The Complexity of Coverability in Fixed **Dimension VASS with Various Encodings**

University of Warsaw Poland

Filip Mazowiecki Henry Sinclair-Banks University of Warwick United Kingdom

Karol Węgrzycki Saarland University and MPI-INF, Saarbrücken Germany

OFCOURSE 17th November 2022 MPI-SWS, Kaiserslautern, Germany

CHAPTER ZERO INTRODUCTION

Warm-up Example

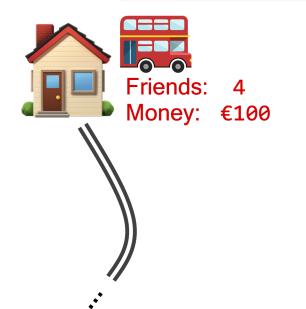
Problem Statement

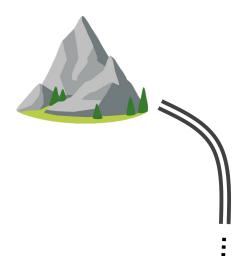
Background and Motivation

Fun-Road-Trip Checklist

 \checkmark always at least one friend, and

✓ never negative money!

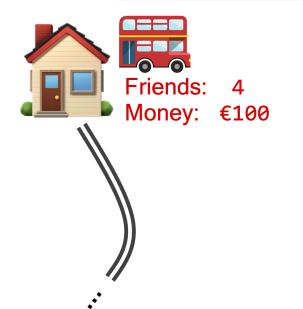




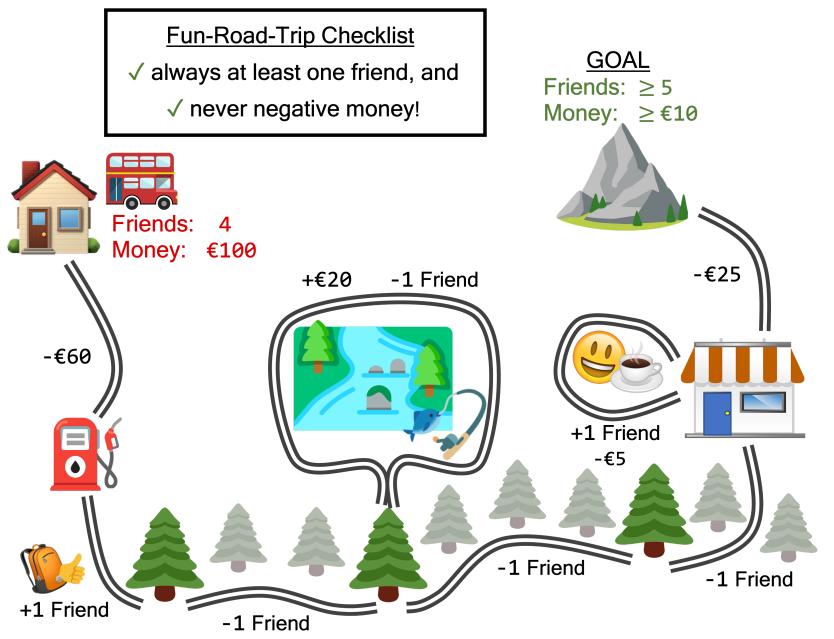
Fun-Road-Trip Checklist

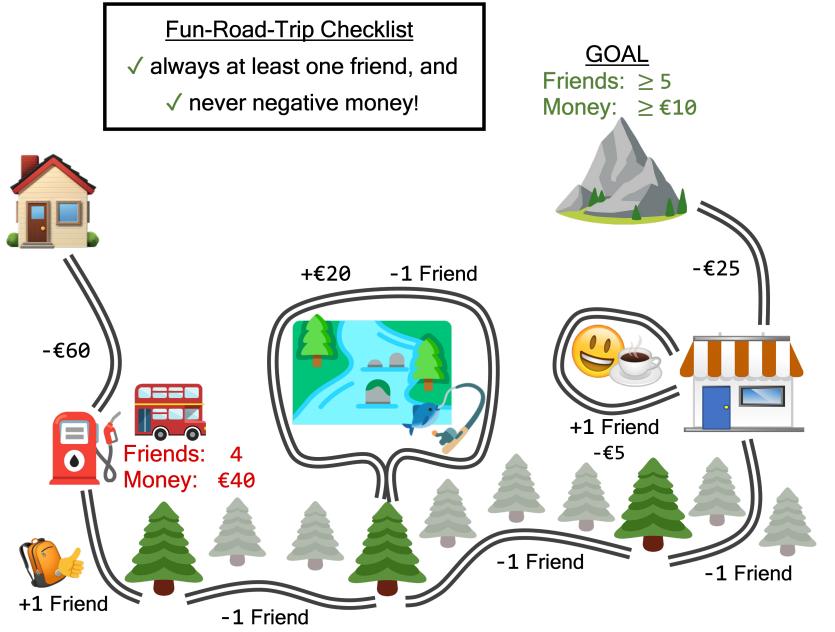
 \checkmark always at least one friend, and

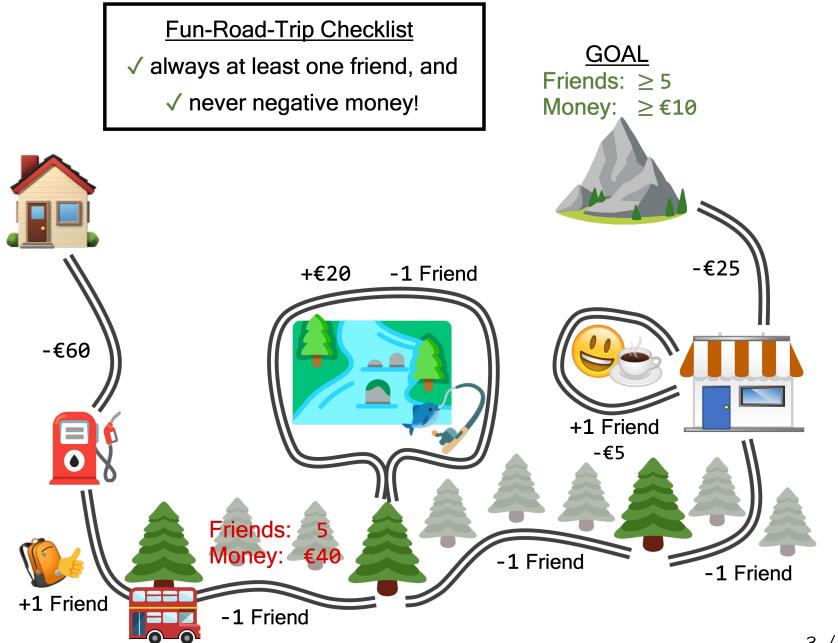
✓ never negative money!

