Coverability in VASS Revisited: Improving Rackoff's Bound to Obtain Conditional Optimality

RPTU RPTU Kaiserslautern-Landau, Germany

University of Warsaw, Poland

Max Planck Institute for Software Systems, Germany

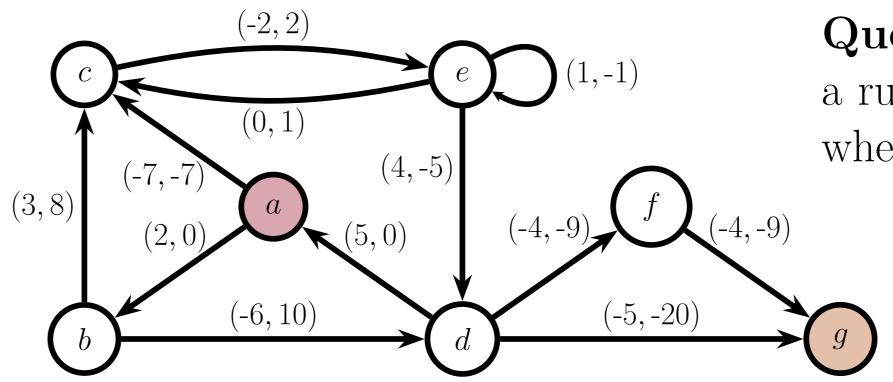
University of Warwick, United Kingdom

Saarland University and Max Planck Institute for Informatics, Germany

Problem Statement

<u>Vector</u> <u>Addition</u> <u>Systems with</u> <u>States can be seen as a directed graphs with</u> integer vector labels equipped with d non-negative counters. A configuration is a state and d natural numbers. In runs, the integer vectors are added to the counters. The size of VASS in unary encoding is denoted by n.

Example Instance



Question: Does there exist a run from a(0,0) to g(x,y)where $x, y \ge 0$?

[Rackoff '78] [Rosier and Yen '85]

[Mayr and Meyer '82]

Coverability problem

Input: A VASS \mathcal{V} , an initial configuration $p(\mathbf{u})$, a target configuration $q(\mathbf{v})$. **Question:** Does there exist a run in \mathcal{V} from $p(\mathbf{u})$ to $q(\mathbf{w})$ where $\mathbf{w} \ge \mathbf{v}$?

Contributions

 M_2

[Best paper award for Track B at ICALP'23] 1 Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs. \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space. **Optimal!**

 \implies Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time. Conditionally **Optimal!** 2 Assuming ETH, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

3 Under the k-cycle hypothesis, coverability in (unary) 2-VASS requires $n^{2-o(1)}$ -time.

Under the k-hyperclique hypothesis, coverability in linearly-bounded VASS requires $n^{d-2-o(1)}$ -time.

1 Improving Rackoff's Upper Bound

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs. **Idea:** Carefully use Rackoff's technique with sharper bounds. Induction on the dimension d, if a counter exceeds a large value it can be 'ignored'.

Brief History & Complexity

Theorem: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space. **Idea:** Find instance only admitting $n^{2^{\Omega(d)}}$ length runs. "Lipton's construction" [Lipton '76] [Rosier and Yen '85]

Theorem: Coverability in VASS can be decided in $2^{\mathcal{O}(d \log d)} \cdot \log(n)$ -space. **Idea:** Argue that there are always $n^{2^{\mathcal{O}(d \log d)}}$ length runs. "Rackoff's bound"

