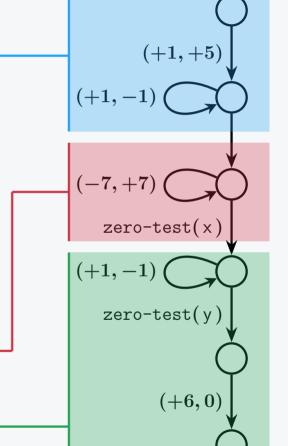
Suppose we want to perform a non-divisibility test $v \not \mid 7$.

- starts with x = v, y = 0,
- can only be passed if $v \not\mid 7$, and
- ends with x = v, y = 0.
- (i) Choose $r \in \{1,2,3,4,5,6\}$...
- (ii) ... such that $7 \mid v + r$. -



Suppose we want to perform a non-divisibility test $v
mathcal{1}{7}$.

- starts with $\mathsf{x} \! = v$, $\mathsf{y} \! = 0$,
- can only be passed if $v \not\mid 7$, and
- ends with x = v, y = 0.
- (i) Choose $r \in \{1,2,3,4,5,6\}$...
- (ii) ... such that $7 \mid v + r$. –
- (iii) Restore x = v, y = 0.



Simulating Zero Tests

Simulating Zero Tests

Lemma 2.2 (Controlling Counter Technique). Let \mathcal{Z} be a d-VASS with zero tests and let $s(\mathbf{x}), t(\mathbf{y})$ be two configurations. Suppose \mathcal{Z} has the property that on any accepting run from $s(\mathbf{x})$ to $t(\mathbf{y})$, at most m zero tests are performed on each counter. Then there exists a (d+1)-VASS \mathcal{V} and two configurations $s'(\mathbf{0}), t'(\mathbf{y}')$ such that:

- (1) $s(\mathbf{x}) \stackrel{*}{\to}_{\mathcal{Z}} t(\mathbf{y})$ if and only if $s'(\mathbf{0}) \stackrel{*}{\to}_{\mathcal{V}} t'(\mathbf{y}')$,
- (2) V can be constructed in $\mathcal{O}((size(\mathcal{Z}) + ||x||) \cdot (m+1)^d)$ time, and
- $(3) \|\mathbf{y}'\| \leq \|\mathbf{y}\|.$

Moreover, if Z is a flat VASS or a (simple) linear path scheme in which no zero-testing transition lies on a cycle, then V can be assumed to be a flat VASS or a (simple) linear path scheme, respectively.

[Czerwiński and Orlikowski '21] [Chistikov, Czerwiński, Mazowiecki, Orlikowski, S., and Węgrzycki '24]

Simulating Zero Tests

Lemma 2.2 (Controlling Counter Technique). Let \mathcal{Z} be a d-VASS with zero tests and let $s(\mathbf{x}), t(\mathbf{y})$ be two configurations. Suppose \mathcal{Z} has the property that on any accepting run from $s(\mathbf{x})$ to $t(\mathbf{y})$, at most m zero tests are performed on each counter. Then there exists a (d+1)-VASS \mathcal{V} and two configurations $s'(\mathbf{0}), t'(\mathbf{y}')$ such that:

- (1) $s(\mathbf{x}) \xrightarrow{*}_{\mathcal{Z}} t(\mathbf{y})$ if and only if $s'(\mathbf{0}) \xrightarrow{*}_{\mathcal{V}} t'(\mathbf{y}')$,
- (2) V can be constructed in $\mathcal{O}((size(\mathcal{Z}) + ||x||) \cdot (m+1)^d)$ time, and
- $(3) \|\mathbf{y}'\| \leq \|\mathbf{y}\|.$

Moreover, if Z is a flat VASS or a (simple) linear path scheme in which no zero-testing transition lies on a cycle, then V can be assumed to be a flat VASS or a (simple) linear path scheme, respectively.

[Czerwiński and Orlikowski '21] [Chistikov, Czerwiński, Mazowiecki, Orlikowski, S., and Węgrzycki '24]

Takeway message: A "small" number of zero tests can be simulated by an additional counter.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.

- Obtain an equivalent conjunction of non-divisibility tests.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.
- Obtain an equivalent conjunction of non-divisibility tests.
- For each non-divisibility test, construct the corresponding unary 2-SLPS with zero tests.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.
- Obtain an equivalent conjunction of non-divisibility tests.
- For each non-divisibility test, construct the corresponding unary 2-SLPS with zero tests.
- Prepend a x+1 self-loop to allow the assignment value x=v to be guessed.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.
- Obtain an equivalent conjunction of non-divisibility tests.
- For each non-divisibility test, construct the corresponding unary 2-SLPS with zero tests.
- Prepend a x+1 self-loop to allow the assignment value x=v to be guessed.
- Use the controlling counter technique to obtain unary 3-SLPS for the SAT instance.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary *ultraflat* 4-VASS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary *ultraflat* 4-VASS is NP-complete.

Theorem. Reachability in *unitary* inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary *ultraflat* 4-VASS is NP-complete.

Theorem. Reachability in *unitary* inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary *ultraflat* 4-VASS is NP-complete.

Theorem. Reachability in *unitary* inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Thank You!

Presented by Henry Sinclair-Banks, University of Warwick, UK

KIT, Karlsruhe, Germany

