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Instance of Coverability in 2-Dimensional VASS
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Instance of Coverability in 2-Dimensional VASS
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Instance of Coverability in 2-Dimensional VASS
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sum= (4,5)

YES!
Question: from @ can you reach @ via a path that is never negative on any component ?

Henry Sinclair-Banks Coverability in VASS Reuvisited 2 /)7



Coverability in VASS
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Coverability in VASS

Coverability problem: from p can you reach q via a path that is never negative on any component?
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Motivation

Resource Management
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Motivation
Resource Management Model of Concurrency
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Motivation
Resource Management Model of Concurrency

VASS are equivalent to Petri nets
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Road cost: (—1L fuel, +2kWh battery)

Testing Safety

Positive instance of coverability

|

Some action sequence reaches a ‘bad’ state

|

System is unsafe!
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Road cost: (—1L fuel, +2kWh battery)

Testing Safety

Positive instance of coverability

|

Some action sequence reaches a ‘bad’ state

|

System is unsafe!
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Model of Concurrency

VASS are equivalent to Petri nets

_—O
— —0

Related Problems

Unboundedness

Reachability

Word problems for (commutative) semi-groups
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History and Complexity

d is the dimension: number of components.

1 is the size: number of states plus the absolute values of all updates.
(unary encoding)
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History and Complexity

Theorem: Coverability in VASS requires 29 . log(n)-space. [Lipton '76]
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/% ldea: argue that there are always 70

length runs.  “Rackoff’s bound”
Charles Rackoff

Open Problem

g Refined via a multiparameter
25
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__________________ Q y

[Mayr and Meyer '82] Loﬁis Rosier Hsu-Chun Yen [Rosier and Yen '85]

d is the dimension: number of components.
n is the size: number of states plus the absolute values of all updates (unary encoding).
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Idea: Carefully use Rackoff’'s bounding technique with sharper counter value bounds.
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