Coverability in 2-VASS with One Unary Counter is in NP

Filip Mazowiecki University of Warsaw Poland

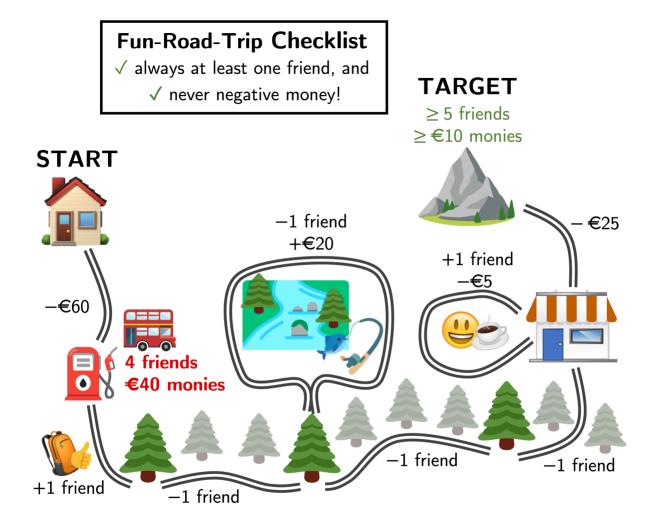
Henry Sinclair-Banks

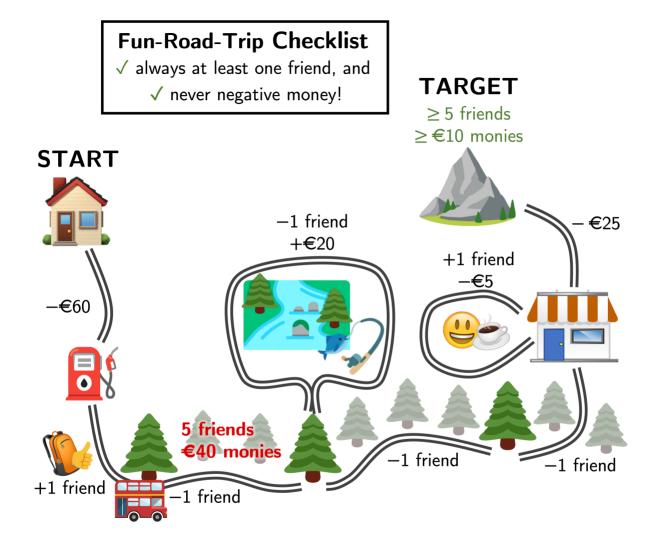
University of Warwick United Kingdom

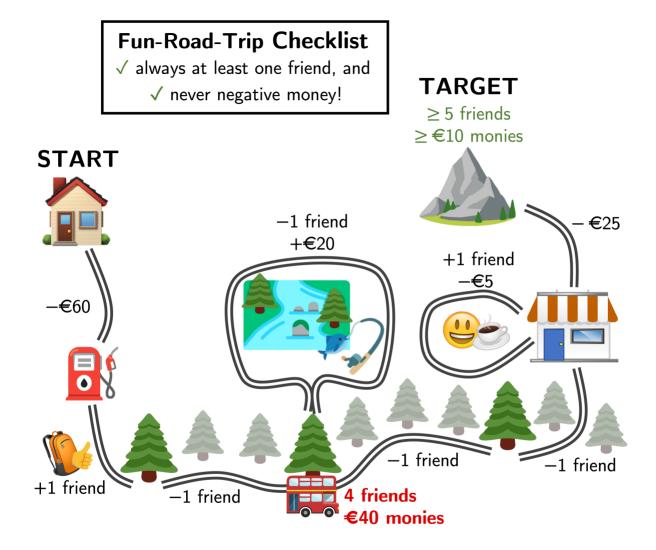
Karol Węgrzycki Saarland University and Max Planck Institute for Informatics Germany

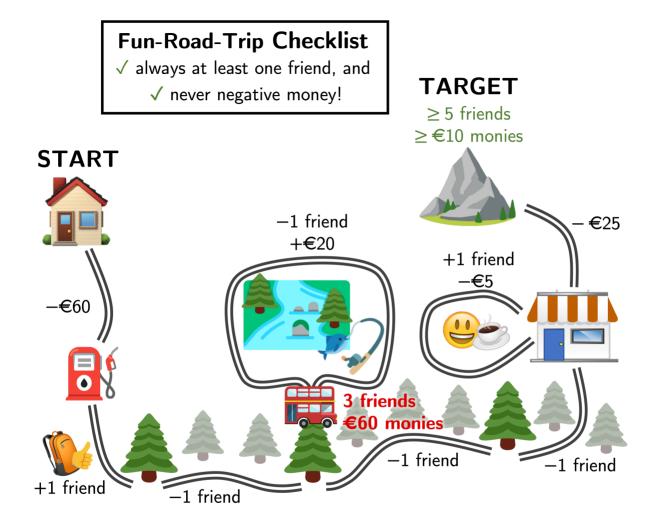
FoSSaCS: Counters 25th April 2023 Sorbonne Université, Paris, France

