The Tractability Border of Reachability in Simple Vector Addition Systems with States

Henry Sinclair-Banks

Based on work with Dmitry Chistikov, Wojciech Czerwiński, Filip Mazowiecki, £ukasz Orlikowski, and Karol WÍgrzycki to appear in FOCS'24.

Algorithms & Complexity Seminar

27th August 2024

KIT, Karlsruhe, Germany

2-Dimensional Vector Addition System with States

2-Dimensional Vector Addition System with States

2-Dimensional VASS

Reachability in VASS

Reachability in VASS

Reachability problem: does there exist a run from $p(\mathbf{u})$ to $q(\mathbf{v})$?

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). Firibourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). Firibourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85]

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). Firibourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85] *Proof sketch.* Let $(\{x_1, \ldots, x_n\}, t)$ be an instance of subset sum (with multiplicities).

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). Firibourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85] *Proof sketch.* Let $(\{x_1, \ldots, x_n\}, t)$ be an instance of subset sum (with multiplicities).

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q .

Theorem. Reachability in flat VASS is in NP (even with binary encoding). Firibourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85] *Proof sketch.* Let $(\{x_1, \ldots, x_n\}, t)$ be an instance of subset sum (with multiplicities).

There exist k_1, \ldots, k_n such that $t = \sum k_i \cdot x_i$ if and only if there is a run from $q_1(0)$ to $q_n(t)$.

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). Firibourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85]

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). Firibourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85]

What is the complexity of reachability in unary flat VASS?

Definition (Flat). For every state $q \in Q$, there is at most one simple cycle that contains q.

Theorem. Reachability in flat VASS is in NP (even with binary encoding). Firibourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85]

What is the complexity of reachability in unary flat VASS?

[Blondin, Finkel, Göller, Haase, and McKenzie '15] [Englert, Lazić, and Totzke '16]

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11

Henry Sinclair-Banks The Tractability Border of Reachability in Simple VASS 5 / 11

Definition (LPS)**.** A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (LPS)**.** A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (LPS)**.** A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS)**.** A *Simple* LPS has cycles of length one ("self-loops").

Linear Path Schemes

Definition (LPS)**.** A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS)**.** A *Simple* LPS has cycles of length one ("self-loops").

Linear Path Schemes

Definition (LPS)**.** A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS)**.** A *Simple* LPS has cycles of length one ("self-loops").

For $d \geq 3$, is reachability in unary d -dimensional linear path schemes in P? [Englert, Lazić, and Totzke '16]

[Leroux '21]

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has k variables (x_1, \ldots, x_k) and m clauses.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has k variables (x_1, \ldots, x_k) and m clauses.

1) Use "Chinese remainder encoding" for SAT.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has *k* variables (x_1, \ldots, x_k) and *m* clauses.

1) Use "Chinese remainder encoding" for SAT.

- Let p_1, \ldots, p_k be the first k primes.
- $n \in \mathbb{N}$ such that $n \equiv 0 \bmod p_i \iff x_i$ is false and $n \equiv 1 \bmod p_i \iff x_i$ is true.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has *k* variables (x_1, \ldots, x_k) and *m* clauses.

1) Use "Chinese remainder encoding" for SAT.

- Let p_1, \ldots, p_k be the first k primes.
- $n \in \mathbb{N}$ such that $n \equiv 0 \bmod p_i \iff x_i$ is false and $n \equiv 1 \bmod p_i \iff x_i$ is true.

2) Use a conjunction of non-divisibility tests to verify that *n* represents a valid assignment.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has *k* variables (x_1, \ldots, x_k) and *m* clauses.

1) Use "Chinese remainder encoding" for SAT.

- Let p_1, \ldots, p_k be the first k primes.
- $n \in \mathbb{N}$ such that $n \equiv 0 \bmod p_i \iff x_i$ is false and $n \equiv 1 \bmod p_i \iff x_i$ is true.

2) Use a conjunction of non-divisibility tests to verify that *n* represents a valid assignment.

- To verify that $n \equiv 0 \mod p_i$ OR $n \equiv 1 \mod p_i$, check $p_i | n$ OR $p_i | n-1$.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has *k* variables (x_1, \ldots, x_k) and *m* clauses.

1) Use "Chinese remainder encoding" for SAT.

- Let p_1, \ldots, p_k be the first k primes.
- $n \in \mathbb{N}$ such that $n \equiv 0 \bmod p_i \iff x_i$ is false and $n \equiv 1 \bmod p_i \iff x_i$ is true.

2) Use a conjunction of non-divisibility tests to verify that *n* represents a valid assignment.

- To verify that $n \equiv 0 \mod p_i$ OR $n \equiv 1 \mod p_i$, check $p_i | n$ OR $p_i | n-1$.
- Instead, check $p_i \nmid n-2$ AND $p_i \nmid n-3$ AND \cdots AND $p_i \nmid n-(p_i-1)$.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has *k* variables (x_1, \ldots, x_k) and *m* clauses.