Improve these bounds. **Open problem:**

Motivation

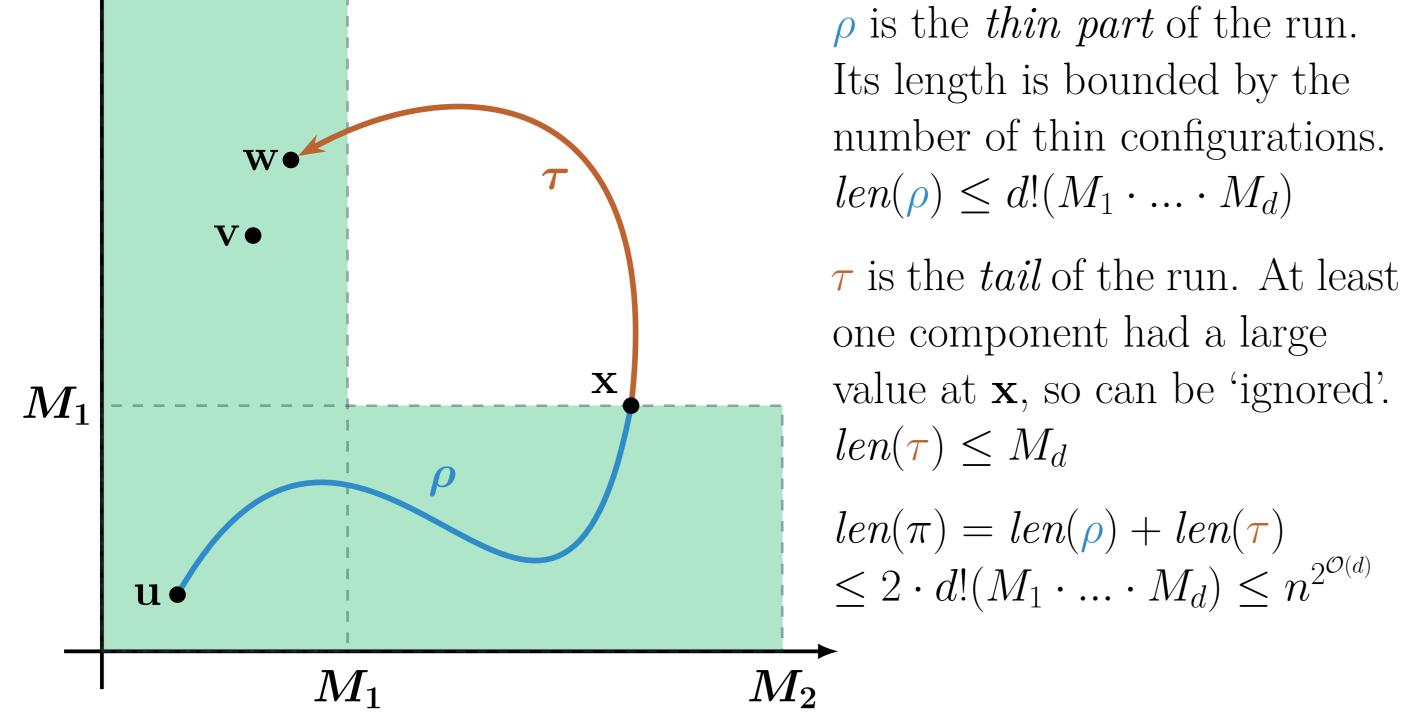
Resource management:

Finding routes for multi-fuel vechicles.

Testing safety: A positive instance of coverability.

 \implies Some sequence of actions reaches a 'bad' state. \implies The given system is unsafe!

Consider the shortest coverability run from **u** to **w** where $\mathbf{w} \geq \mathbf{v}$. Split it at the first *non-thin* configuration \mathbf{x} .



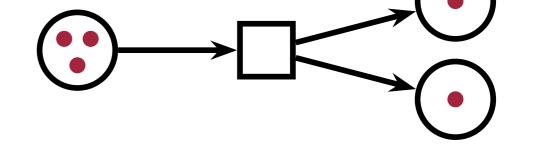
Lemma: A *d*-VASS can be simulated by (d+3)-VAS (without states). [Hopcroft and Pansiot '79]

B Coverability in Unary 2-VASS

Hypothesis: Finding a k-cycle in a k-circle-layered graph of m edge requires $m^{2-o(1)}$ -time. [Lincoln, Vassilevska Williams, Williams '18] **Theorem:** Under the k-cycle hypothesis, coverability in (unary) 2-VASS requires $n^{2-o(1)}$ -time.

