
Coverability in VASS Revisited: Improving Racko�’s
Bound to Obtain Conditional Optimality

Henry Sinclair-Banks
University of Warwick

United Kingdom

About joint work with Marvin Künnemann, Filip Mazowiecki, Lia Schütze, and Karol WÍgrzycki in ICALP’23.

Formal Methods Seminar (M2F)

7th November 2023

LaBRI, Bordeaux, France

2-Dimensional Vector Addition System with States

a

b

c

d

e

f

g

(-7, 3)

(2, 0)
(3, 8)

(-2, 2)

(0, 1)

(5, 0)

(-6, 10)

(4, -5)

(1, -1)

(-4, -9) (-4, -9)

(-5, -20)

2-Dimensional VASS

Instance of Coverability in 2-Dimensional VASS

Question: from a can you reach g via a path that is never negative on any component ?

a

g

sum =
(0,0)

sum = (2,0)

sum = (5,8) sum = (3,10)

sum = (7,5)

(1, 10)

sum = (8,15)sum = (9,25)

YES!

sum = (4,5)

Henry Sinclair-Banks Coverability in VASS Revisited 2 / 19

2-Dimensional Vector Addition System with States

a

b

c

d

e

f

g

(-7, 3)

(2, 0)
(3, 8)

(-2, 2)

(0, 1)

(5, 0)

(-6, 10)

(4, -5)

(1, -1)

(-4, -9) (-4, -9)

(-5, -20)

2-Dimensional VASS

Instance of Coverability in 2-Dimensional VASS

Question: from a can you reach g via a path that is never negative on any component ?

a

g

sum =
(0,0)

sum = (2,0)

sum = (5,8) sum = (3,10)

sum = (7,5)

(1, 10)

sum = (8,15)sum = (9,25)

YES!

sum = (4,5)

Henry Sinclair-Banks Coverability in VASS Revisited 2 / 19

Motivation

Resource Management

town city

Road cost: (≠1L fuel, +2kWh battery)

Model of Concurrency

VASS are equivalent to Petri nets

Testing Safety

Positive instance of coverability

Some action sequence reaches a ‘bad’ state

System is unsafe!

∆
∆

Related Problems

Unboundedness

Reachability

Word problems for (commutative) semi-groups

Henry Sinclair-Banks Coverability in VASS Revisited 3 / 19

Overview of this Presentation

1. The history and complexity of coverability.

2. Our improvement over Racko�’s upper bound.
Main concepts: introducing ‘thin configurations’ and using Racko� ’s bounding technique.

3. Obtaining an optimal space algorithm and a conditionally optimal time algorithm.

4. Our Exponential Time Hypothesis conditional lower bound.
Main concepts: reducing clique detection to coverability and simulating bounded counter machines.

Henry Sinclair-Banks Coverability in VASS Revisited 4 / 19

History and Complexity

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates.
(unary encoding)

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).

[Lipton ’76]

Richard Lipton

Theorem: Coverability in VASS is EXPSPACE-hard.

Theorem: Coverability in VASS is in EXPSPACE. [Racko� ’78]

Charles Racko�

Theorem: Coverability in VASS requires 2�(d)
· log(n) space.

Idea: find instances only admitting n2�(d)
length runs. “Lipton’s construction”

Theorem: Coverability in VASS can be decided in 2O(d log d)
· log(n) space. [Racko� ’78]

Charles Racko�
Idea: argue that there are always n2O(d log d)

length runs. “Racko�’s bound”

Open Problem

[Mayr and Meyer ’82]Ernst Mayr Albert Meyer

Refined via a multiparameter
analysis.

[Rosier and Yen ’85]Louis Rosier Hsu-Chun Yen

Example of Long Coverability Runs
(1,0,0,0,0) (-2,1,0,0,0) (0, -2,1,0,0) (0,0, -2,1,0) (0,0,0, -2,1)

(0,0,0,0, -1)

d = 5

p q

◊1◊2◊4◊8◊16

Any coverability run from p to q has length 2�(d).

Henry Sinclair-Banks Coverability in VASS Revisited 5 / 19

History and Complexity

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates.
(unary encoding)

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).

