Coverability in 2-VASS with One Unary Counter

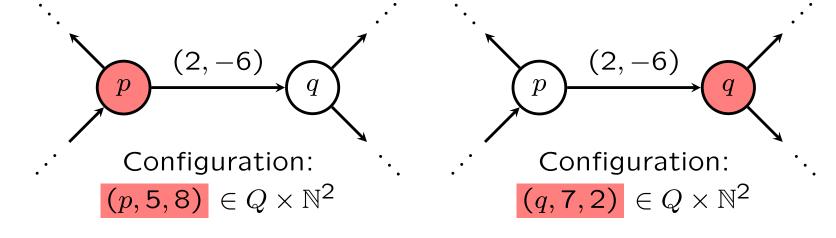
Filip Mazowiecki¹ Henry Sinclair-Banks² Karol Węgrzycki³

Warwick FoCS Theory Day 13th May 2022

 ¹University of Warsaw, Poland
²University of Warwick, UK
³Saarland University and Max Planck Institute for Informatics, Saabrücken, Germany

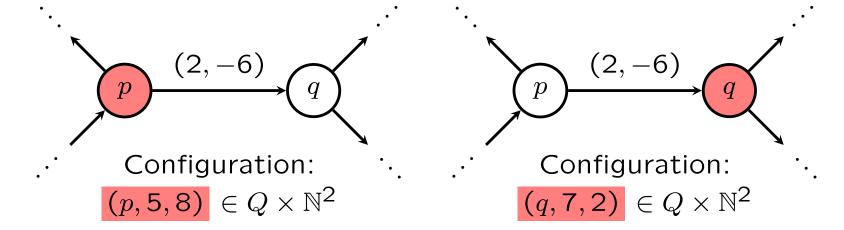
INTRODUCTION

Vector Addition Systems with States (2-VASS)



INTRODUCTION

Vector Addition Systems with States (2-VASS)

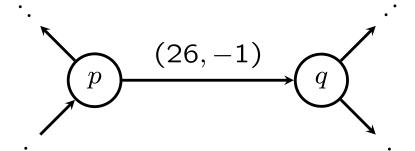


Reachability does there exist a *run* in V from (p, \mathbf{u}) to (q, \mathbf{v}) ?

Coverability does there exist a *run* in V from (p, \mathbf{u}) to $(q, \mathbf{v'})$ for some $\mathbf{v'} \ge \mathbf{v}$?

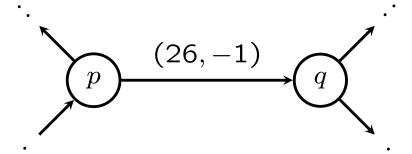
CONTRIBUTION

We consider 2-VASS with one unary counter, the restricted variant where one counter receives unary updates $\{-1, 0, +1\}$.



CONTRIBUTION

We consider 2-VASS with one unary counter, the restricted variant where one counter receives unary updates $\{-1, 0, +1\}$.



Coverability in 2-VASS with one unary counter is in NP.

Counter Programs: sequences of commands on counters.

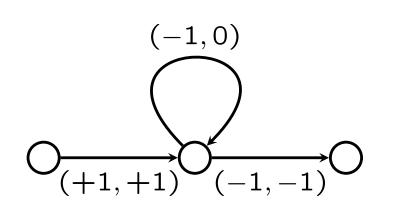
x + = 1 x - = 1 zero(x) goto ℓ or ℓ' halt

Even for 2 counters, halt is undecidable. [Minsky '67]

Counter Programs: sequences of commands on counters.

x + = 1 x - = 1 $\overline{zero(x)}$ goto ℓ or ℓ' halt

Even for 2 counters, halt is undecidable. [Minsky '67]

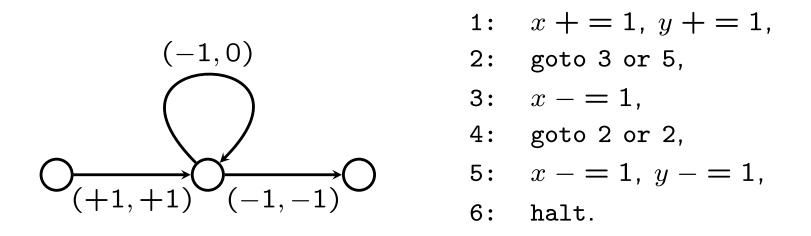


- 1: x + = 1, y + = 1,2: goto 3 or 5, 3: x - = 1,4: goto 2 or 2, 5: x - = 1, y - = 1,
- 6: halt.