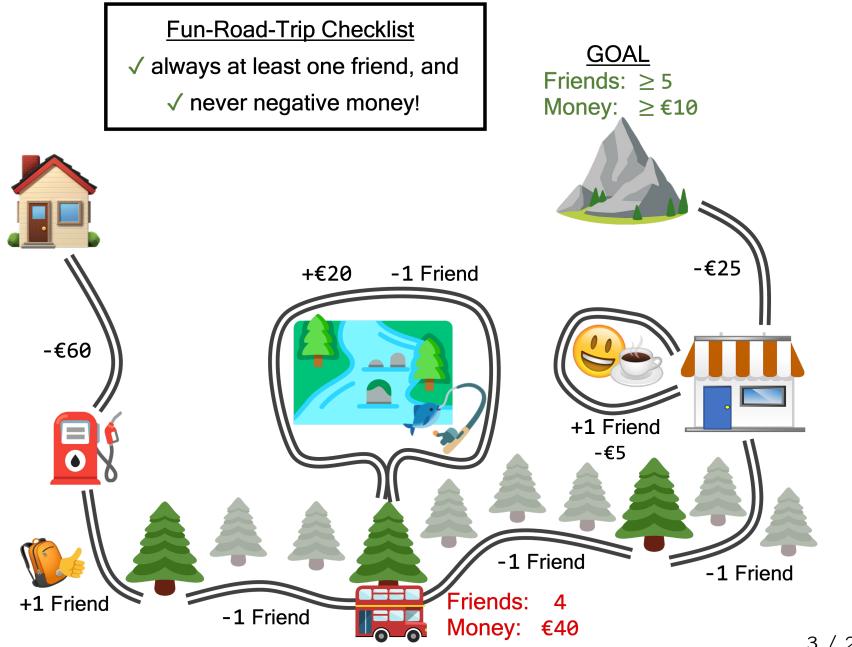


GOAL Friends: ≥ 5 Money: ≥ €10

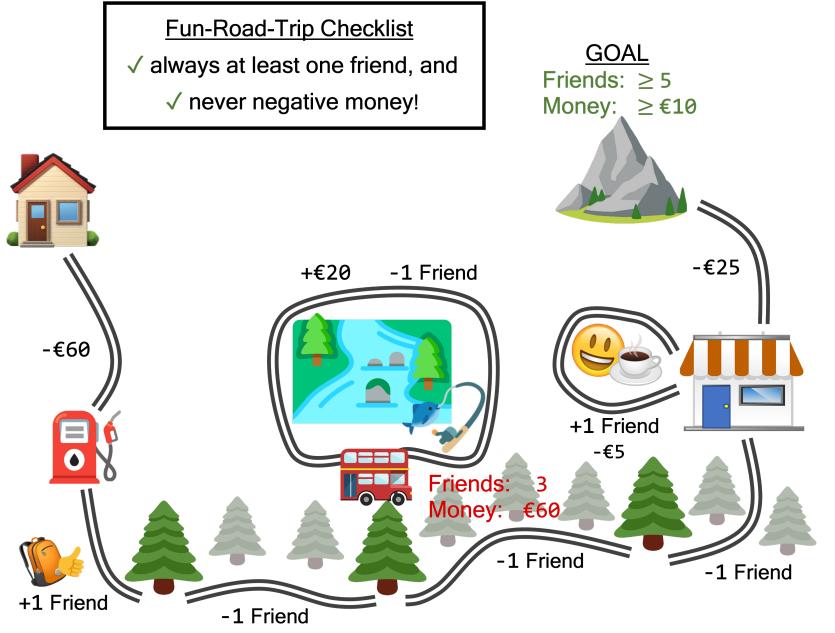


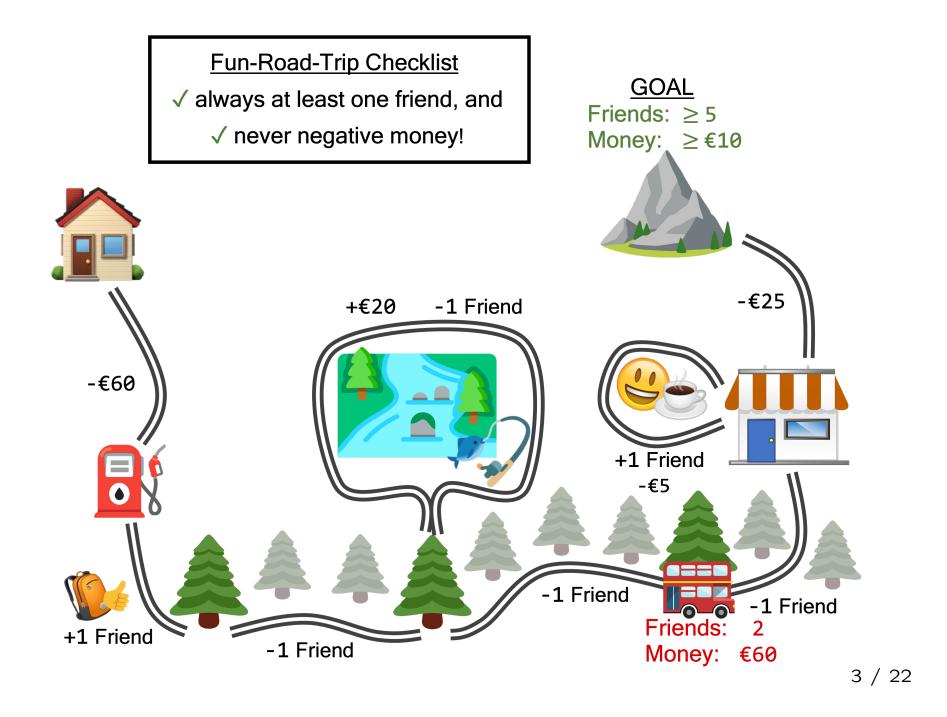


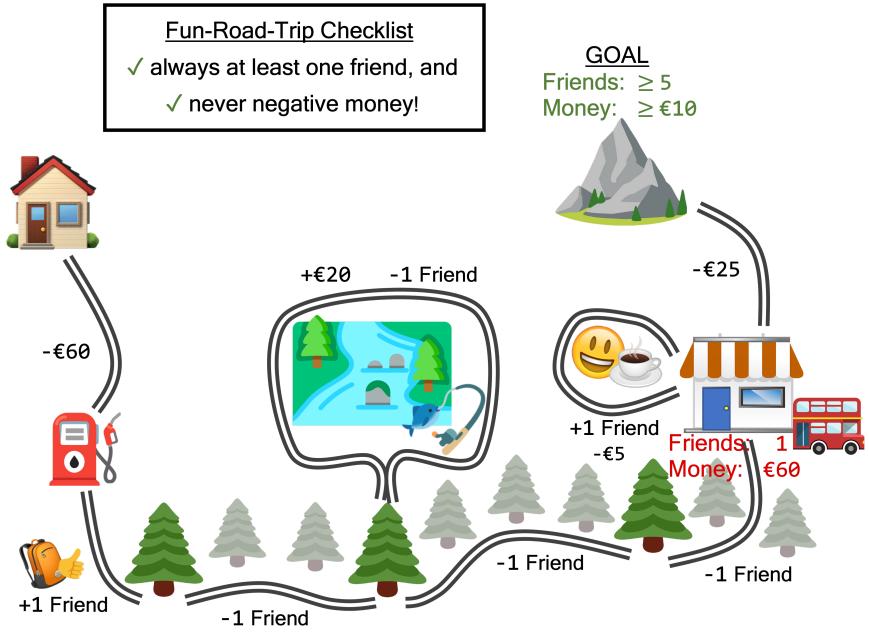




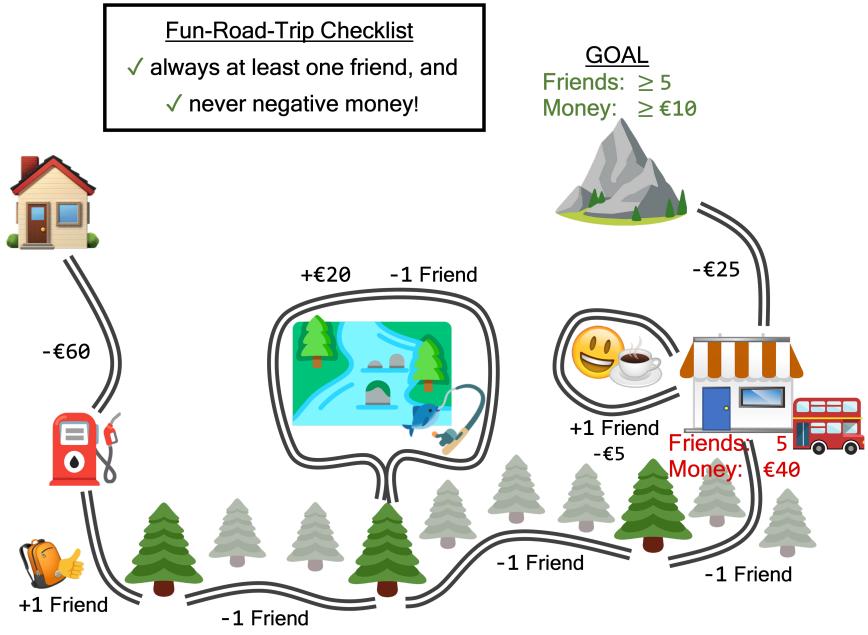