[Lipton ’76]

Richard Lipton

Theorem: Coverability in VASS is EXPSPACE-hard.

Theorem: Coverability in VASS is in EXPSPACE. [Racko� ’78]

Charles Racko�

Theorem: Coverability in VASS requires 2�(d)
· log(n) space.

Idea: find instances only admitting n2�(d)
length runs. “Lipton’s construction”

Theorem: Coverability in VASS can be decided in 2O(d log d)
· log(n) space. [Racko� ’78]

Charles Racko�
Idea: argue that there are always n2O(d log d)

length runs. “Racko�’s bound”

Open Problem

[Mayr and Meyer ’82]Ernst Mayr Albert Meyer

Refined via a multiparameter
analysis.

[Rosier and Yen ’85]Louis Rosier Hsu-Chun Yen

Example of Long Coverability Runs
(1,0,0,0,0) (-2,1,0,0,0) (0, -2,1,0,0) (0,0, -2,1,0) (0,0,0, -2,1)

(0,0,0,0, -1)

d = 5

p q

◊1◊2◊4◊8◊16

Any coverability run from p to q has length 2�(d).

Henry Sinclair-Banks Coverability in VASS Revisited 5 / 19

History and Complexity

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates.
(unary encoding)

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).

[Lipton ’76]

Richard Lipton

Theorem: Coverability in VASS is EXPSPACE-hard.

Theorem: Coverability in VASS is in EXPSPACE. [Racko� ’78]

Charles Racko�

Theorem: Coverability in VASS requires 2�(d)
· log(n) space.

Idea: find instances only admitting n2�(d)
length runs. “Lipton’s construction”

Theorem: Coverability in VASS can be decided in 2O(d log d)
· log(n) space. [Racko� ’78]

Charles Racko�
Idea: argue that there are always n2O(d log d)

length runs. “Racko�’s bound”

Open Problem

[Mayr and Meyer ’82]Ernst Mayr Albert Meyer

Refined via a multiparameter
analysis.

[Rosier and Yen ’85]Louis Rosier Hsu-Chun Yen

Example of Long Coverability Runs
(1,0,0,0,0) (-2,1,0,0,0) (0, -2,1,0,0) (0,0, -2,1,0) (0,0,0, -2,1)

(0,0,0,0, -1)

d = 5

p q

◊1◊2◊4◊8◊16

Any coverability run from p to q has length 2�(d).

Henry Sinclair-Banks Coverability in VASS Revisited 5 / 19

History and Complexity

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates.
(unary encoding)

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).

[Lipton ’76]

Richard Lipton

Theorem: Coverability in VASS is EXPSPACE-hard.

Theorem: Coverability in VASS is in EXPSPACE. [Racko� ’78]

Charles Racko�

Theorem: Coverability in VASS requires 2�(d)
· log(n) space.

Idea: find instances only admitting n2�(d)
length runs. “Lipton’s construction”

Theorem: Coverability in VASS can be decided in 2O(d log d)
· log(n) space. [Racko� ’78]

Charles Racko�
Idea: argue that there are always n2O(d log d)

length runs. “Racko�’s bound”

Open Problem

[Mayr and Meyer ’82]Ernst Mayr Albert Meyer

Refined via a multiparameter
analysis.

[Rosier and Yen ’85]Louis Rosier Hsu-Chun Yen

Example of Long Coverability Runs
(1,0,0,0,0) (-2,1,0,0,0) (0, -2,1,0,0) (0,0, -2,1,0) (0,0,0, -2,1)

(0,0,0,0, -1)

d = 5

p q

◊1◊2◊4◊8◊16

Any coverability run from p to q has length 2�(d).

Henry Sinclair-Banks Coverability in VASS Revisited 5 / 19

Vector Addition Systems with(out) States

d-VASS d-VAS

(Q, T)
Q is a finite set of states.

T ™ Q ◊ Zd
◊ Q are the transitions.

(V)

V ™ Zd is just a set of vectors.

Configurations are in Q ◊ Nd. Configurations are in Nd.