1) Use "Chinese remainder encoding" for SAT.

- Let p_1, \ldots, p_k be the first k primes.
- $n \in \mathbb{N}$ such that $n \equiv 0 \bmod p_i \iff x_i$ is false and $n \equiv 1 \bmod p_i \iff x_i$ is true.

2) Use a conjunction of non-divisibility tests to verify that *n* represents a valid assignment.

- To verify that $n \equiv 0 \mod p_i$ OR $n \equiv 1 \mod p_i$, check $p_i | n$ OR $p_i | n-1$.
- Instead, check $p_i \nmid n-2$ AND $p_i \nmid n-3$ AND \cdots AND $p_i \nmid n-(p_i-1)$.

3) Again, use a conjunction of non-divisibility tests to verify that *n* represents a satisfying assignment.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has *k* variables (x_1, \ldots, x_k) and *m* clauses.

1) Use "Chinese remainder encoding" for SAT.

- Let p_1, \ldots, p_k be the first k primes.
- $n \in \mathbb{N}$ such that $n \equiv 0 \bmod p_i \iff x_i$ is false and $n \equiv 1 \bmod p_i \iff x_i$ is true.

2) Use a conjunction of non-divisibility tests to verify that *n* represents a valid assignment.

- To verify that $n \equiv 0 \mod p_i$ OR $n \equiv 1 \mod p_i$, check $p_i | n$ OR $p_i | n-1$.
- Instead, check $p_i \nmid n-2$ AND $p_i \nmid n-3$ AND \cdots AND $p_i \nmid n-(p_i-1)$.

3) Again, use a conjunction of non-divisibility tests to verify that *n* represents a satisfying assignment. - A clause $x_1 \vee \neg x_2 \vee x_3$ is satisfied if $n \equiv 1 \mod 2$ OR $n \equiv 0 \mod 3$ OR $n \equiv 1 \mod 5$.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has *k* variables (x_1, \ldots, x_k) and *m* clauses.

1) Use "Chinese remainder encoding" for SAT.

- Let p_1, \ldots, p_k be the first k primes.
- $n \in \mathbb{N}$ such that $n \equiv 0 \bmod p_i \iff x_i$ is false and $n \equiv 1 \bmod p_i \iff x_i$ is true.

2) Use a conjunction of non-divisibility tests to verify that *n* represents a valid assignment.

- To verify that $n \equiv 0 \mod p_i$ OR $n \equiv 1 \mod p_i$, check $p_i | n$ OR $p_i | n-1$.
- Instead, check $p_i \nmid n-2$ AND $p_i \nmid n-3$ AND \cdots AND $p_i \nmid n-(p_i-1)$.

3) Again, use a conjunction of non-divisibility tests to verify that *n* represents a satisfying assignment.

- A clause $x_1 \vee \neg x_2 \vee x_3$ is satisfied if $n \equiv 1 \mod 2$ OR $n \equiv 0 \mod 3$ OR $n \equiv 1 \mod 5$.
- $\frac{1}{2}$ Instead, check $2 \cdot 3 \cdot 5 \not | n 10$.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Reduce from 3-SAT. Suppose φ has *k* variables (x_1, \ldots, x_k) and *m* clauses.

1) Use "Chinese remainder encoding" for SAT.

- Let p_1, \ldots, p_k be the first k primes.
- $n \in \mathbb{N}$ such that $n \equiv 0 \bmod p_i \iff x_i$ is false and $n \equiv 1 \bmod p_i \iff x_i$ is true.

2) Use a conjunction of non-divisibility tests to verify that *n* represents a valid assignment.

- To verify that
$$
n \equiv 0 \mod p_i
$$
 OR $n \equiv 1 \mod p_i$, check $p_i | n$ OR $p_i | n - 1$.
- Instead, check $p_i | n - 2$ AND $p_i | n - 3$ AND ... AND $p_i | n - (p_i - 1)$.

3) Again, use a conjunction of non-divisibility tests to verify that *n* represents a satisfying assignment. - A clause $x_1 \vee \neg x_2 \vee x_3$ is satisfied if $n \equiv 1 \mod 2$ OR $n \equiv 0 \mod 3$ OR $n \equiv 1 \mod 5$. $\frac{1}{2}$ Instead, check $2 \cdot 3 \cdot 5 \not | n - 10$.

Suppose we want to perform a non-divisibility test $v \nmid 7$.

Suppose we want to perform a non-divisibility test $v \nmid 7$.

Let's construct a 2-SLPS with zero tests that:

- starts with $x = v$, $y = 0$,
- can only be passed if $v \nmid 7$, and
- ends with $x = v$, $y = 0$.

Suppose we want to perform a non-divisibility test $v \nmid 7$.

Let's construct a 2-SLPS with zero tests that:

- starts with $x = v$, $y = 0$,
- can only be passed if $v \nmid 7$, and
- ends with $x = v$, $y = 0$.

