When is containment decidable for probabilistic automata?

Laure Daviaud
University of Warwick

Joint work with Marcin Jurdziński, Ranko Lazić, Filip Mazowiecki, Guillermo A. Pérez and James Worrell.

Plume, Lyon, 23-04-2018
The containment problem

\[A \subseteq B \]
The containment problem

$[A] \subseteq [B]$
The containment problem

Languages over Σ^*

$[A] \subseteq [B]$

Boolean automata over Σ^*

Functions:

$\Sigma^* \rightarrow \mathbb{R}$

Weighted automata

Check whether:

$[B] \cap [A] = \emptyset$

Check whether:

$[B] - [A] \geq 0$

The containment problem
The containment problem

Boolean automata over Σ^*

Languages over Σ^*

Check whether:

$[A] \subseteq [B]$
The containment problem

Boolean automata over \(\Sigma^* \)

Functions: \(\Sigma^* \rightarrow \mathbb{R} \)

Check whether:
\[[B]^c \cap [A] = \emptyset \]
The containment problem

\[\mathcal{A} \subseteq \mathcal{B} \]

Weighted automata over \(\Sigma^* \)

Functions: \(\Sigma^* \rightarrow \mathbb{R} \)

Check whether:

\[[\mathcal{B}]^c \cap [\mathcal{A}] = \emptyset \]
The containment problem

Functions: $\Sigma^* \rightarrow \mathbb{R}$

Weighted automata over Σ^*

Check whether:
$[B]^c \cap [A] = \emptyset$
The containment problem

Weightsided automata

over \(\Sigma^* \)

Functions: \(\Sigma^* \rightarrow \mathbb{R} \)

\([A] \preceq [B]\)

Check whether:

\([B] - [A] \geq 0\)
What is the probability that after 8 hours I have done some sport or work?
Initial states and transitions are weighted with probability:

$[A]:$ $w \mapsto$ probability to read w from an initial to a final state.
A few results
A few results

Probabilistic automata

Max-plus automata
A few results

Probabilistic automata

- Undecidable in general
 - Post correspondence problem - Paz, Bertoni...

Max-plus automata

- Undecidable in general
 - Diophantine equations - Krob
Notion of ambiguity

How many accepting runs are labelled by a given word?
Notion of ambiguity

How many accepting runs are labelled by a given word?

Unambiguous: for all words, at most 1
Finitely ambiguous: for all words, at most k
Linearly ambiguous: for all words w, at most $k|w|
Quadratic: for all words w, at most $k|w|^2$
Polynomially ambiguous, exponentially ambiguous...
How many accepting runs are labelled by a given word?

- Unambiguous: for all words, at most 1
- Finitely ambiguous: for all words, at most k
- Linearly ambiguous: for all words w, at most $k |w|
- Quadratic: for all words w, at most $k |w|^2$
- Polynomially ambiguous, exponentially ambiguous...
How many accepting runs are labelled by a given word?

- **Unambiguous**: for all words, at most 1
How many accepting runs are labelled by a given word?

Unambiguous: for all words, at most 1
Finitely ambiguous: for all words, at most k
Notion of ambiguity

How many accepting runs are labelled by a given word?

- Unambiguous: for all words, at most 1
- Finitely ambiguous: for all words, at most \(k \)
- Linearly ambiguous: for all words \(w \), at most \(k|w| \)
Notion of ambiguity

How many accepting runs are labelled by a given word?

- **Unambiguous**: for all words, at most 1
- **Finitely ambiguous**: for all words, at most k
- **Linearly ambiguous**: for all words w, at most $k|w|$
- **Quadratic**: for all words w, at most $k|w|^2$
How many accepting runs are labelled by a given word?

- **Unambiguous**: for all words, at most 1
- **Finitely ambiguous**: for all words, at most k
- **Linearly ambiguous**: for all words w, at most $k|w|$
- **Quadratic**: for all words w, at most $k|w|^2$
- **Polynomially ambiguous, exponentially ambiguous...**
A few results

Probabilistic automata
- Undecidable in general
 - Post correspondence problem - Paz, Bertoni...