Counter Programs: sequences of commands on counters.

x + = 1 x - = 1 $\overline{zero(x)}$ goto ℓ or ℓ' halt

Even for 2 counters, halt is undecidable. [Minsky '67]

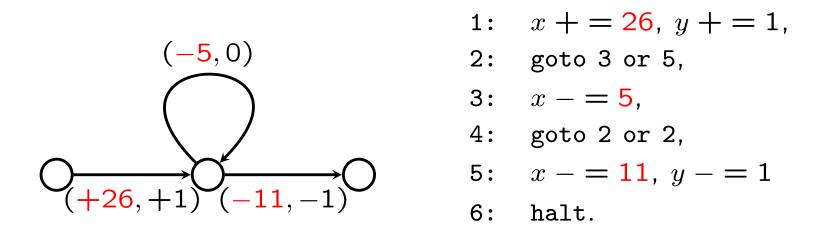


For VASS, reachability is decidable. [Mayr '81]

Counter Programs: sequences of commands on counters.

x + = 1 x - = 1 $\overline{zero(x)}$ goto ℓ or ℓ' halt

Even for 2 counters, halt is undecidable. [Minsky '67]



For VASS, reachability is decidable. [Mayr '81]

RELATED WORK

One counter can be zero-tested:

- **Reachability** is decidable. [Reinhardt '08]
- Simpler proof for VASS model. [Bonnet '11]
- For two counters only, **reachability** is PSPACE-complete. [Leroux and Sutre '20]

RELATED WORK

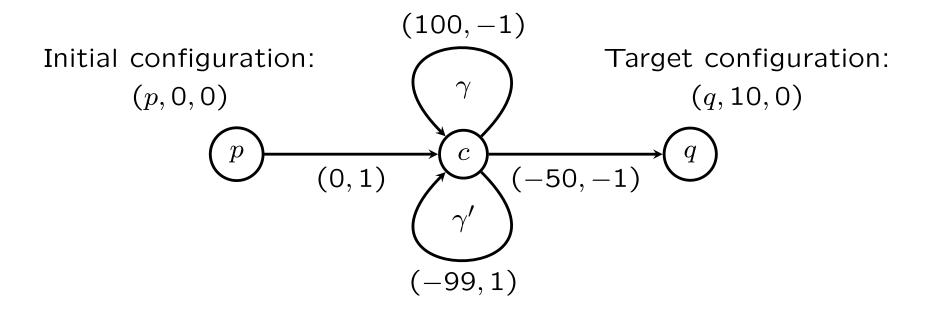
One counter can be zero-tested:

- **Reachability** is decidable. [Reinhardt '08]
- Simpler proof for VASS model. [Bonnet '11]
- For two counters only, **reachability** is PSPACE-complete. [Leroux and Sutre '20]

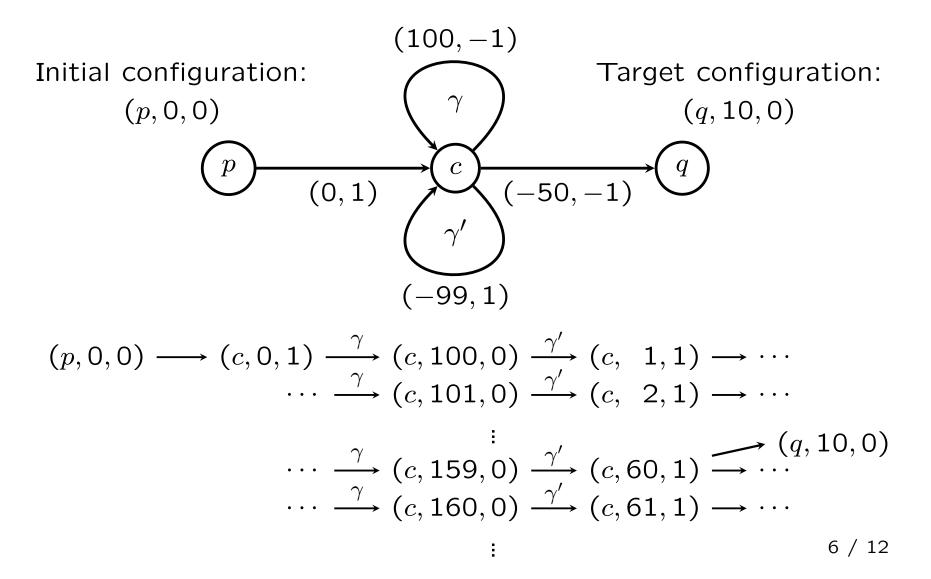
One counter and one stack (1-PVASS):

- **Coverability** is decidable. [Leroux, Sutre, and Totzke '15]
- Reachability and coverability are PSPACE-hard. [Englert, Hofman, Lasota, Lazić, Leroux, and Straszyński '21]

EXAMPLE



EXAMPLE



BACKGROUND

Reachability and coverability are EXPSPACE-hard. [Lipton '76]

Coverability is in EXPSPACE. [Rackoff '78]

BACKGROUND

Reachability and coverability are EXPSPACE-hard. [Lipton '76]

