
Coverability in VASS Revisited: Improving Racko�’s
Bound to Obtain Conditional Optimality

Henry Sinclair-Banks

Joint work with Marvin Künnemann, Filip Mazowiecki, Lia Schütze, and Karol WÍgrzycki in ICALP’23.

Highlights’23

26th July 2023

Kassel, Germany



2-Dimensional Vector Addition System with States

a

b

c

d

e

f

g

(-7, 3)

(2, 0)
(3, 8)

(-2, 2)

(0, 1)

(5, 0)

(-6, 10)

(4, -5)

(1, -1)

(-4, -9) (-4, -9)

(-5, -20)

2-Dimensional VASSInstance of Coverability in 2-Dimensional VASS

Question: from a can you reach g via a path that is never negative on any component ?

a

g

sum =
(0,0)

sum = (2,0)

sum = (5,8) sum = (3,10)

sum = (7,5)

(1, 10)

sum = (8,15)sum = (9,25)

YES!

sum = (4,5)
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Coverability in VASS

a

b

c

d

e

f

g

(-7, 3, ...)
(2, 0, ...)

(3, 8, ...)

(-2, 2, ...)

(0, 1, ...)

(5, 0, ...)

(-6, 10, ...)

(4, -5, ...)

(1, -1, ...)

(-4, -9, ...) (-4, -9, ...)

(-5, -20, ...)

Coverability problem: from p can you reach q via a path that is never negative on any component ?
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Motivation

Resource Management

town city

Road cost: (≠1L fuel, +2kWh battery)

Model of Concurrency

VASS are equivalent to Petri nets

Testing Safety

Positive instance of coverability

Some action sequence reaches a ‘bad’ state

System is unsafe!

∆
∆

Related Problems

Unboundedness

Reachability

Word problems for (commutative) semi-groups
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History and Complexity

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates.

(unary encoding)

d is the dimension: number of components.

n is the size: number of states plus the absolute values of all updates (unary encoding).

[Lipton ’76]

Richard Lipton

Theorem: Coverability in VASS requires 2�(d)
· log(n)-space.

Idea: find instances only admitting n2�(d)
length runs. “Lipton’s construction”

Theorem: Coverability in VASS can be decided in 2O(d log d)
· log(n)-space. [Racko� ’78]

Charles Racko�

Idea: argue that there are always n2O(d log d)
length runs. “Racko�’s bound”

Open Problem

[Mayr and Meyer ’82]Ernst Mayr Albert Meyer

Refined via a multiparameter

analysis.

[Rosier and Yen ’85]Louis Rosier Hsu-Chun Yen
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Main Contribution: Improving Racko�’s Upper Bound

Theorem: Coverability in VASS is always witnessed by n2O(d)
length runs.

Idea: Carefully use Racko�’s bounding technique with sharper counter value bounds.

Racko�’s bound

Counter 1

C
o
u
n
te

r
2

◊

Improved bound

Counter 1

C
o
u
n
te

r
2

◊

d = 3
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Coverability in VASS Revisited: Improving Racko�’s
Bound to Obtain Conditional Optimality

1 Theorem: Coverability in VASS is always witnessed by n2O(d)
length runs.

=∆ Coverability in VASS can be decided in 2O(d)
· log(n)-space. OPTIMAL!

=∆ Coverability in VASS can be decided in n2O(d)
-time.

2 Theorem: Assuming the exponential time hypothesis, coverability in VASS requires n2�(d)
-time.

CONDITIONALLY OPTIMAL!

3 Theorem: Under the k–cycle hypothesis, coverability in VASS requires n2≠o(1)
-time, for d = 2.

4 Theorem: Under the k–hyperclique hypothesis, coverability in linearly bounded VASS

requires nd≠2≠o(1)
-time.

Thank You!
Presented by Henry Sinclair-Banks, University of Warwick, UK

Highlights’23 in University of Kassel, Germany
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