John
Hopcroft

Jean-Jacques
Pansiot

[Hopcroft and Pansiot ’79]Lemma: A d-VASS can be simulated by a (d + 3)-VAS.
Idea: maintain invariants containing information about the number of states and

the current state on three dedicated additional counters.

Takeaway: we will work with VAS because we do not fix the dimension.

Henry Sinclair-Banks Coverability in VASS Revisited 6 / 19

Improving Racko�’s Upper Bound
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Idea: Carefully use Racko�’s bounding technique with sharper counter value bounds.

Racko�’s bound

Counter 1

Co
un

te
r2

◊

Improved bound

Counter 1

Co
un

te
r2

◊

d = 3

Henry Sinclair-Banks Coverability in VASS Revisited 7 / 19

Improving Racko�’s Upper Bound
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Idea: Carefully use Racko�’s bounding technique with sharper counter value bounds.

Racko�’s bound

Counter 1

Co
un

te
r2

◊

Improved bound

Counter 1

Co
un

te
r2

◊

d = 3

Henry Sinclair-Banks Coverability in VASS Revisited 7 / 19

Improving Racko�’s Upper Bound
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Idea: Carefully use Racko�’s bounding technique with sharper counter value bounds.

Racko�’s bound

Counter 1

Co
un

te
r2

◊

Improved bound

Counter 1

Co
un

te
r2

◊

d = 3

Henry Sinclair-Banks Coverability in VASS Revisited 7 / 19

Thin Configurations

Definition: A configuration v̨ œ Nd is thin if, after sorting
the components, v̨[1] < M1, v̨[2] < M2, ..., v̨[d] < Md.

M1

M2

M2

M1

v̨

Importantly, to get an improvement over Racko�’s bound:
M1 << M2 << . . . << Md.

Precisely,
M1 = n · n40

, M2 = n · n41
, . . . , Md = n · n4d≠1.

How many thin configurations exist?

Æ d! · M1 · M2 · ... · Md

Æ d! · M1 · M2 · ... · Md = d! · (n · n40) · (n · n41) · . . . · (n · n4d≠1).
= d! · nd

· n
qd≠1

i=0 4i.

Henry Sinclair-Banks Coverability in VASS Revisited 8 / 19

Bounding the Length of Coverability Runs

M1

M2

M2

M1

ų v̨

Consider the shortest coverability run ų
fi

æ w̨, where w̨ Ø v̨.

w̨

fi

Split fi at first “non-thin” configuration: ų
fl

æ x̨
·

æ w̨.

fl

·

x̨

fl is the thin part of the run, its length is bounded by the
number of thin configurations.
Claim 1: len(fl) Æ d! · nd

· n
qd≠1

i=0 4i.
Proof idea: there cannot be any zero e�ect cycles in fi.

· is the tail of the run, at least one component had a
large value at x̨, so can then be ‘ignored’.
Claim 2: len(·) Æ n4d≠1.

Henry Sinclair-Banks Coverability in VASS Revisited 9 / 19

Using Racko�’s Inductive Technique

M1

M2

M2

M1

v̨
w̨

·

x̨

Claim 2: len(·) Æ n4d≠1. (Proof by induction on d)

Sort the components x̨[1] Æ x̨[2] Æ . . . Æ x̨[d].
There exists i œ {0, . . . , d ≠ 1} such that Mi+1 Æ x̨[i + 1].
Moreover, Mi+1 = n · n4i

Æ x̨[i + 1] Æ . . . Æ x̨[d].

Example: x̨[1] < M1 but x̨[2] Ø M2.

Use induction, focussing just on the first i components.
There is an alternative su�x · Õ with len(· Õ) Æ n4i and
(x[1], . . . , x[i]) · Õ

≠æ (y̨[1], . . . , y̨[i]) Ø (v̨[1], . . . , v̨[i]).
y̨

· Õ

We know that · Õ has at least ≠n · (len(· Õ) ≠ 1) e�ect on each
of the remaining components.

We know that · Õ has at least ≠n · (len(· Õ) ≠ 1) e�ect on each
of the remaining components. Fortunately, (n · n4i

, . . . , n · n4i) Æ (x̨[i + 1], . . . , x̨[d]).