Model of concurrency:

VASS are equivalent to Petri nets.



(-1L fuel, +2kWh battery)

Related problems: Boundedness, reachability, and word problems for (commutative) semi-groups.

2 Conditional Time Lower Bound

<u>Exponential</u> <u>**Time</u></u> <u>Hypothesis:** 3-SAT requires $2^{\Omega(n)}$ -time.</u></u> \implies Finding a k-clique in a k-partite graph of n verticies requires $n^{\Omega(k)}$ -time. **Theorem:** Assuming ETH, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

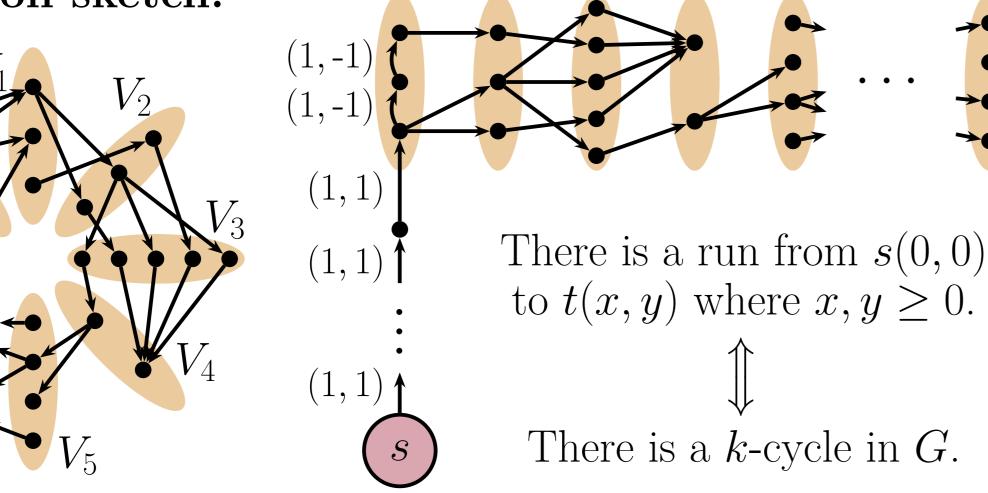
Let $k = 2^{d}$. **Reduction sketch:** Counter program For i = 1 to k: V_2 **Guess:** $v \in \{1, ..., n\}$ 11 $\mathbf{x} \leftarrow \mathbf{x} \cdot p_v$ For i = 1 to k and j = 1 to i - 1: **Guess:** $\{u, v\} \in E \cap (V_i \times V_j)$ 13 $\mathbf{x} \leftarrow \mathbf{x} \div (p_u \cdot p_v)$ V_3 **19**- $\mathbf{x} \leftarrow \mathbf{x} \cdot (p_u \cdot p_v)$

The product of kprimes uniquely corresponds to a potential clique.

Can be implemented as a $\mathcal{O}(n^k)$ -bounded 2-VASS with zero-tests.

Reduction sketch:

G



That can be simulated by a $\mathcal{O}(\log(k))$ -VASS.

[Rosier and Yen '85]

4 Coverability in Linearly-Bounded VASS

Hypothesis: Finding a k-hyperclique in a 3-uniform k-partite hypergraph of n verticies requires $n^{k-o(1)}$ -time. [Lincoln, Vassilevska Williams, Williams '18] Linearly-bounded VASS have their maximum counter values bounded above by a constant multiple of the size of the VASS.

Observation: Coverability in linearly-bounded VASS can be decided in $\mathcal{O}(n^{d+1})$ -time by a trivial exhaustive search of the configurations.

Theorem: Under the k-hyperclique hypothesis, coverability in linearlybounded VASS requires $n^{d-2-o(1)}$ -time.

http://henry.sinclair-banks.com - July 2023 Highlights'23 in University of Kassel, Germany —

(-1, 1)

(-1, 1)

(-1, -1)

 $\mathbf{I}(-1,-1)$

 $\downarrow(-1,-1)$