Henry Sinclair-Banks

Joint work with Marvin Künnemann, Filip Mazowiecki, Lia Schütze, and Karol Węgrzycki in ICALP'23.

Highlights'23 26th July 2023

Kassel, Germany

2-Dimensional Vector Addition System with States

2-Dimensional Vector Addition System with States

2-Dimensional VASS

Coverability in VASS

Coverability in VASS

Coverability problem: from *p* can you reach *q* via a path that is *never negative on any component*?

Resource Management

Resource Management

Model of Concurrency

VASS are equivalent to Petri nets

Resource Management

Model of Concurrency

VASS are equivalent to Petri nets

Testing Safety

Positive instance of coverability \downarrow Some action sequence reaches a 'bad' state \downarrow System is unsafe!

d is the dimension: number of components.

Theorem: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space.

[Lipton '76]

Richard Lipton

d is the dimension: number of components.

Theorem: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space. [Lipton '76]

Idea: find instances only admitting $n^{2^{\Omega(d)}}$ length runs. "Lipton's construction"

d is the dimension: number of components. n is the size: number of states plus the absolute values of all updates (unary encoding).

Theorem: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space. [Lipton '76]

Idea: find instances only admitting $n^{2^{\Omega(d)}}$ length runs. "Lipton's construction"

Theorem: Coverability in VASS can be decided in $2^{\mathcal{O}(d \log d)} \cdot \log(n)$ -space. [Rackoff '78]

Charles Rackoff

d is the dimension: number of components.

Theorem: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space. [Lipton '76]

Idea: find instances only admitting $n^{2^{\Omega(d)}}$ length runs. "Lipton's construction"

Theorem: Coverability in VASS can be decided in $2^{\mathcal{O}(d \log d)} \cdot \log(n)$ -space. [Rackoff '78] **Idea:** argue that there are always $n^{2^{\mathcal{O}(d \log d)}}$ length runs. *"Rackoff's bound"*

Charles Rackoff

d is the dimension: number of components.

Theorem: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space. [Lipton '76]

Idea: find instances only admitting $n^{2^{\Omega(d)}}$ length runs. *"Lipton's construction"*

Theorem: Coverability in VASS can be decided in $2^{\mathcal{O}(d \log d)} \cdot \log(n)$ -space. [Rackoff '78] **Idea:** argue that there are always $n^{2^{\mathcal{O}(d \log d)}}$ length runs. *"Rackoff's bound"*

Charles Rackoff

Ernst Mayr

yr Albert Meyer

d is the dimension: number of components.

Theorem: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space. [Lipton '76]

Idea: find instances only admitting $n^{2^{\Omega(d)}}$ length runs. "Lipton's construction"

Theorem: Coverability in VASS can be decided in $2^{\mathcal{O}(d \log d)} \cdot \log(n)$ -space. [Rackoff '78] **Idea:** argue that there are always $n^{2^{\mathcal{O}(d \log d)}}$ length runs. *"Rackoff's bound"*

Charles Rackoff

Ernst Mayr

Open Problem Improve these bounds. [Mayr and Meyer '82]

Louis Rosier Hsu-Chun Yen

analysis.

[Rosier and Yen '85]

d is the dimension: number of components.

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space.

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space.

OPTIMAL!

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space.

OPTIMAL!

 \implies Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time.

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space. OPTIMAL!

 \implies Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time.

2 Theorem: Assuming the exponential time hypothesis, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space. OPTIMAL!

 \implies Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time.

CONDITIONALLY OPTIMAL!

Theorem: Assuming the exponential time hypothesis, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space. OPTIMAL!

 \implies Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time. CONDITIONALLY OPTIMAL!

2 Theorem: Assuming the exponential time hypothesis, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

3 Theorem: Under the k-cycle hypothesis, coverability in VASS requires $n^{2-o(1)}$ -time, for d=2.

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space. OPTIMAL!

 \implies Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time. CONDITIONALLY OPTIMAL!

2 Theorem: Assuming the exponential time hypothesis, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

3 Theorem: Under the k-cycle hypothesis, coverability in VASS requires $n^{2-o(1)}$ -time, for d=2.

4 Theorem: Under the k-hyperclique hypothesis, coverability in *linearly bounded* VASS requires $n^{d-2-o(1)}$ -time.

1 Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

 \implies Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space. OPTIMAL!

 \implies Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time. CONDITIONALLY OPTIMAL!

Theorem: Assuming the exponential time hypothesis, coverability in VASS requires $n^{2^{\Omega(d)}}$ -time.

3 Theorem: Under the k-cycle hypothesis, coverability in VASS requires $n^{2-o(1)}$ -time, for d=2.

Theorem: Under the k-hyperclique hypothesis, coverability in *linearly bounded* VASS requires $n^{d-2-o(1)}$ -time.

Thank You!

Presented by Henry Sinclair-Banks, University of Warwick, UK

Highlights'23 in University of Kassel, Germany