So, (x̨[i + 1], . . . , x̨[d]) · Õ

≠æ (y̨[i + 1], . . . , y̨[d])

n

n

v̨

So, (x̨[i + 1], . . . , x̨[d]) · Õ

≠æ (y̨[i + 1], . . . , y̨[d]) Ø (n, . . . , n)

So, (x̨[i + 1], . . . , x̨[d]) · Õ

≠æ (y̨[i + 1], . . . , y̨[d]) Ø (n, . . . , n) Ø (v̨[i + 1], . . . , v̨[d]).
⇤

Henry Sinclair-Banks Coverability in VASS Revisited 10 / 19

Proof of Main Theorem
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Proof: Let fi be the shortest run witnessing coverability.

len(fi) = len(fl) + len(·)

Æ d! · nd
· n

qd≠1
i=0 4i + n4d≠1

(By Claim 1 and Claim 2)

Æ 2 · d! · nd
· n

qd≠1
i=0 4i

(when n Ø 2, 2 · d! · nd
Æ n2d)Æ n2d

· n
qd≠1

i=0 4i

(when d Ø 1, 2d + qd≠1
i=0 4i

Æ 4d)Æ n4d

= n22d = n2O(d).
⇤

Henry Sinclair-Banks Coverability in VASS Revisited 11 / 19

Algorithms for Coverability
Theorem: Coverability in VASS is always witnessed by n2O(d)

length runs.
[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Corollary 1: Coverability in VASS can be decided in 2O(d)
· log(n) space.

Proof idea: Nondeterministically search through the configuration space, each configuration can be
expressed with 2O(d)

· log(n) bits.

OPTIMAL!

Corollary 2: Coverability in VASS can be decided in n2O(d)
time.

Proof idea: Deterministically search through the configuration space.

CONDITIONALLY OPTIMAL!

Henry Sinclair-Banks Coverability in VASS Revisited 12 / 19

Conditionally Optimal Time Bound
Corollary 2: Coverability in VASS can be decided in n2O(d)

time.

Theorem: Assuming the Exponential Time Hypothesis, coverability in VASS requires n2�(d)
time.

[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Conjecture (Exponential Time Hypothesis): 3-SAT with k-variables requires 2�(k) time.

=
∆

Detecting whether there is a k-clique in an n-vertex graph requires n�(k) time.

Detecting whether there is a k-clique in a k-partite n-vertex graph requires n�(k) time.
[Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia ’05]

[Chen, Huang, Kanj, and Xia ’06]

[Cygan, Fomin, Kowalik, Lokshtanov, Marx, Ma. Pilipczuk, and Mi. Pilipczuk ’15]

Idea: Reduce detecting a 2d-clique in a 2d-partite n-vertex directed graph to coverability.

Henry Sinclair-Banks Coverability in VASS Revisited 13 / 19

Bounded Two-Counter Machines
Idea: Reduce detecting a 2d-clique in a 2d-partite n-vertex directed graph to coverability.

First, reduce to coverability in a n2O(d)-bounded two-counter machine.

Then, simulate a n2O(d)-bounded two-counter machine using an O(n)-state O(d)-VASS.

An n2O(d)-bounded two-counter machine has two counters x, y œ {0, 1, . . . , n2O(d)
} that can be

added to (x + = 2), subtracted from (y ≠ = 3), and zero-tested (x = ? 0).

1. LOOP (x ≠ = 1, y + = 1)
2. x = ? 0
3. LOOP (x + = 5, y ≠ = 1)
4. y = ? 0

Pre: x = x, y = 0

Post: x = x · 5, y = 0

x = ? 0 y = ? 0

x ≠ = 1
y + = 1

x + = 5
y ≠ = 1

MULTIPLY(x, 5)

1. LOOP (x ≠ = 8, y + = 1)
2. x = ? 0
3. LOOP (x + = 1, y ≠ = 1)
4. y = ? 0

Post: x = x ÷ 8, y = 0

x ≠ = 8
y + = 1

x + = 1
y ≠ = 1

DIVIDE(x, 8)

Henry Sinclair-Banks Coverability in VASS Revisited 14 / 19

Bounded Two-Counter Machines
Idea: Reduce detecting a 2d-clique in a 2d-partite n-vertex directed graph to coverability.

