THE UNIVERSITY OF WARWICK

Examination: Mock

Paper Code: CS419/CS939 Mock

Quantum Computing

Time allowed: 2 hours.

Exam type: Standard Examination.

Answer **QUESTION 1** from Section A and **TWO** questions from Section B.

Read carefully the instructions on the answer book.

Calculators are not allowed.

Section A	Answer QUESTION 1 .
-----------	----------------------------

- 1. (a) Describe the difference between an *entangled* and a *separable* state. [2]
 - (b) You are given a qubit in state $|\psi\rangle = \alpha_1 |0\rangle + \beta_1 |1\rangle$, and another qubit in state $|\phi\rangle = \alpha_2 |0\rangle + \beta_2 |1\rangle$. Express the joint state of both qubits in the computational basis. [3]
 - (c) Describe the difference between an *pure* and a *mixed* state. Explain how to express a mixed state as a *density matrix*, and describe the three conditions a density matrix must satisfy.
 - (d) For each of the following states, write whether the state is entangled or separable. Then write the mixed state obtained by discarding the second qubit (either as a distribution or as a density matrix). Justify your answers in each case. [20]

i.
$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
.
ii.
$$\frac{|00\rangle + |01\rangle}{\sqrt{2}}$$
.
iii.
$$\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$
.
iv.
$$\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle - |11\rangle)$$

$$\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

v. $\frac{1}{2}(|00\rangle + i |01\rangle + i |10\rangle - |11\rangle).$

Section B	Answer ONE question.
-----------	-----------------------------

- 2. In this question you will show how to attack Wiesner's quantum money scheme if the bank always returns banknotes to the client (even when the verification fails).
 - (a) Describe how an *n*-qubit banknote is generated and verified in Wiesner's quantum money scheme. [10]
 - (b) Design a quantum circuit which, on input the state |0⟩^{⊗3}, outputs a random 1-qubit banknote |\$_k⟩ along with its corresponding key k. Explain why your circuit works. (Note: your circuit can output any representation of k, as long as you explain clearly how to interpret it.)

Hint: use the controlled-*H* gate, $C_H(|b\rangle \otimes |\psi\rangle) = |b\rangle \otimes H^b |\psi\rangle$, written H. [7]

- (c) Suppose you are given a 1-qubit banknote $|\$_k\rangle$. You apply an X gate to $|\$_k\rangle$, obtaining a state $|\phi\rangle$, and then you send $|\phi\rangle$ to the bank. The bank runs the verification procedure on $|\phi\rangle$ and sends you the outcome (VALID or INVALID) along with the post-measurement state. Describe what happens for each possible k. [8]
- (d) Suppose you are given an n-qubit banknote |\$_k⟩. As often as you like, you can send a quantum state |ψ⟩ to the bank, which will run the verification procedure on |ψ⟩ and return the outcome (VALID or INVALID) along with the post-measurement state. Describe how to recover the key k in time O(n). [10]

- 3. For a function $f: \{0,1\}^n \to \{0,1\}^n$, denote by U_f the unitary $|x,y\rangle \mapsto |x,(y \oplus f(x))\rangle$.
 - (a) Suppose n = 1. Show how to build a circuit that computes the unitary |x⟩ → (-1)^{f(x)} |x⟩ (known as the phase oracle). You may use Z gates, ancilla qubits initialized to |0⟩, and two U_f gates. You must ensure that any ancilla qubits return to the state |0⟩ so that they can be safely discarded. Prove that your circuit is correct. [6]
 - (b) Suppose now (and for the remaining parts of this question) that n = 2. The gate S maps |0⟩ → |0⟩ and |1⟩ → i |1⟩. Show that S² = Z.
 - (c) Show how to build a circuit that computes the unitary that maps |x⟩ → ω^{2f(x)1+f(x)2} |x⟩, where f(x)1, f(x)2 are the first and second bits of f(x), respectively. You may use S gates, ancilla qubits initialised to |0⟩, and two Uf gates. You must ensure that any ancilla qubits return to the state |0⟩ so that they can be safely discarded. Prove that your circuit is correct.
 - (d) Design a circuit that determines whether f is constant or one-to-one. You may use:
 - any number of qubits initialized to $|0\rangle$,
 - Hadamard (*H*) gates,
 - S gates,
 - measurements in the computational basis, and
 - two U_f gates.

Prove that your circuit is correct.

[15]

- 4. (a) Describe the CNOT and Toffoli (CCNOT) gates.
 - (b) What are the eigenvectors and eigenvalues of the matrix $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$? [4]
 - (c) Using your answer to the above, or otherwise, find a matrix \sqrt{X} such that $(\sqrt{X})^2 = X$. (Hint: diagonalise X.) [5]
 - (d) The controlled- \sqrt{X} gate $C_{\sqrt{X}}$ is drawn like this:

and operates as follows:

$$C_{\sqrt{X}} |0\rangle \otimes |\psi\rangle = |0\rangle \otimes |\psi\rangle \qquad C_{\sqrt{X}} |1\rangle \otimes |\psi\rangle = |1\rangle \otimes \sqrt{X} |\psi\rangle$$

for any qubit state $|\psi\rangle$.

- i. Show how to implement a CNOT gate using only $C_{\sqrt{X}}$ gates. [3]
- ii. Show how to implement the gate $(C_{\sqrt{X}})^{\dagger}$ using only $C_{\sqrt{X}}$ gates. [4]

iii. Show how to implement the unitary U that maps

$$|ab\rangle \otimes |\psi\rangle \mapsto |ab\rangle \otimes (\sqrt{X})^a (\sqrt{X})^b |\psi\rangle$$

for all $a, b \in \{0, 1\}$ and qubit states $|\psi\rangle$ using only $C_{\sqrt{X}}$ gates. [3]

iv. Show how to implement a Toffoli gate using only $C_{\sqrt{X}}$, $(C_{\sqrt{X}})^{\dagger}$ and CNOT gates. (Hint: start with your circuit from part (iii).) [10]

(In each part, you should draw a circuit and show that it is correct.)

[6]