^{3 / 22}



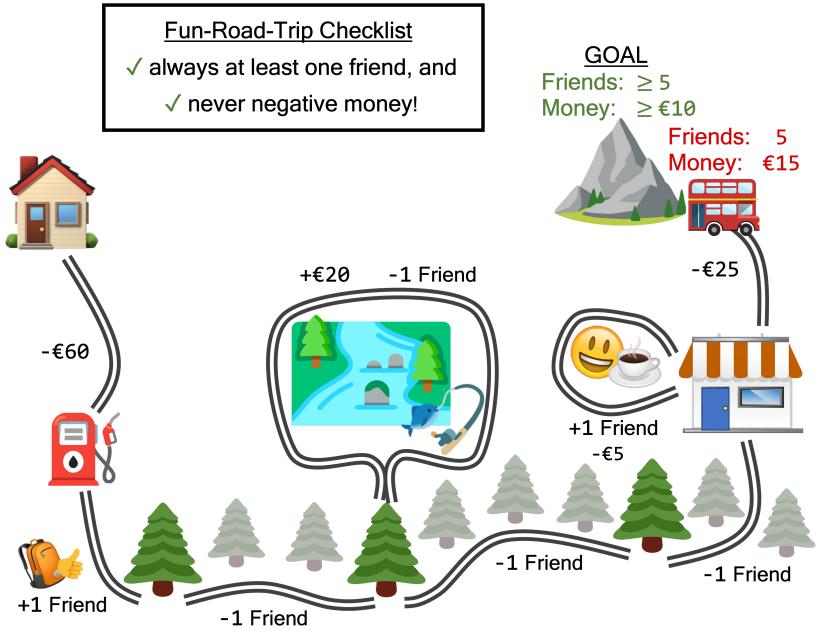




3 / 22

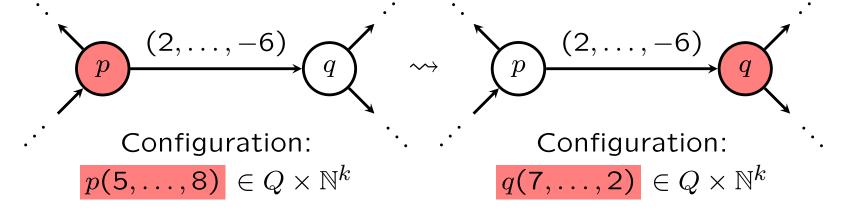


3 / 22



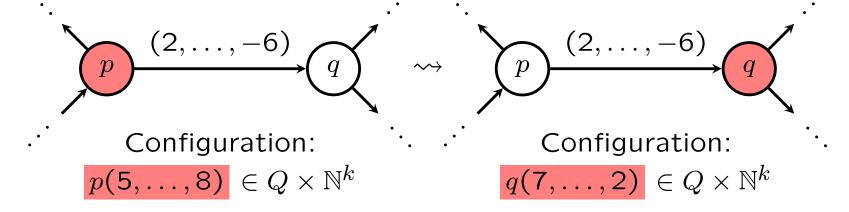
PROBLEM STATEMENT

Vector Addition Systems with States (k-VASS)