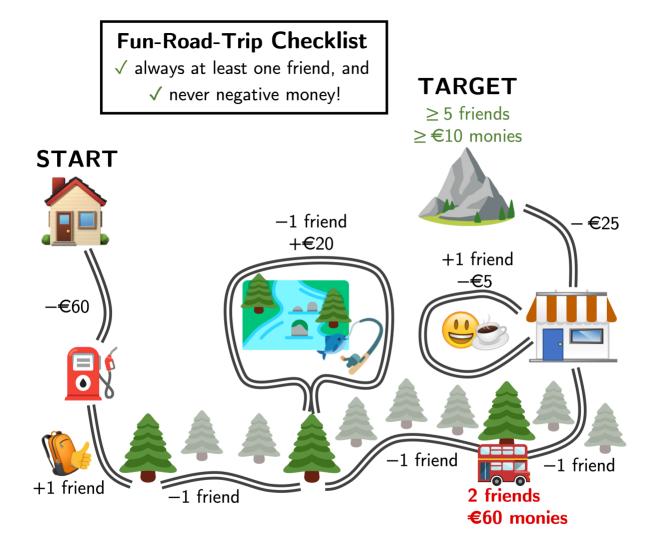


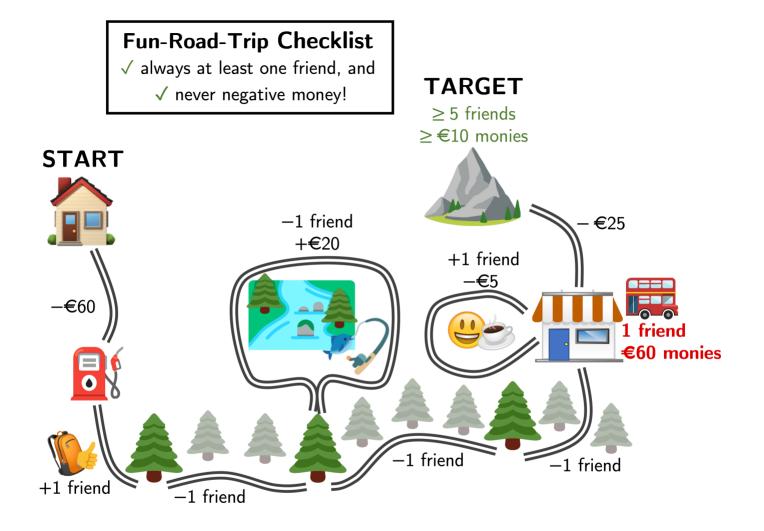


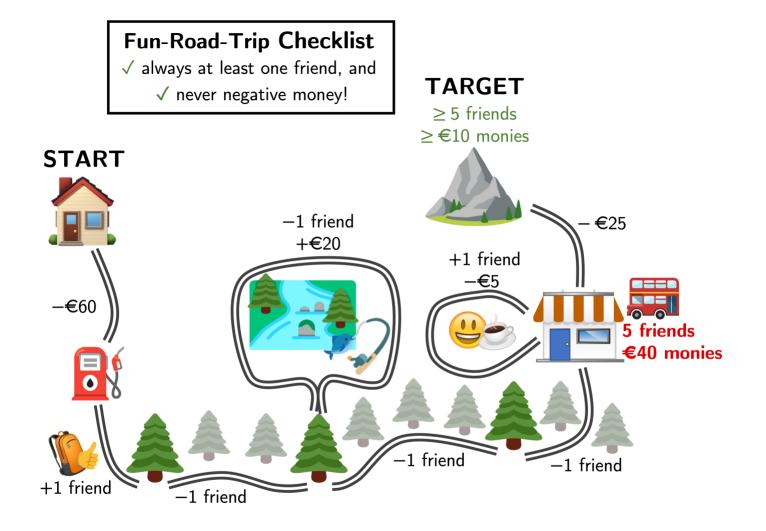


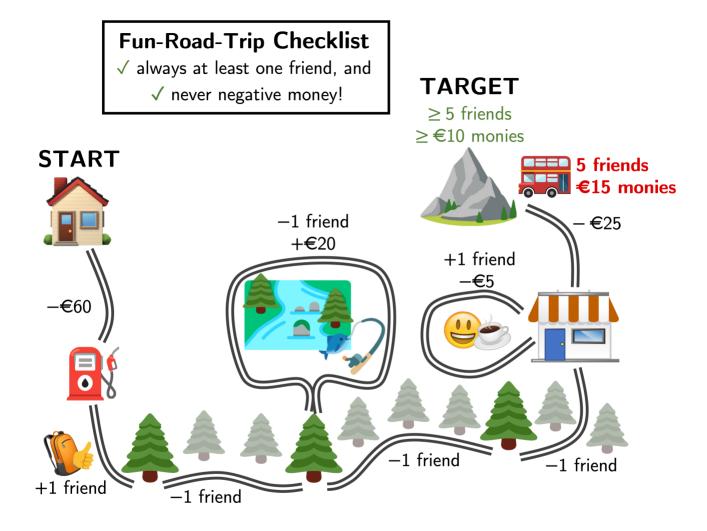












Coverability in 2-VASS with One Unary Counter

Coverability problem

Input: VASS \mathcal{V} , initial configuration $p(\vec{u})$, and target configuration $q(\vec{v})$.

Question: does there exist a run from $p(ec{u})$ to $q(ec{w})$ where $ec{w} \geq ec{v}$?

Specific features

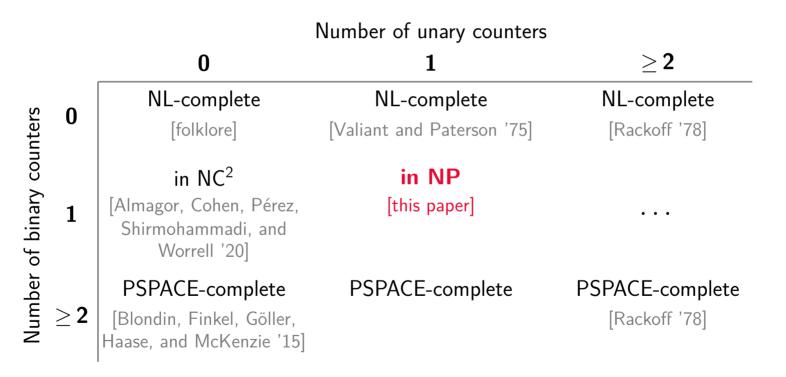
One component is encoded in unary and the other is encoded in binary.

Initial counter values \vec{u} and target counter values \vec{v} are encoded in binary.

Complexity of Coverability

Theorem: Coverability in general VASS is EXPSPACE-complete.

[Lipton '76] [Rackoff '78]



Motivation and Related Problems

VASS can be used to modestly model concurrent systems.

Coverability can be used to query safety conditions.

Study low dimension VASS to find new techniques in general.

Coverability in binary encoded 2-VASS is already PSPACE-hard.

1-PVASS: one binary counter and one pushdown stack.

2-TVASS: one of two binary counters can be zero-tested.

Our Contribution

Theorem: Coverability in 2-VASS with one unary counter is in NP. [this paper]

Our Contribution

Theorem: Coverability in binary encoded 2-VASS is PSPACE-complete.

[Blondin, Finkel, Göller, Haase, and McKenzie '15] [Rackoff '78]

Theorem: Coverability in 2-VASS with one unary counter is in NP. [this paper]

Theorem: Coverability in unary encoded 2-VASS is NL-complete. [Rackoff '78]

Common Approach: Small Witnesses

each cycle γ_i is iterated e_i many times $\underline{\tau_0}(\gamma_1^{e_1})\underline{\tau_1}\cdots \underline{\tau_{k-1}}(\gamma_k^{e_k})\overline{\tau_k}$

each path τ_i connects cycles γ_i and γ_{i+1}

 $\mathsf{Size} = |\tau_0| + \ldots + |\tau_k| + |\gamma_1| + \ldots + |\gamma_k| + \log(e_1) + \ldots + \log(e_k)$