Suppose we want to perform a non-divisibility test $v \nmid 7$.

Let's construct a 2-SLPS with zero tests that:

- starts with $x = v$, $y = 0$,
- can only be passed if $v \nmid 7$, and
- ends with $x = v$, $y = 0$.

(i) Choose *r* **œ** *{***1***,* **2***,* **3***,* **4***,* **5***,* **6***}* ... **(+1***,* **[≠]1)**

Simulating Zero Tests

Simulating Zero Tests

Lemma 2.2 (Controlling Counter Technique). Let Z be a d-VASS with zero tests and let $s(\mathbf{x}), t(\mathbf{y})$ be two configurations. Suppose Z has the property that on any accepting run from $s(\mathbf{x})$ to $t(\mathbf{y})$, at most m zero tests are performed on each counter. Then there exists a $(d + 1)$ -VASS V and two configurations $s'(0)$, $t'(y')$ such that:

(1) $s(\mathbf{x}) \stackrel{*}{\rightarrow} z t(\mathbf{y})$ if and only if $s'(0) \stackrel{*}{\rightarrow} v t'(\mathbf{y}')$,

(2) V can be constructed in $\mathcal{O}((size(\mathcal{Z})+||x||)\cdot(m+1)^d)$ time, and

 (3) $\|\mathbf{y}'\| \leq \|\mathbf{y}\|.$

Moreover, if $\mathcal Z$ is a flat VASS or a (simple) linear path scheme in which no zero-testing transition lies on a cycle, then V can be assumed to be a flat VASS or a (simple) linear path scheme, respectively.

[Czerwiński and Orlikowski '21] [Chistikov, Czerwiński, Mazowiecki, Orlikowski, S., and Węgrzycki '24]

Simulating Zero Tests

Lemma 2.2 (Controlling Counter Technique). Let Z be a d-VASS with zero tests and let $s(\mathbf{x}), t(\mathbf{y})$ be two configurations. Suppose Z has the property that on any accepting run from $s(\mathbf{x})$ to $t(\mathbf{y})$, at most m zero tests are performed on each counter. Then there exists a $(d + 1)$ -VASS V and two configurations $s'(0)$, $t'(y')$ such that:

(1) $s(\mathbf{x}) \stackrel{*}{\rightarrow} z t(\mathbf{y})$ if and only if $s'(0) \stackrel{*}{\rightarrow} v t'(\mathbf{y}')$,

(2) V can be constructed in $\mathcal{O}((size(\mathcal{Z})+||x||)\cdot(m+1)^d)$ time, and

 (3) $\|\mathbf{y}'\| \leq \|\mathbf{y}\|.$

Moreover, if $\mathcal Z$ is a flat VASS or a (simple) linear path scheme in which no zero-testing transition lies on a cycle, then V can be assumed to be a flat VASS or a (simple) linear path scheme, respectively.

[Czerwiński and Orlikowski '21] [Chistikov, Czerwiński, Mazowiecki, Orlikowski, S., and Węgrzycki '24]

Takeway message: A "small" number of zero tests can be simulated by an additional counter.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.

- Obtain an equivalent conjunction of non-divisibility tests.
Recap – Proof of Main Theorem

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.
- Obtain an equivalent conjunction of non-divisibility tests.
- For each non-divisibility test, construct the corresponding unary 2-SLPS with zero tests.

Recap – Proof of Main Theorem

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.
- Obtain an equivalent conjunction of non-divisibility tests.
- For each non-divisibility test, construct the corresponding unary 2-SLPS with zero tests.
- Prepend a $x + 1$ self-loop to allow the assignment value $x = v$ to be guessed.

Recap – Proof of Main Theorem

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof sketch: Recall that reachability in (binary) flat VASS is in NP. For NP-hardness:

- Reduce from 3-SAT and use Chinese remainder encoding.
- Obtain an equivalent conjunction of non-divisibility tests.
- For each non-divisibility test, construct the corresponding unary 2-SLPS with zero tests.
- Prepend a $x + 1$ self-loop to allow the assignment value $x = v$ to be guessed.
- Use the controlling counter technique to obtain unary 3-SLPS for the SAT instance.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary *ultraflat* 4-VASS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary *ultraflat* 4-VASS is NP-complete.

Theorem. Reachability in *unitary* inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary *ultraflat* 4-VASS is NP-complete.

Theorem. Reachability in *unitary* inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem. Reachability in unary 2-SLPS with *binary encoded initial and target configurations* is in P.

Theorem. Reachability in unary 3-SLPS is NP-complete.

Theorem. Reachability in unary *ultraflat* 4-VASS is NP-complete.

Theorem. Reachability in *unitary* inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem. Reachability in unary 2-SLPS with *binary encoded initial and target configurations* is in P.

Thank You!

Presented by Henry Sinclair-Banks, University of Warwick, UK

KIT, Karlsruhe, Germany

henry.sinclair-banks.com 11 / 11