PROBLEM STATEMENT

Vector Addition Systems with States (k-VASS)



Reachability does there exist a *run* from $p(\vec{u})$ to $q(\vec{v})$?

Coverability does there exist a *run* from $p(\vec{u})$ to $q(\vec{w})$ for some $\vec{w} \ge \vec{v}$?

Coverability in non-fixed dimension VASS is EXPSPACE-complete,regardless of the encoding.[Lipton '76] [Rackoff '78]

Coverability in non-fixed dimension VASS is EXPSPACE-complete,regardless of the encoding.[Lipton '76] [Rackoff '78]

Coverability in binary k-VASS is in PSPACE. [Rackoff '78]

Coverability in unary k-VASS is in NL. [Rackoff '78]

Coverability in non-fixed dimension VASS is EXPSPACE-complete,regardless of the encoding.[Lipton '76] [Rackoff '78]

Coverability in binary k-VASS is in PSPACE. [Rackoff '78]

Coverability in unary k-VASS is in NL. [Rackoff '78]

Coverability in binary 2-VASS is PSPACE-hard. [Blondin, Finkel, Göller, Haase, and McKenzie '15]

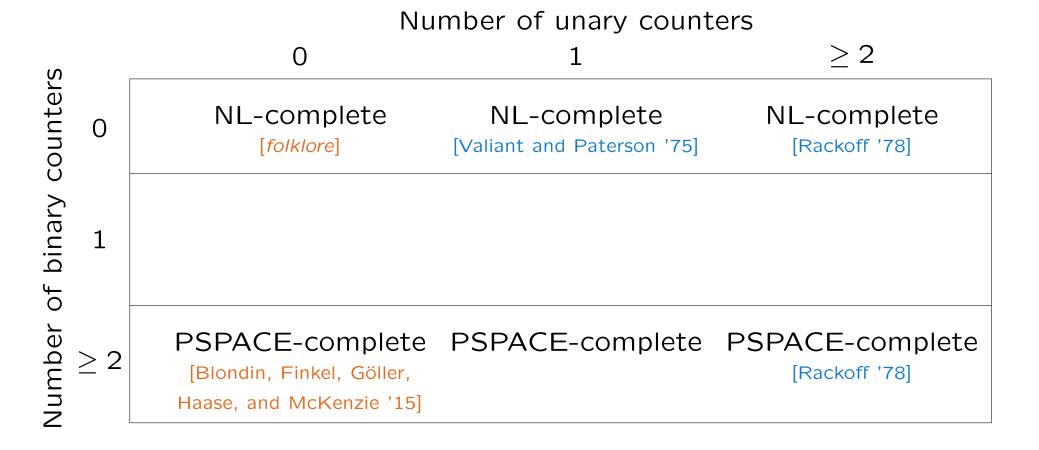
Coverability in non-fixed dimension VASS is EXPSPACE-complete,regardless of the encoding.[Lipton '76] [Rackoff '78]

Coverability in binary k-VASS is in PSPACE. [Rackoff '78]

Coverability in unary k-VASS is in NL. [Rackoff '78]

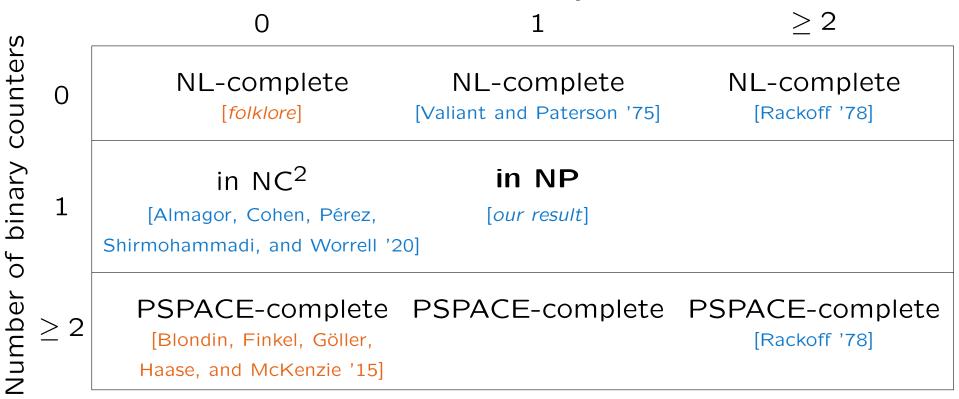
Coverability in <u>binary</u> 2-VASS is PSPACE-hard. [Blondin, Finkel, Göller, Haase, and McKenzie '15]

Coverability in binary 1-VASS is in NC². [Almagor, Cohen, Pérez, Shirmohammadi, and Worrell '20]



Number of unary counters

Number of unary counters



Number of unary counters

MOTIVATION

Petri nets are an equivalent model of computation.

Coverability has applications in verification of safety conditions.

Reachability tools are often applied to coverability benchmarks.

MOTIVATION

Petri nets are an equivalent model of computation.

Coverability has applications in verification of safety conditions.

Reachability tools are often applied to coverability benchmarks.

