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INTRODUCTION

Vector Addition Systems with States (2-VASS)

p q

···

· · ·

· · ·

···

p q

···

· · ·

· · ·

···Configuration:
(p,5,8) ∈ Q× N2

Configuration:
(q,7,2) ∈ Q× N2

(2,−6) (2,−6)

Reachability does there exist a run in V from p(u) to q(v)?

Coverability does there exist a run in V from p(u) to q(v′)
for some v′ ≥ v?
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CONTRIBUTION

We consider 2-VASS with one unary counter, the restricted
variant where one counter receives unary updates {−1,0,+1}.

p q

···

· · ·

· · ·

···

(26,−1)

Coverability in 2-VASS with one unary counter is in NP.
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MOTIVATION

Counter Programs: sequences of commands on counters.

x + = 1 x − = 1 zero(x) goto ` or `′ halt

Even for 2 counters, halt is undecidable. [Minsky ’67]

6

6

For VASS, reachability is decidable. [Mayr ’81]
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MOTIVATION

Counter Programs: sequences of commands on counters.

x + = 1 x − = 1 ��
���

���XXXXXXXXzero(x) goto ` or `′ halt

Even for 2 counters, halt is undecidable. [Minsky ’67]

(−5,0)
1: x + = 26, y + = 1,
2: goto 3 or 5,
3: x − = 5,
4: goto 2 or 2,
5: x − = 11, y − = 1

6: halt.(+26,+1) (−11,−1)

For VASS, reachability is decidable. [Mayr ’81]
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RELATED WORK

One counter can be zero-tested:

• Reachability is decidable. [Reinhardt ’08]

• Simpler proof for VASS model. [Bonnet ’11]

• For two counters only, reachability is PSPACE-complete.
[Leroux and Sutre ’20]

One counter is replaced with a stack (1-PVASS):

• Coverability is decidable. [Leroux, Sutre, and Totzke ’15]

• Reachability and coverability are PSPACE-hard.
[Englert, Hofman, Lasota, Lazić, Leroux, and Straszyński ’21]
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EXAMPLE

p c q

γ

(100,−1)

γ′

(−99,1)

Initial configuration:
(p,0,0)

Target configuration:
(q,10,0)

γ′

...

(0,1) (−50,−1)
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EXAMPLE

p c q

γ

(100,−1)

γ′

(−99,1)

Initial configuration:
(p,0,0)

Target configuration:
(q,10,0)

(p,0,0) (c,0,1) (c,100,0) (c,01,1)
γ γ′ · · ·

(c,101,0) (c,02,1)· · ·
γ γ′ · · ·

...
(c,159,0) (c,60,1)· · ·

γ γ′ · · ·
(c,160,0) (c,61,1)· · ·

γ γ′ · · ·
...

(q,10,0)

(0,1) (−50,−1)
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BACKGROUND

Reachability and coverability are EXPSPACE-hard. [Lipton ’76]

Coverability is in EXPSPACE. [Rackoff ’78]

.

.
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BACKGROUND

Reachability and coverability are EXPSPACE-hard. [Lipton ’76]

Coverability is in EXPSPACE. [Rackoff ’78]

Complexities of fixed dimension reachability and coverability:

Unary encoding Binary encoding

1-VASS NL-complete
NP-complete

NL-hard and in NC2 ⊆P

2-VASS NL-complete .
. PSPACE-complete .

.
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DEFINITIONS

Linear form paths

γ
e1
1

· · ·

γ
ek
k

τ0 τ1 τk−1 τk

The paths τi connect disjoint cycles γi iterated ei many times.

Compressed linear form paths

For succinctness, the paths ρi and cycles σi are in linear form.
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RESULTS

Theorem: Given a 2-VASS with one unary counter V and
suppose there exists a run in V from (p,u) to (q,v). Then there
exists compressed linear form path of polynomial size inducing a
run from (p,u) to (q,v′) for some v′ ≥ v.

⇒ Coverability in 2-VASS with one unary counter is in NP

... just guess and check compressed linear form paths.
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PROOF IDEA OF THEOREM

Given a run in V from (p,u) to (q,v), consider the underlying
path π of connected transitions in V ...

Case 1, π has a polynomial number of transitions:

γ
ek
k =⇒ π = τ0 is a poly-size linear form path.γekk

Case 2, success with newly developed techniques:

Cycles are carefully moved and bundled together γe.

γ
ek
k =⇒ π′ = τ0γ

e1
1 τ1 · · · τk−1γ

ek
k τk is a poly-size linear form path.γekk

Case 3, failure with newly developed techniques:

Implies existance of ‘pumpable’ linear form cycle σ.

γ
ek
k =⇒ π′′ = ρσxτ is a poly-size compressed linear form path.γekk
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CONCLUSION

Coverability in 2-VASS with one unary counter is in NP.

Unfortunately, we lack a matching NP-hard lower bound.

Conjecture: coverability in P.

• We have only been verify this for linear path schemes (using
a dynamic programming algorithm).

Future Work: is reachability also in NP?

• If this is true, then it is NP-complete since reachability in
binary 1-VASS reachability is already NP-hard.
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Questions?

Coverability in 2-VASS with One Unary Counter

Presented by Henry Sinclair-Banks


