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2-Dimensional Vector Addition System with States

a

b

c

d

e

f

g

(-7, 3)

(2, 0)
(3, 8)

(-2, 2)

(0, 1)

(5, 0)

(-6, 10)

(4, -5)

(1, -1)

(-4, -9) (-4, -9)

(-5, -20)

2-Dimensional VASS

Reachability in 2-Dimensional VASS

Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?

(the counters must remain nonnegative at all times)

a

g

sum =

(0,0)

sum = (2,0)

sum = (5,8) sum = (3,10)

sum = (7,5)

(1, 10)

sum = (8,15)sum = (9,25)

YES!

sum = (4,5)
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Reachability in VASS

a

b

c

d

e

f

g

(-7, 3, ...)
(2, 0, ...)

(3, 8, ...)

(-2, 2, ...)

(0, 1, ...)

(5, 0, ...)

(-6, 10, ...)

(4, -5, ...)

(1, -1, ...)

(-4, -9, ...) (-4, -9, ...)

(-5, -20, ...)

Reachability problem: does there exist a run from p(u) to q(v) ?
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“Simple” Vector Addition Systems with States

Definition (Flat). For every state q, there is at most one simple cycle that contains q.

p

q

r

s

t

a d f

b c

e

Flat :)

Not flat :(
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Reachability in Flat VASS

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén ’97]
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen ’85]

Proof sketch. Let ({x1, . . . , xn}, t) be an instance of subset sum (with multiplicities).

q1

+x1

q2

+x2

q3

+x3

· · · qn

+xn

+0 +0 +0 +0

There exist k1, . . . , kn such that �ki · xi = t =∆ there is a run from q1(0) to qn(t).
There is a run from q1(0) to qn(t) =∆ there exist k1, . . . , kn such that �ki · xi = t. ⇤

Theorem. Reachability in unary (flat) 1-VASS and 2-VASS is in NL. [Valiant and Paterson ’73]
[Englert, LaziÊ, and Totzke ’16]

Theorem. Reachability in unary flat d-VASS is NP-hard for d = 7.
[CzerwiÒski, Lasota, LaziÊ, Leroux, and Mazowiecki ’20]

... for d = 5. [Dubiak ’20]

... for d = 4. [CzerwiÒski and Orlikowski ’22]

What is the complexity of reachability in unary flat 3-VASS?
[Blondin, Finkel, Göller, Haase, and McKenzie ’15]

[Englert, LaziÊ, and Totzke ’16]
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Flat VASS Linear Path Schemes
Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS). A Simple LPS has cycles of length one (“self-loops”).

For d Ø 3, is reachability in unary d-dimensional linear path schemes in P?
[Englert, LaziÊ, and Totzke ’16]

[Leroux ’21]
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Main Contribution
Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.

1) Use “Chinese remainder encoding” for SAT.

2) Encode satisfiability as a conjunction of non-divisibility assertions.

3) Design a 2-SLPS with zero tests for asserting non-divisibility.

4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction
of non-divisibility assertions.

5) Use an additional third counter to simulate the zero tests.

Next slide
1) Use “Chinese remainder encoding” for SAT.

2) Encode satisfiability as a conjunction of non-divisibility assertions.
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Encoding SAT as a Conjunction of Non-Divisibility Assertions
Chinese remainder encoding for SAT with k variables x1, . . . , xk.
- Let p1, . . . , pk be the first k primes.
- Let n œ N such that n © 0 mod pi ≈∆ xi is false and n © 1 mod pi ≈∆ xi is true.

First, enforce assignment validity.
- Want to verify that n © 0 mod pi OR n © 1 mod pi (for every i).
- Instead, check pi ” | n ≠ 2 AND pi ” | n ≠ 3 AND · · · AND pi ” | n ≠ (pi ≠ 1).

Second, enforce satisfiability.
- A clause x1 ‚ ¬x2 ‚ x3 is satisfied if n © 1 mod 2 OR n © 0 mod 3 OR n © 1 mod 5.
- This is only falsified when n © 10 mod 2 · 3 · 5.
- Therefore, check 2 · 3 · 5 ” | n ≠ 10.
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Main Contribution
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X
X

Next slide3) Design a 2-SLPS with zero tests for asserting non-divisibility.
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Simple Linear Path Schemes Asserting Non-Divisibility
Suppose we want to assert 7 ” | v.

Let’s construct a 2-SLPS with zero tests that:
- starts with x = v, y = 0,
- can only be passed if 7 ” | v, and
- ends with x = v, y = 0.

(+1, +5)

zero-test( x )

zero-test( y )

(≠6, 0)

(+1, ≠1)

(≠7, +7)

(+1, ≠1)

(i) Choose r œ {1, 2, 3, 4, 5, 6} ...

(ii) ... such that 7 | v + r.

(iii) Restore x = v, y = 0.
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of non-divisibility assertions. And add an x + 1 loop for guessing an assignment x = v.
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X
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Simulating Zero Tests

[CzerwiÒski and Orlikowski ’21] [this paper]

Takeway message: A “small” number of zero tests can be simulated by an additional counter.
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Main Contribution
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Main Results
Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Next slideTheorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.
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Flat VASS Linear Path Schemes Ultraflat VASS
Definition (Ultraflat VASS). An SLPS where the transitions between states have zero e�ect.