Related problems (with asymmetric treatment of counters):

Coverability in 1-VASS with a pushdown stack is PSPACE-hard and is decidable. [Leroux, Sutre, and Totzke '15] [Englert, Hofman, Lasota, Lazic, Leroux, and Straszyński '20]

Reachability in 2-VASS where one counter can be zero-tested is PSPACE-complete. [Leroux and Sutre '20]

CHAPTER ONE UPPER BOUNDS

Our Contribution The Overall Approach Technique: "Polynomially Many Short Cycles"

Theorem: Coverability in 2-VASS with one binary counter and
one unary counter is in NP.one binary counter and
[our result]

Theorem: Coverability in 2-VASS with <u>two binary counters</u> is PSPACE-complete. [Blondin, Finkel, Göller, Haase, and McKenzie '15]

Theorem: Coverability in 2-VASS with <u>one binary counter and</u> one unary counter is in NP. [our result]

Theorem: Coverability in 2-VASS with <u>two binary counters</u> is PSPACE-complete. [Blondin, Finkel, Göller, Haase, and McKenzie '15]

Theorem: Coverability in 2-VASS with one binary counter and
one unary counter is in NP.one binary counter and
[our result]

Theorem: Coverability in 2-VASS with <u>two unary counters</u> is NL-complete. [Rackoff '78]

Theorem: Coverability in 2-VASS with one binary counter and
one unary counter is in NP.one binary counter and
[our result]

Start with a path $\pi = \tau_0 \gamma_1^{e_1} \tau_1 \cdots \tau_{k-1} \gamma_k^{e_k} \tau_k$ such that all paths τ_i and cycles γ_i are short, and $p(\vec{\mathbf{u}}) \xrightarrow{\pi} q(\vec{\mathbf{v}})$.

Start with a path $\pi = \tau_0 \gamma_1^{e_1} \tau_1 \cdots \tau_{k-1} \gamma_k^{e_k} \tau_k$ such that all paths τ_i and cycles γ_i are short, and $p(\vec{\mathbf{u}}) \xrightarrow{\pi} q(\vec{\mathbf{v}})$.

Replacement Lemma

(based on "polynomially many short cycles" technique)

Start with a path $\pi = \tau_0 \gamma_1^{e_1} \tau_1 \cdots \tau_{k-1} \gamma_k^{e_k} \tau_k$ such that all paths τ_i and cycles γ_i are short, and $p(\vec{\mathbf{u}}) \xrightarrow{\pi} q(\vec{\mathbf{v}})$.

Replacement Lemma

(based on "polynomially many short cycles" technique)

Obtain a path $\rho = \tau_0 \sigma_1^{e_1} \tau_1 \cdots \tau_{k-1} \sigma_k^{e_k} \tau_k$ such that there are polynomially many distinct short cycles σ_i , and $p(\vec{\mathbf{u}}) \xrightarrow{\rho} q(\vec{\mathbf{w}})$ where $\vec{\mathbf{w}} \geq \vec{\mathbf{v}}$.

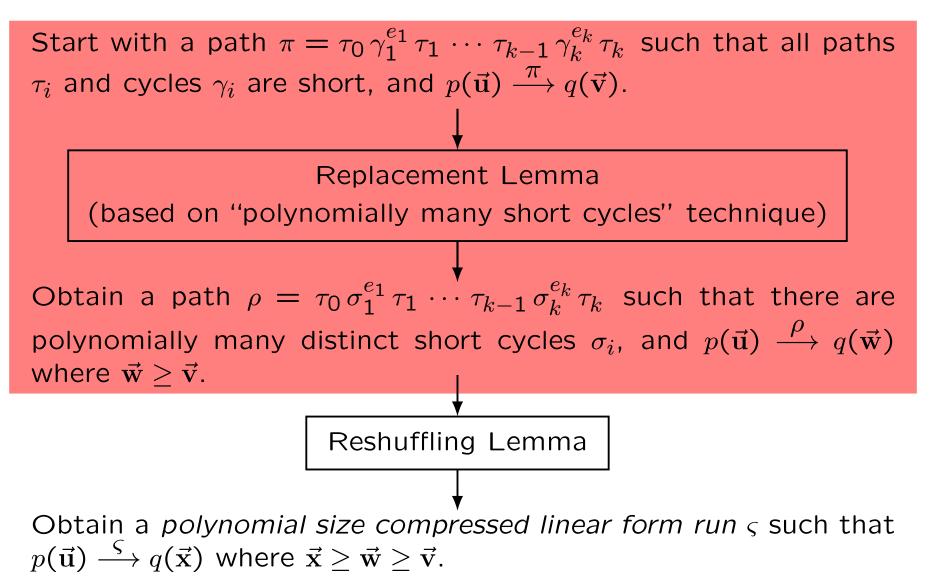
Start with a path $\pi = \tau_0 \gamma_1^{e_1} \tau_1 \cdots \tau_{k-1} \gamma_k^{e_k} \tau_k$ such that all paths τ_i and cycles γ_i are short, and $p(\vec{\mathbf{u}}) \xrightarrow{\pi} q(\vec{\mathbf{v}})$.

Replacement Lemma

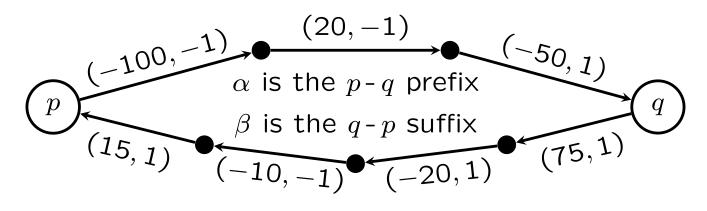
(based on "polynomially many short cycles" technique)

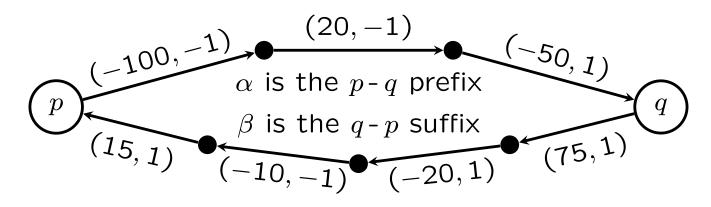
Obtain a path $\rho = \tau_0 \sigma_1^{e_1} \tau_1 \cdots \tau_{k-1} \sigma_k^{e_k} \tau_k$ such that there are polynomially many distinct short cycles σ_i , and $p(\vec{\mathbf{u}}) \xrightarrow{\rho} q(\vec{\mathbf{w}})$ where $\vec{\mathbf{w}} \ge \vec{\mathbf{v}}$. Reshuffling Lemma

Obtain a polynomial size compressed linear form run ς such that $p(\vec{\mathbf{u}}) \xrightarrow{\varsigma} q(\vec{\mathbf{x}})$ where $\vec{\mathbf{x}} \ge \vec{\mathbf{w}} \ge \vec{\mathbf{v}}$.