First, reduce to coverability in a n2O(d)-bounded two-counter machine.

Then, simulate a n2O(d)-bounded two-counter machine using an O(n)-state O(d)-VASS.

An n2O(d)-bounded two-counter machine has two counters x, y œ {0, 1, . . . , n2O(d)
} that can be

added to (x + = 2), subtracted from (y ≠ = 3), and zero-tested (x = ? 0).

1. LOOP (x ≠ = 1, y + = 1)
2. x = ? 0
3. LOOP (x + = 5, y ≠ = 1)
4. y = ? 0

Pre: x = x, y = 0

Post: x = x · 5, y = 0

x = ? 0 y = ? 0

x ≠ = 1
y + = 1

x + = 5
y ≠ = 1

MULTIPLY(x, 5)

1. LOOP (x ≠ = 8, y + = 1)
2. x = ? 0
3. LOOP (x + = 1, y ≠ = 1)
4. y = ? 0

Post: x = x ÷ 8, y = 0

x ≠ = 8
y + = 1

x + = 1
y ≠ = 1

DIVIDE(x, 8)

Henry Sinclair-Banks Coverability in VASS Revisited 14 / 19

Detecting Cliques using Divisibility Tests
Let (V1 fi V2 fi · · · fi Vk, E) be a k-partite n-vertex graph.

···

·
·
·

V1

V2

V3

Vi

Associate the first n primes with the verticies.

2

3

5

7
11

13

17

19

23
29

A candidate k-clique is represented by a product of k primes.

Example: c = 2 · 7 · 13 · . . . · 23.

2

7

13

23 To check if v represents a clique, use divisibility tests to
verify all nodes are adjacent.

Example: (2 · 7)|c ?Example: (2 · 7)|c ? (2 · 13)|c ?Example: (2 · 7)|c ? (2 · 13)|c ? (7 · 13)|c ?

Example: (2 · 7)|c ? (2 · 13)|c ? (7 · 13)|c ? . . .

(2 · 23)|c ?(2 · 23)|c ? (7 · 23)|c ?

(2 · 23)|c ? (7 · 23)|c ? (13 · 23)|c ?

There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk)There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E

There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E such that (p · q)| p1 · . . . · pk

There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E such that (p · q)| p1 · . . . · pk ≈∆ there exists a k-clique.

Henry Sinclair-Banks Coverability in VASS Revisited 15 / 19

Bounded Two-Counter Machine Implementation
There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E such that (p · q)| p1 · . . . · pk ≈∆ there exists a k-clique.

Guessing with Nondeterministic Branching

Pre: x = x

1. GUESS: c œ {1, 2, 3}

2. x + = c

Post: x = x + 1, or
x = x + 2, or
x = x + 3.

x + = 1

x + = 2

x + = 3

Part one: Guess a candidate clique.
Pre: x = 1, y = 0.

1. GUESS: p1 œ Primes(V1)
2. MULTIPLY(x, p1)

...
2k-1. GUESS: pk œ Primes(Vk)

2k. MULTIPLY(x, pk)
Post: x = p1 · . . . · pk, y = 0.

Part two: Check the candidate is a clique.
Pre: x = p1 · . . . · pk, y = 0.

1. GUESS: {p1, p2} œ (V1 ◊ V2) fl E

2. DIVIDE(x, p1 · p2)
3. MULTIPLY(x, p1 · p2)

...
<3k2. GUESS: {pk≠1, pk} œ (Vk≠1 ◊ Vk) fl E

<3k2. DIVIDE(x, pk≠1 · pk)
<3k2. MULTIPLY(x, pk≠1 · pk)

Post: x = p1 · . . . · pk, y = 0.
This two-counter program terminates

≈∆ there exists a k-clique.