Max-plus automata
- Undecidable in general
 - Diophantine equations - Krob
A few results

Probabilistic automata

- Undecidable in general
 Post correspondence problem - Paz, Bertoni...

- Undecidable for quadratic ambiguous
 Post correspondence problem - Fijalkow-Riveros-Worrell

Max-plus automata

- Undecidable in general
 Diophantine equations - Krob

- Undecidable for linearly ambiguous
 Halting problem of two-counter machines - Colcombet, Amalgor-Boker-Kupferman
A few results

Probabilistic automata

- Undecidable in general
 Post correspondence problem - Paz, Bertoni...

- Undecidable for quadratic ambiguous
 Post correspondence problem - Fijalkow-Riveros-Worrell

- Emptiness problem decidable for finitely ambiguous
 Fijalkow-Riveros-Worrell

Max-plus automata

- Undecidable in general
 Diophantine equations - Krob

- Undecidable for linearly ambiguous
 Halting problem of two-counter machines - Colcombet, Amalgor-Boker-Kupferman

- Decidable for finitely ambiguous
 Filiot-Gentilini-Raskin
When is containment decidable?

\[\mathcal{A} \subseteq \mathcal{B} \]

Undecidable
- When either \(\mathcal{A} \) or \(\mathcal{B} \) is at least linearly ambiguous.

Decidable
- When \(\mathcal{A} \) and \(\mathcal{B} \) are finitely ambiguous and one is unambiguous.

Open
- When \(\mathcal{A} \) and \(\mathcal{B} \) are finitely ambiguous.
Are there positive integers \(x \) and \(y \) such that:

\[
p \cdot \left(\frac{1}{12} \right)^x \cdot \left(\frac{1}{18} \right)^y + \left(1 - p \right) \cdot \left(\frac{1}{3} \right)^x \cdot \left(\frac{1}{18} \right)^y < \left(\frac{1}{5} \right)^x \cdot \left(\frac{1}{15} \right)^y
\]

Equivalently:

\[
e \log(p) - x \log(2) + y \log(3) + e \log(1 - p) + x \log(2) - y \log(3) < \frac{19}{15}
\]
Are there positive integers \(x \) and \(y \) such that:

\[
p \cdot \left(\frac{1}{12} \right)^x \cdot \left(\frac{1}{2} \right)^y + (1 - p) \cdot \left(\frac{1}{3} \right)^x \cdot \left(\frac{1}{18} \right)^y < \left(\frac{1}{6} \right)^x \cdot \left(\frac{1}{6} \right)^y
\]
Are there positive integers x and y such that:

$$p \cdot \left(\frac{1}{12}\right)^x \cdot \left(\frac{1}{2}\right)^y + (1 - p) \cdot \left(\frac{1}{3}\right)^x \cdot \left(\frac{1}{18}\right)^y < \left(\frac{1}{6}\right)^x \cdot \left(\frac{1}{6}\right)^y$$

Equivalently:

$$e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1$$
Decidability: one example

\[e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1 \]
Decidability: one example

\[e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1 \]

Are there positive integers \(x, y \) s.t:

- \(e^u + e^v < 1 \) where:
 - \(u = \log(p) - x \log(2) + y \log(3) \)
 - \(v = \log(1 - p) + x \log(2) - y \log(3) \)
Decidability: one example

\[e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1 \]

Are there positive integers \(x, y \) s.t:

- \(e^u + e^v < 1 \) where:
 - \(u = \log(p) - x \log(2) + y \log(3) \)
 - \(v = \log(1 - p) + x \log(2) - y \log(3) \)
Decidability: one example

\[e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1 \]

Are there positive integers \(x, y\) s.t:

- \(e^u + e^v < 1\) where:
 - \(u = \log(p) - x \log(2) + y \log(3)\)
 - \(v = \log(1 - p) + x \log(2) - y \log(3)\)

\[\rightarrow \text{YES if and only if } p \neq \frac{1}{2}. \]
Decidability: translating the problem

Is there a word w such that $[A](w) > [B](w)$?
Decidability: translating the problem

Is there a word w such that $\mathcal{[A]}(w) > \mathcal{[B]}(w)$?