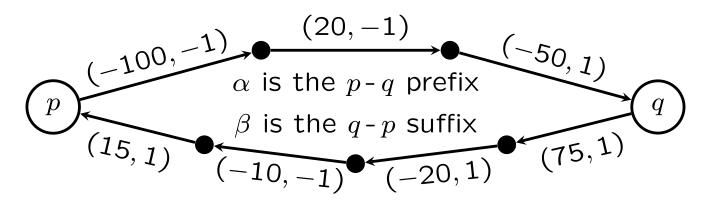


CHARACTERISATION OF A SHORT CYCLE

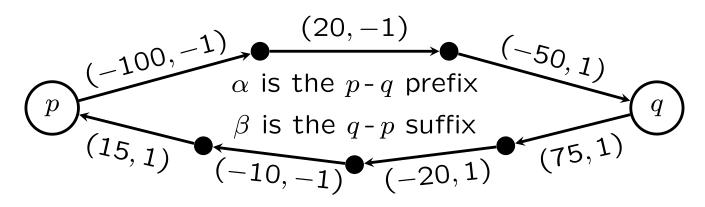




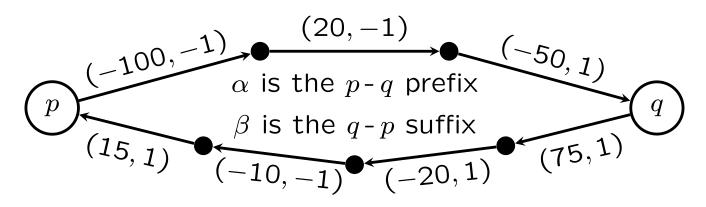
(a) Start-end state *p*,



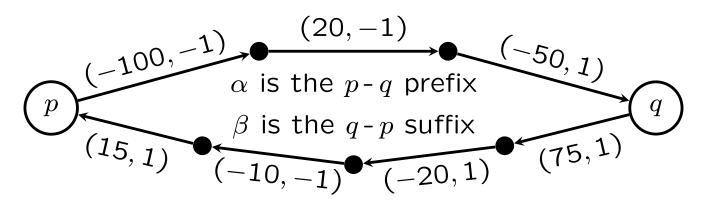
- (a) Start-end state p,
- (b) State where minimum binary effect observed is q,



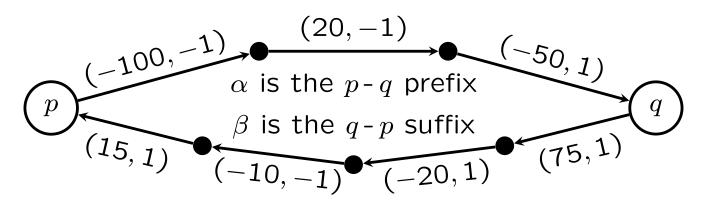
- (a) Start-end state p,
- (b) State where minimum binary effect observed is q,
- (c) Length of α is 3,



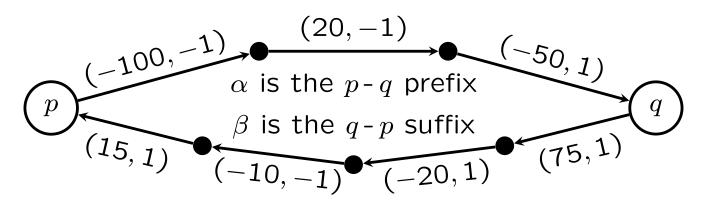
- (a) Start-end state *p*,
- (b) State where minimum binary effect observed is q,
- (c) Length of α is 3,
- (d) Length of β is 4,



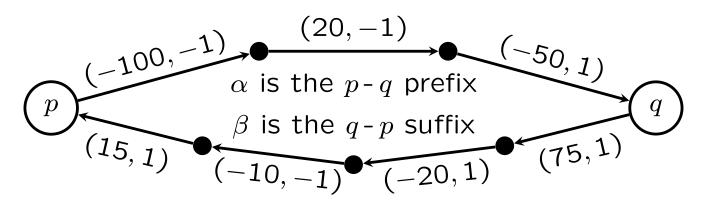
- (a) Start-end state p,
- (b) State where minimum binary effect observed is q,
- (c) Length of α is 3,
- (d) Length of β is 4,
- (e) Unary effect of α is -1,



- (a) Start-end state p,
- (b) State where minimum binary effect observed is q,
- (c) Length of α is 3,
- (d) Length of β is 4,
- (e) Unary effect of α is -1,
- (f) Unary effect of β is 2,

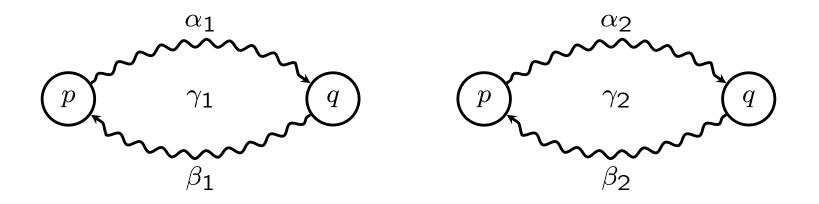


- (a) Start-end state p,
- (b) State where minimum binary effect observed is q,
- (c) Length of α is 3,
- (d) Length of β is 4,
- (e) Unary effect of α is -1,
- (f) Unary effect of β is 2,
- (g) Minimum unary effect over α is -2,



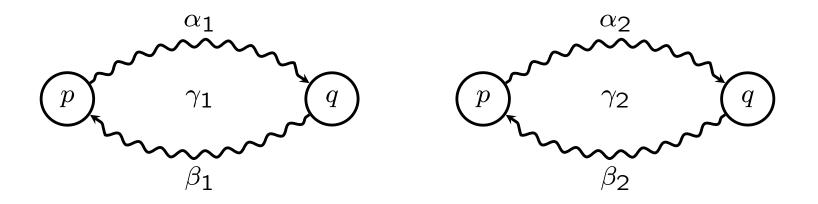
- (a) Start-end state p,
- (b) State where minimum binary effect observed is q,
- (c) Length of α is 3,
- (d) Length of β is 4,
- (e) Unary effect of α is -1,
- (f) Unary effect of β is 2,
- (g) Minimum unary effect over α is -2, and
- (h) Minimum unary effect over β is 0.