(+1, ≠1) (≠7, +7) (+1, ≠1)

(+1, +5) (≠6, 0)

(+1, +5) (0, 0) (0, 0) (0, 0) (≠6, 0)

Not ultraflat :(Ultraflat :)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Counter program notation:
1. LOOP: x += 1, y ≠= 1
2. LOOP: x ≠= 7, y += 7
3. LOOP: x += 1, y ≠= 1
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Reachability in Ultraflat VASS
Theorem. Reachability in binary ultraflat 1-VASS is NP-hard. [Rosier and Yen ’85] [Leroux ’21]

Proof idea.

q1

+x1

q2

+x2

q3

+x3

· · · qn

+xn

+0 +0 +0 +0

1. LOOP: z += x1

2. LOOP: z += x2

3. LOOP: z += x3

4. . . .

n. LOOP: z += xn

Theorem. Reachability in unary ((ultra)flat) 1-VASS and 2-VASS is in NL. [Valiant and Paterson ’73]
[Englert, LaziÊ, and Totzke ’16]

For d Ø 3, is reachability in unary ultraflat d-VASS in P? [Leroux ’21]

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.
Proof ingredients. 3-SAT reduction.

Chinese remainder encoding for SAT.
Conjunction of non-divisibility assertions.

Ultraflat 3-VASS with zero tests for asserting non-divisibility.
Concatenate non-divisibility asserting ultraflat VASS.

Simulate zero tests with a controlling counter.
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Reachability in Ultraflat VASS
Theorem. Reachability in binary ultraflat 1-VASS is NP-hard. [Rosier and Yen ’85] [Leroux ’21]

Proof idea.

q1

+x1

q2

+x2

q3

+x3

· · · qn

+xn

+0 +0 +0 +0

1. LOOP: z += x1

2. LOOP: z += x2

3. LOOP: z += x3

4. . . .

n. LOOP: z += xn

Theorem. Reachability in unary ((ultra)flat) 1-VASS and 2-VASS is in NL. [Valiant and Paterson ’73]
[Englert, LaziÊ, and Totzke ’16]
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Ultraflat 3-VASS with Zero Tests for Asserting Non-Divisibility
Suppose we want to assert 5 ” | v.

This ultraflat 3-VASS with zero tests:
- starts with x = v, y = 0, z = 1,
- can only be passed if 5 ” | v, and
- ends with x = v, y = 0, z = 1.

(i) Choose r œ {1, 2, 3, 4} ...

1. LOOP: x += 1, y += 5, z ≠= 1
2. LOOP: x += 2, y += 6, z ≠= 1
3. LOOP: x += 3, y += 7, z ≠= 1
4. LOOP: x += 4, y += 8, z ≠= 1
5. zero-test(z)

(ii) ... such that 5 | v + r.

6. LOOP: x ≠= 5, z += 5
7. zero-test(x)

(iii) Restore x = v, y = 0.

8. LOOP: x += 1, z ≠= 1
9. zero-test(z)

10. LOOP: x ≠= 1, y ≠= 5, z += 1
11. LOOP: x ≠= 2, y ≠= 6, z += 1
12. LOOP: x ≠= 3, y ≠= 7, z += 1
13. LOOP: x ≠= 4, y ≠= 8, z += 1
14. zero-test(y)
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Second Contribution
Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.

1) Use “Chinese remainder encoding” for SAT.

2) Encode satisfiability as a conjunction of non-divisibility assertions.

3) Design an ultraflat 3-VASS with zero tests for asserting non-divisibility.X
4) Concatenate these ultraflat 3-VASS with zero tests so that reachability coincides with the conjunction

of non-divisibility assertions. And add an x + 1 loop for guessing an assignment x = v.

5) Use an additional third counter to simulate the zero tests.
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Recap of Main Results

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Open problem. Is reachability in unary ultraflat 3-VASS NP-complete?

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Next slideTheorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.
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Unitary Simple Linear Path Schemes
Definition (Unitary SLPS). An SLPS where the counter updates are restricted to {≠1, 0, +1}.

(+1, ≠1) (≠7, +7) (+1, ≠1)

(+1, +5) (0, 0) (0, 0) (0, 0) (≠6, 0)

(+1, +1) (0, +1) (0, +1) (0, +1) (0, +1)

Not ultraflat :(
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Reachability in Unitary SLPS
Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

UnitaryInverseAckermannDimensionalSimpleLinearPathSchemeReachability

Input: a natural number k encoded in unary,

Notation: – : N æ N is the inverse Ackermann function.

a unitary O(–(k))-SLPS V of size poly(k),
an initial configuration p(u) encoded in unary, and
a target configuration q(v) encoded in unary.

Question: is there a run from p(u) to q(v) in V ?

Proof ingredients. 3-SAT reduction. Chinese remainder encoding for SAT.
Conjunction of non-divisibility assertions.

Unitary 5-SLPS with zero tests for asserting non-divisibility.
Concatenate non-divisibility asserting unitary SLPSs. Simulate zero tests with a di�erent technique.Simulate zero tests with a di�erent technique.
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The Tractability Border of Reachability in
Simple Vector Addition Systems with States

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Open problem. Is reachability in unary ultraflat 3-VASS NP-complete?

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Open problem. Does there exist d œ N such that reachability in unitary d-SLPS is NP-complete?

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Thank You!
Presented by Henry Sinclair-Banks

Verification Seminar, University of Oxford, UK
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