Simple cycle decomposition
Decidability: translating the problem

Is there a word w such that $\llbracket A \rrbracket(w) > \llbracket B \rrbracket(w)$?

Given A (k-ambiguous) and B (ℓ-ambiguous), one can compute:
- a positive integer n,
- a finite set of tuples (p, q, r, s) with
 - p in \mathbb{Q}_0^k, r in \mathbb{Q}_0^{ℓ}, q in $\mathbb{Q}_0^{k \times n}$, s in $\mathbb{Q}_0^{\ell \times n}$,

such that for one of those tuples, there exist $x \in \mathbb{N}^n$ such that:

$$
\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} > \sum_{i=1}^{\ell} r_i s_{i,1}^{x_1} \cdots s_{i,n}^{x_n}
$$

if and only if there exist a word w such that $\llbracket A \rrbracket(w) > \llbracket B \rrbracket(w)$.
Decidability: first case

$[A] \leq [B]$ when B is unambiguous.
Decidability: first case

\[[A] \leq [B] \text{ when } B \text{ is unambiguous.} \]

Is there \(x \in \mathbb{N}^n \) such that:

\[
\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} > r s_{1}^{x_1} \cdots s_{n}^{x_n}
\]
Decidability: first case

\([A] \leq [B]\) when \(B\) is unambiguous.

Is there \(x \in \mathbb{N}^n\) such that:

\[
\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} > rs_1^{x_1} \cdots s_n^{x_n}
\]

- First case: there is \(i, j\) such that \(q_{i,j} > s_j\)
- Second case: for all \(i, j\), \(q_{i,j} \leq s_j\)
Decidability: second case

Much more difficult!

Theorem

Determining whether \([A] \leq [B]\) is decidable when \(A\) is unambiguous and \(B\) is finitely ambiguous, assuming Schanuel’s conjecture is true.
Determining whether $[\mathcal{A}] \preceq [\mathcal{B}]$ is decidable when \mathcal{A} is unambiguous and \mathcal{B} is finitely ambiguous, assuming Schanuel’s conjecture is true.

Is there $x \in \mathbb{N}^n$ such that:

$$\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} < 1$$

Decidability: second case
Decidability: second case

Much more difficult!

Theorem

Determining whether $[A] \leq [B]$ is decidable when A is unambiguous and B is finitely ambiguous, assuming Schanuel’s conjecture is true.

Is there $\mathbf{x} \in \mathbb{N}^n$ such that:

$$\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} < 1$$

- semi-decidable to find such \mathbf{x}
Decidability: second case

Much more difficult!

Theorem

Determining whether $[A] \leq [B]$ is decidable when A is unambiguous and B is finitely ambiguous, assuming Schanuel’s conjecture is true.

Is there $x \in \mathbb{N}^n$ such that:

$$\sum_{i=1}^{k} p_i q_i^{x_1} \cdots q_i^{x_n} < 1$$

- semi-decidable to find such x
- if there is no such x, there is a non-zero vector $d \in \mathbb{Z}^n$ and $a, b \in \mathbb{Z}$ such that $\{d^\top y \mid y \text{ is a real solution} \} \subseteq [a, b]$
 \rightarrow decrease the dimension by 1
Undecidability

Proposition

Given a two-counter machine, one can construct two linearly ambiguous probabilistic automata A and B, such that the machine halts if and only if there exists a word w such that $[A](w) \leq [B](w)$.
Given a two-counter machine, one can construct two linearly ambiguous probabilistic automata \(\mathcal{A} \) and \(\mathcal{B} \), such that the machine halts if and only if there exists a word \(w \) such that \(\llbracket \mathcal{A} \rrbracket(w) \leq \llbracket \mathcal{B} \rrbracket(w) \).

Simulate an execution with a word: \(a^n b^m t_1 a^{n+1} b^m t_2 a^{n+1} b^{m'} \)
Given a two-counter machine, one can construct two linearly ambiguous probabilistic automata A and B, such that the machine halts if and only if there exists a word w such that $[A](w) \leq [B](w)$.

→ Simulate an execution with a word: $a^n b^m t_1 a^{n+1} b^m t_2 a^{n+1} b^{m'}$
Conclusion

Containment problem for finitely ambiguous probabilistic automata?