SHORT CYCLE REPLACEMENT



Suppose γ_1 and γ_2 have the same characterisation and consider $\sigma = \alpha_i \beta_j$ where $i, j \in \{1, 2\}$ selected for greatest binary effect.

SHORT CYCLE REPLACEMENT



Suppose γ_1 and γ_2 have the same characterisation and consider $\sigma = \alpha_i \beta_j$ where $i, j \in \{1, 2\}$ selected for greatest binary effect.

Idea: replace all iterations of γ_1 and γ_2 in a run with iterations of σ , the run remains executable and has at least the effect.

$$\pi = \tau_1 \gamma_1 \tau_2 \gamma_2 \tau_3 \rightsquigarrow \rho = \tau_1 \sigma \tau_2 \sigma \tau_3$$

If $p(\vec{\mathbf{u}}) \xrightarrow{\pi} q(\vec{\mathbf{v}})$, then $p(\vec{\mathbf{u}}) \xrightarrow{\rho} q(\vec{\mathbf{w}})$ and $\vec{\mathbf{w}} \ge \vec{\mathbf{v}}$.

12 / 22

- (a) Start-end state,
- (b) State where minimum binary effect observed,
- (c) Length of the prefix α ,
- (d) Length of the suffix β ,
- (e) Unary effect of the prefix α ,
- (f) Unary effect of the suffix β ,
- (g) Minimum unary effect over the prefix α , and
- (h) Minimum unary effect over the suffix β .

- (a) Start-end state,
- (b) State where minimum binary effect observed,
- (c) Length of the prefix α ,
- (d) Length of the suffix β ,
- (e) Unary effect of the prefix α ,
- (f) Unary effect of the suffix β ,
- (g) Minimum unary effect over the prefix α , and
- (h) Minimum unary effect over the suffix β .

(a) Start-end state,	$ \mathbf{Q} $
(b) State where minimum binary effect observed,	$ \mathbf{Q} $
(c) Length of the prefix α ,	
(d) Length of the suffix β ,	
(e) Unary effect of the prefix α ,	
(f) Unary effect of the suffix β ,	

- (g) Minimum unary effect over the prefix α , and
- (h) Minimum unary effect over the suffix β .

(a) Start-end state,	$ \mathbf{Q} $
(b) State where minimum binary effect observed,	$ \mathbf{Q} $
(c) Length of the prefix α ,	$ \mathbf{Q} + 1$
(d) Length of the suffix β ,	
(e) Unary effect of the prefix α ,	
(f) Unary effect of the suffix β ,	
(g) Minimum unary effect over the prefix $lpha$, and	
(h) Minimum unary effect over the suffix β .	

(a) Start-end state,	$ \mathbf{Q} $
(b) State where minimum binary effect observed,	$ \mathbf{Q} $
(c) Length of the prefix α ,	$ \mathbf{Q} + 1$
(d) Length of the suffix β ,	$ \mathbf{Q} + 1$
(e) Unary effect of the prefix α ,	
(f) Unary effect of the suffix β ,	
(g) Minimum unary effect over the prefix $lpha$, and	
(h) Minimum unary effect over the suffix β .	

(a) Start-end state,	$ \mathbf{Q} $
(b) State where minimum binary effect observed,	$ \mathbf{Q} $
(c) Length of the prefix α ,	$ \mathbf{Q} + 1$
(d) Length of the suffix β ,	$ \mathrm{Q} +1$
(e) Unary effect of the prefix α ,	$2 \mathrm{Q} +1$
(f) Unary effect of the suffix β ,	
(g) Minimum unary effect over the prefix $lpha$, and	
(h) Minimum unary effect over the suffix β .	

(a) Start-end state,	$ \mathbf{Q} $
(b) State where minimum binary effect observed,	$ \mathbf{Q} $
(c) Length of the prefix α ,	$ \mathbf{Q} + 1$
(d) Length of the suffix β ,	$ \mathbf{Q} + 1$
(e) Unary effect of the prefix α ,	$2 \mathbf{Q} + 1$
(f) Unary effect of the suffix β ,	$2 \mathbf{Q} + 1$
(g) Minimum unary effect over the prefix $lpha$, and	
(h) Minimum unary effect over the suffix β .	

(a) Start-end state,	$ \mathbf{Q} $
(b) State where minimum binary effect observed,	$ \mathbf{Q} $
(c) Length of the prefix α ,	$ \mathbf{Q} + 1$
(d) Length of the suffix β ,	$ \mathbf{Q} + 1$
(e) Unary effect of the prefix α ,	$2 \mathbf{Q} + 1$
(f) Unary effect of the suffix β ,	$2 \mathbf{Q} + 1$
(g) Minimum unary effect over the prefix $lpha$, and	$ \mathbf{Q} + 1$
(h) Minimum unary effect over the suffix β .	

(a) Start-end state,	$ \mathbf{Q} $
(b) State where minimum binary effect observed,	$ \mathbf{Q} $
(c) Length of the prefix α ,	$ \mathbf{Q} + 1$
(d) Length of the suffix β ,	$ \mathbf{Q} + 1$
(e) Unary effect of the prefix α ,	$2 \mathbf{Q} + 1$
(f) Unary effect of the suffix β ,	$2 \mathbf{Q} + 1$
(g) Minimum unary effect over the prefix $lpha$, and	$ \mathbf{Q} + 1$
(h) Minimum unary effect over the suffix β .	$ \mathbf{Q} + 1$

(a) Start-end state,	$ \mathbf{Q} $
(b) State where minimum binary effect observed,	$ \mathbf{Q} $
(c) Length of the prefix α ,	$ \mathbf{Q} + 1$
(d) Length of the suffix β ,	$ \mathbf{Q} + 1$
(e) Unary effect of the prefix α ,	$2 \mathrm{Q} +1$
(f) Unary effect of the suffix β ,	$2 \mathrm{Q} +1$
(g) Minimum unary effect over the prefix $lpha$, and	$ \mathbf{Q} + 1$
(h) Minimum unary effect over the suffix β .	$ \mathbf{Q} + 1$

How many different characterisations? $\leq |\mathbf{Q}|^2(|\mathbf{Q}|+1)^4(2|\mathbf{Q}|+1)^2$

TECHNIQUE "Polynomially Many Short Cycles"

The cycle replacement idea gives runs witnessing coverability that only contain one short cycle (that may be iterated many times) for each characterisation.

