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Reachability in 2-Dimensional VASS
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(the counters must remain nonnegative at all times)
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Reachability in 2-Dimensional VASS
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Does there exist a run from @ with counter values (0,0) to @ with counter values (4,5) ?

(the counters must remain nonnegative at all times)
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Reachability in 2-Dimensional VASS
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sum= (4,5)

Does there exist a run from @ with counter values (0,0) to @ with counter values (4,5) ?
YES!

(the counters must remain nonnegative at all times)
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Reachability in VASS

Reachability problem: does there exist a run from p(u) to g(v) ?
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Flat VASS

Definition (Flat). For every state ¢ € @, there is at most one simple cycle that contains q.
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Flat VASS

Definition (Flat). For every state ¢ € @, there is at most one simple cycle that contains q.
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Flat VASS

Definition (Flat). For every state ¢ € @, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwinski, Lasota, Lazi¢, Leroux, and Mazowiecki '20]
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Definition (Flat). For every state ¢ € @, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwinski, Lasota, Lazi¢, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85]

Proof sketch. Let ({x1,...,®y,},t) be an instance of subset sum (with multiplicities).

+x,

There exist kq, . . ., ky, such that t = 3k; - x; if and only if there is a run from q;(0) to g, (%).
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Flat VASS

Definition (Flat). For every state ¢ € @, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwinski, Lasota, Lazi¢, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85]

What is the complexity of reachability in unary flat VASS?

[Blondin, Finkel, Goller, Haase, and McKenzie '15]
[Englert, Lazi¢, and Totzke '16]
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Complexity of Reachability in Flat VASS

Dimension

Binary encoding

Unary encoding
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Dimension

Binary encoding

Unary encoding
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Complexity of Reachability in Flat VASS

Dimension Binary encoding Unary encoding
1 NP-complete NL-complete
[Rosier and Yen '85] [Valiant and Paterson '73]
2 NP-complete NL—'c/ompIete :
[Englert, Lazi¢, and Totzke '16]
3 NP-complete
This presentation!
4 NP-complete
[Czerwinski and Orlikowski '22]
5 NP-complete
[Dubiak '20]
6 NP-complete
- NP-complete

Henry Sinclair-Banks

[Czerwinski, Lasota, Lazi¢, Leroux, and Mazowiecki '20]
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Flat-\VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS). A Simple LPS has cycles of length one (“self-loops”).

o380

For d > 3, is reachability in unary d-dimensional linear path schemes in P?

[Englert, Lazi¢, and Totzke '16]
[Leroux '21]
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Theorem. Reachability in unary 3-SLPS is NP-complete.
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Suppose we want to perform a non-divisibility test v f 7.
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Non-Divisibility Testing Simple Linear Path Schemes

Suppose we want to perform a non-divisibility test v f 7.
Let's construct a 2-SLPS with zero tests that:
- starts with x= v, y= 0,

- can only be passed if v /7, and

- ends with x= v, y= 0.
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Suppose we want to perform a non-divisibility test v f 7.

Let's construct a 2-SLPS with zero tests that:
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O

(+1,+5)

10 (SO
Y
141 (G0

zero-test(x)

(+17 _1)

zero-test(y)
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- starts with x= v, y= 0,
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Suppose we want to perform a non-divisibility test v f 7.

Let's construct a 2-SLPS with zero tests that:
- starts with x= v, y= 0,
- can only be passed if v /7, and

- ends with x= v, y= 0.

(i) Choose r € {1,2,3,4,5,6} ...

(ii) ... such that 7 | v + r.

O

(+1,+5)
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Y
141 (G0

zero-test(x)

(+17 _1)
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Non-Divisibility Testing Simple Linear Path Schemes

Suppose we want to perform a non-divisibility test v f 7.

Let's construct a 2-SLPS with zero tests that:
- starts with x= v, y= 0,
- can only be passed if v /7, and

- ends with x= v, y= 0.

(i) Choose r € {1,2,3,4,5,6} ...

(ii) ... such that 7 | v + 7.

(iii) Restore x= v, y= 0.

O

(+1,+5)

10 (SO
Y
141 (G0

zero-test(x)

(+19 _1)

zero-test(y)

(+6,0)

O
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Simulating Zero Tests
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Simulating Zero Tests

Lemma 2.2 (Controlling Counter Technique). Let Z be a d-VASS with zero tests and let s(x),t(y)
be two configurations. Suppose Z has the property that on any accepting run from s(x) to t(y), at

most m zero tests are performed on each counter. Then there exists a (d+ 1)-VASS V and two
configurations s'(0),t'(y') such that:

(1) s(x) Sz t(y) if and only if s'(0) Sy t'(y'),
(2) V can be constructed in O((size(Z) + ||z||) - (m + 1)9) time, and
(3) Iyl < liyll-

Moreover, if Z is a flat VASS or a (simple) linear path scheme in which no zero-testing transition lies
on a cycle, then V can be assumed to be a flat VASS or a (simple) linear path scheme, respectively.

[Czerwinski and Orlikowski '21]  [Chistikov, Czerwinski, Mazowiecki, Orlikowski, S., and Wegrzycki '24]
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Simulating Zero Tests

Lemma 2.2 (Controlling Counter Technique). Let Z be a d-VASS with zero tests and let s(x),t(y)
be two configurations. Suppose Z has the property that on any accepting run from s(x) to t(y), at

most m zero tests are performed on each counter. Then there exists a (d+ 1)-VASS V and two
configurations s'(0),t' (y’) such that:

(1) s(x) Sz t(y) if and only if s'(0) Sy t'(y’),
(2) V can be constructed in O((size(Z) + ||z||) - (m + 1)¢) time, and
(3) 1yl < llyll-

Moreover, if Z is a flat VASS or a (simple) linear path scheme in which no zero-testing transition lies
on a cycle, then V can be assumed to be a flat VASS or a (simple) linear path scheme, respectively.

[Czerwinski and Orlikowski '21]  [Chistikov, Czerwinski, Mazowiecki, Orlikowski, S., and Wegrzycki '24]

Takeway message: A “small” number of zero tests can be simulated by an additional counter.
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Recap — Proof of Main Theorem

Theorem. Reachability in unary 3-SLPS is NP-complete.
Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.

- Obtain an equivalent conjunction of non-divisibility tests.

- For each non-divisibility test, construct the corresponding unary 2-SLPS with zero tests.
- Prepend a x 41 self-loop to allow the assignment value x= v to be guessed.

- Use the controlling counter technique to obtain unary 3-SLPS for the SAT instance.
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