Henry Sinclair-Banks Coverability in VASS Revisited 16 / 19

Bounded Two-Counter Machine Implementation
There exist p1 œ Primes(V1), . . . , pk œ Primes(Vk) such that for every pair 1 Æ i < j Æ k, there
is an edge {p, q} œ (Vi ◊ Vj) fl E such that (p · q)| p1 · . . . · pk ≈∆ there exists a k-clique.

Guessing with Nondeterministic Branching

Pre: x = x

1. GUESS: c œ {1, 2, 3}

2. x + = c

Post: x = x + 1, or
x = x + 2, or
x = x + 3.

x + = 1

x + = 2

x + = 3

Part one: Guess a candidate clique.
Pre: x = 1, y = 0.

1. GUESS: p1 œ Primes(V1)
2. MULTIPLY(x, p1)

...
2k-1. GUESS: pk œ Primes(Vk)

2k. MULTIPLY(x, pk)
Post: x = p1 · . . . · pk, y = 0.

Part two: Check the candidate is a clique.
Pre: x = p1 · . . . · pk, y = 0.

1. GUESS: {p1, p2} œ (V1 ◊ V2) fl E

2. DIVIDE(x, p1 · p2)
3. MULTIPLY(x, p1 · p2)

...
<3k2. GUESS: {pk≠1, pk} œ (Vk≠1 ◊ Vk) fl E

<3k2. DIVIDE(x, pk≠1 · pk)
<3k2. MULTIPLY(x, pk≠1 · pk)

Post: x = p1 · . . . · pk, y = 0.
This two-counter program terminates

≈∆ there exists a k-clique.

Henry Sinclair-Banks Coverability in VASS Revisited 16 / 19

VASS can Simulate Bounded Two-Counter Machines

Counter bound of k-clique detecting two-counter machine: O(pk
max)Counter bound of k-clique detecting two-counter machine: O(pk
max) Æ O(nk log(n)k)

Counter bound of k-clique detecting two-counter machine: O(pk
max) Æ O(nk log(n)k) Æ O(n2k).

Size of k-clique detecting two-counter machine: O(n11) Æ poly(n).

Louis Rosier Hsu-Chun Yen [Rosier and Yen ’85]

Lemma: In poly(n) time, one can construct a O(log(k))-VASS that can
simulate an O(nk)-bounded O(1)-counter machine of poly(n) size.

If we set k = 2d, the poly(n)-size two-counter machine for detecting 2d-cliques is O(n2d)-bounded.

=∆ In poly(n) time, one can construct an O(d)-VASS for detecting 2d-cliques.

Remark: Here, termination is coverability.

“Can I get to the end of the program with any (at least zero) value on each of the counters?”

Henry Sinclair-Banks Coverability in VASS Revisited 17 / 19

Reducing to Coverability in VASS

Detecting 2d-cliques in an n-vertex graph requires n�(2d) time under the Exponential Time Hypothesis.

Via divisibilty tests of a product of primes encoding.

First, construct an instance of termination in a poly(n)-size O(n2d)-bounded two-counter machine.

Using Rosier and Yen’s simulation lemma.

Then, in poly(n) time, construct an instance of coverability in an O(d)-VASS.

Theorem: Assuming the Exponential Time Hypothesis, coverability in VASS requires n2�(d)
time.

[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Henry Sinclair-Banks Coverability in VASS Revisited 18 / 19

Coverability in VASS Revisited: Improving Racko�’s
Bound to Obtain Conditional Optimality

Theorem: Coverability in VASS is always witnessed by n2O(d)
length runs.

[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

Corollary 1: Coverability in VASS can be decided in 2O(d)
· log(n) space. OPTIMAL!

Corollary 2: Coverability in VASS can be decided in n2O(d)
time.

Theorem: Assuming the Exponential Time Hypothesis, coverability in VASS requires n2�(d)
time.

[Künnemann, Mazowiecki, Schütze, S-B, and WÍgrzycki ’23]

CONDITIONALLY OPTIMAL!

Thank You!
Presented by Henry Sinclair-Banks, University of Warwick, UK

Formal Methods Seminar (M2F) in LaBRI, Bordeaux, France

henry.sinclair-banks.com 19 / 19

http://henry.sinclair-banks.com