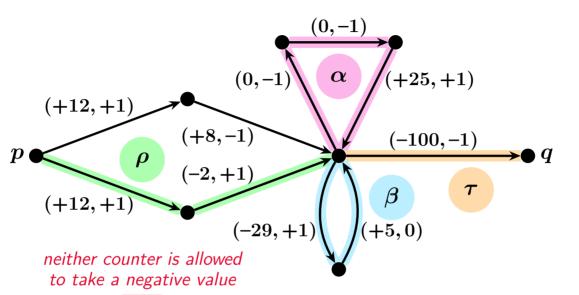
Linear Form Path

Claim: Coverability in 1-VASS is witnessed by poly-size linear form paths.

$$p(u) \xrightarrow{positive simple cycle}$$

 $p(u) \xrightarrow{short path} q(w)$ OR $p(u) \xrightarrow{short path} short path} q(w)$
 au_0 $au_0 \gamma_1^{e_1} au_1$

Motivating Example



Does there exist a run from p(0,0) to q(x,y) where $x \geq 20$ and $y \geq 10$?

$$p(0,0) \xrightarrow{\rho} c(10,2) \xrightarrow{\alpha} c(35,1) \xrightarrow{\beta} c(11,2)$$
$$(\alpha\beta)^{350} c(360,2) \xrightarrow{\beta^{10}} c(120,12) \xrightarrow{\tau} q(20,11)$$

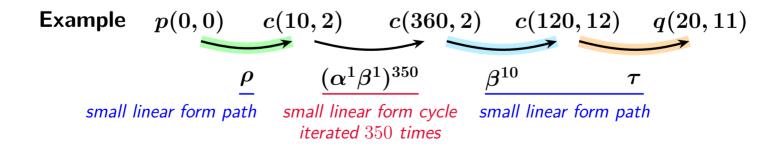
Our Approach: New Small Witnesses

each **linear form** cycle σ_i is iterated f_i many times

Compressed Linear Form Path $\rho_0(\sigma_1^{f_1})\rho_1 \cdots \rho_{k-1}(\sigma_k^{f_k})\rho_k$ each linear form path ρ_i connects σ_i and σ_{i+1}

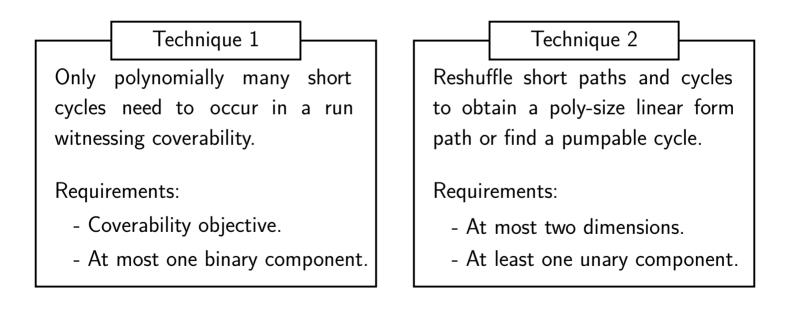
$$\mathsf{Size} = |\boldsymbol{\rho}_0| + \ldots + |\boldsymbol{\rho}_k| + |\boldsymbol{\sigma}_1| + \ldots + |\boldsymbol{\sigma}_k| + \log(\boldsymbol{f}_1) + \ldots + \log(\boldsymbol{f}_k)$$

Succinctness gains: $(\boldsymbol{\tau}_0 \, \boldsymbol{\gamma}_1^{e_1} \, \boldsymbol{\tau}_1) \, (\boldsymbol{\tau}_0 \, \boldsymbol{\gamma}_1^{e_1} \, \boldsymbol{\tau}_1) \, \cdots \, (\boldsymbol{\tau}_0 \, \boldsymbol{\gamma}_1^{e_1} \, \boldsymbol{\tau}_1) = (\boldsymbol{\tau}_0 \, \boldsymbol{\gamma}_1^{e_1} \, \boldsymbol{\tau}_1)^f$



Technical Contribution

Theorem: Suppose $p(\vec{u}) \xrightarrow{*} q(\vec{v})$ in a given 2-VASS with one unary counter then there exists a poly-size compressed linear form path π that induces a run $p(\vec{u}) \xrightarrow{\pi} q(\vec{w})$ where $\vec{w} \ge \vec{v}$. [this paper]



Conclusion

Theorem: Coverability in 2-VASS with one unary counter is in NP. [this paper]

Proof idea: Guess and check a poly-size compressed linear form path.

Open Problem: is *coverability* in 2-VASS with one unary counter NP-hard?

Open Problem: is *reachability* in 2-VASS with one unary counter in NP?

Thank You!

Presented by Henry Sinclair-Banks, University of Warwick, Coventry, UK FoSSaCS'23 in Sorbonne Université, Paris, France