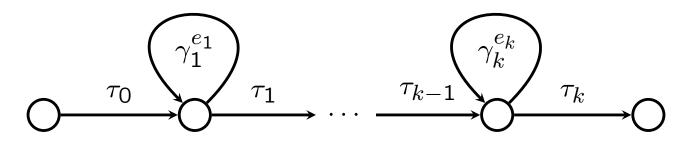
Coverability is in EXPSPACE. [Rackoff '78]

Complexities of fixed dimension **reachability** and **coverability**:

	Unary encoding	Binary encoding
1-VASS	NL-complete	NP-complete NL-hard and in $NC^2 \subseteq P$
2-VASS	NL-complete	PSPACE-complete

DEFINITIONS

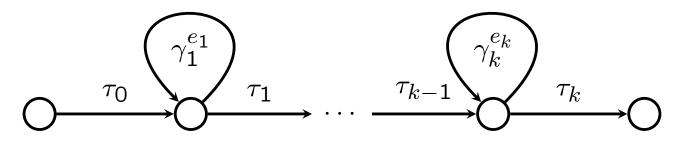
Linear form paths



The paths τ_i connect disjoint cycles γ_i iterated e_i many times.

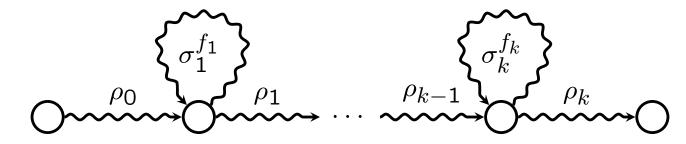
DEFINITIONS

Linear form paths



The paths τ_i connect disjoint cycles γ_i iterated e_i many times.

Compressed linear form paths



For succinctness, the paths ρ_i and cycles σ_i are in linear form.

RESULTS

Theorem: Given a 2-VASS with one unary counter V and suppose there exists a run in V from (p, \mathbf{u}) to (q, \mathbf{v}) . Then there exists <u>compressed</u> linear form path of *polynomial size* inducing a run from (p, \mathbf{u}) to (q, \mathbf{v}') for some $\mathbf{v}' \ge \mathbf{v}$.

RESULTS

Theorem: Given a 2-VASS with one unary counter V and suppose there exists a run in V from (p, \mathbf{u}) to (q, \mathbf{v}) . Then there exists <u>compressed</u> linear form path of *polynomial size* inducing a run from (p, \mathbf{u}) to (q, \mathbf{v}') for some $\mathbf{v}' \ge \mathbf{v}$.

 \Rightarrow Coverability in 2-VASS with one unary counter is in NP.

... just guess and check compressed linear form paths.

PROOF IDEA OF THEOREM

Given a run in V from (p, \mathbf{u}) to (q, \mathbf{v}) , consider the underlying path π of connected transitions in V...

Case 1, π has a polynomial number of transitions:

 $\implies \pi = \tau_0$ is a *poly-size* linear form path.

PROOF IDEA OF THEOREM

Given a run in V from (p, \mathbf{u}) to (q, \mathbf{v}) , consider the underlying path π of connected transitions in V...

Case 1, π has a polynomial number of transitions:

 $\implies \pi = \tau_0$ is a *poly-size* linear form path.

Case 2, success with newly developed techniques:

Cycles are carefully moved and bundled together γ^e .

 $\implies \pi' = \tau_0 \gamma_1^{e_1} \tau_1 \cdots \tau_{k-1} \gamma_k^{e_k} \tau_k$ is a *poly-size* linear form path.

PROOF IDEA OF THEOREM

Given a run in V from (p, \mathbf{u}) to (q, \mathbf{v}) , consider the underlying path π of connected transitions in V...

Case 1, π has a polynomial number of transitions:

 $\implies \pi = \tau_0$ is a *poly-size* linear form path.

Case 2, success with newly developed techniques:

Cycles are carefully moved and bundled together γ^e .

 $\implies \pi' = \tau_0 \gamma_1^{e_1} \tau_1 \cdots \tau_{k-1} \gamma_k^{e_k} \tau_k$ is a *poly-size* linear form path.

Case 3, failure with newly developed techniques:

Implies existance of 'pumpable' linear form cycle σ .

 $\implies \pi'' = \rho \sigma^x \tau$ is a *poly-size* <u>compressed</u> linear form path.

CONCLUSION

Coverability in 2-VASS with one unary counter is in NP.

Unfortunately, we lack a matching NP-hard lower bound.

Conjecture: coverability in P.

• We have only been verify this for linear path schemes (using a dynamic programming algorithm).

CONCLUSION

Coverability in 2-VASS with one unary counter is in NP.

Unfortunately, we lack a matching NP-hard lower bound.

Conjecture: coverability in P.

• We have only been verify this for linear path schemes (using a dynamic programming algorithm).

Future Work: is reachability also in NP?

• If this is true, then it is NP-complete since **reachability** in binary 1-VASS is already NP-hard.

Questions?

Coverability in 2-VASS with One Unary Counter

Presented by Henry Sinclair-Banks