There are a polynomial number of different characterisations.

Conclusion: no more than a polynomial number of distinct short cycles need exist in any executable run witnessing coverability.

CHAPTER TWO LOWER BOUNDS

Combinations of Encodings Open Problems and Our Contributions Technique: "Dual Counters"

COMPLEXITY OF COVERABILITY

Various Encodings	Binary encoded counter updates	Unary encoded counter updates
Binary encoded initial and target vectors	$k \ge 2$: PSPACE-complete k = 1: only gap between NL and in NC ²	
Unary encoded initial and target vectors		$k \ge 1$: NL-complete No complexity gaps.

COMPLEXITY OF COVERABILITY

Various Encodings	Binary encoded counter updates	Unary encoded counter updates
Binary encoded initial and target vectors	$k \ge 2$: PSPACE-complete k = 1: only gap between NL and in NC ²	
Unary encoded initial and target vectors	Reduces from above: New initial and final states, add initial vector at start, and subtract target vector at end. Ask coverability to and from 0.	$k \ge 1$: NL-complete No complexity gaps.

COMPLEXITY OF COVERABILITY

Various Encodings	Binary encoded counter updates	Unary encoded counter updates
Binary encoded initial and target vectors	$k \ge 2$: PSPACE-complete k = 1: only gap between NL and in NC ²	$k \ge 4$: NP-hard $k \ge 8$: PSPACE-hard Many complexity gaps!
Unary encoded initial and target vectors	Reduces from above: New initial and final states, add initial vector at start, and subtract target vector at end. Ask coverability to and from 0.	$k \ge 1$: NL-complete No complexity gaps.

OPEN PROBLEMS

Problem: Coverability in k-VASS with k unary counters and binary encoded initial and target vectors.

OPEN PROBLEMS

Problem: Coverability in *k*-VASS with *k* unary counters and binary encoded initial and target vectors.

Problem: Binary coverability in unary *k*-VASS.

OPEN PROBLEMS

Problem: Coverability in *k*-VASS with *k* unary counters and binary encoded initial and target vectors.

Problem: Binary coverability in unary *k*-VASS.

Complexity Gaps:

- k = 1: NL-hard and in NC².
- k = 2: NL-hard and in NP.
- k = 3: NL-hard and in PSPACE.
- $4 \le k \le 7$: NP-hard and in PSPACE.
 - $k \ge 8$: PSPACE-complete.

HARDNESS OF REACHABILITY

Theorem*: Unary reachability in unary 3-VASS is NP-hard. [Czerwiński and Orlikowski '22+]

Proof approach: reduce from SAT.

HARDNESS OF REACHABILITY

Theorem*: Unary reachability in unary 3-VASS is NP-hard. [Czerwiński and Orlikowski '22+] Proof approach: reduce from SAT.

Theorem: Unary reachability in unary 5-VASS is PSPACE-hard. [Czerwiński and Orlikowski '22] Proof approach: reduce from reachability in exponentially bounded two-counter automata.

OUR CONTRIBUTIONS

Theorem*: Binary coverability in unary 4-VASS is NP-hard. [our result]

Proof approach: reduce from unary reachability in unary 3-VASS using 'dual counters'' technique.

OUR CONTRIBUTIONS

Theorem*: Binary coverability in unary 4-VASS is NP-hard. [our result]

Proof approach: reduce from unary reachability in unary 3-VASS using 'dual counters' technique.

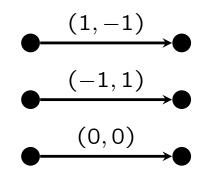
Theorem: Binary coverability in unary 8-VASS is PSPACE-hard. [our result]

Proof approach: reduce from unary reachability in unary 5-VASS using 'dual counters'' technique.

TECHNIQUE "Dual Counters"

Consider a unary counter c, define its dual counter d such that

- Whenever c increments, d decrements:
- Whenever c decrements, d increments:
- Whenever c holds its value, so does d:



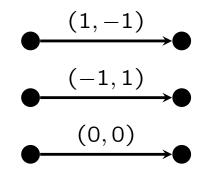
TECHNIQUE "Dual Counters"

Consider a unary counter c, define its dual counter d such that

- Whenever c increments, d decrements:
- Whenever c decrements, d increments:
- Whenever c holds its value, so does d:

If c is initialised with u, then d is initialised with M-u, where M is at least the maximum possible value that c can observe.

Coverability targets $c \ge v$ and $d \ge M - v$ implies c = v must hold.



REDUCTION CHALLENGES

Unary reachability in unary 3-VASS is NP-hard, so by taking all dual counters, binary coverability in unary 6-VASS is NP-hard.

REDUCTION CHALLENGES

Unary reachability in unary 3-VASS is NP-hard, so by taking all dual counters, binary coverability in unary 6-VASS is NP-hard.

Similarly, unary reachability in unary 5-VASS is PSPACE-hard, so by taking all dual counters, binary coverability in unary 10-VASS is PSPACE-hard.

REDUCTION CHALLENGES

Unary reachability in unary 3-VASS is NP-hard, so by taking all dual counters, binary coverability in unary 6-VASS is NP-hard.

Similarly, unary reachability in unary 5-VASS is PSPACE-hard, so by taking all dual counters, binary coverability in unary 10-VASS is PSPACE-hard.

Which dual counters are really necessary?

CONCLUSION

Theorem: Coverability in 2-VASS with one binary counter and one unary counter is in NP. [our result]

Open Problem: Is reachability also in NP?

CONCLUSION

Theorem: Coverability in 2-VASS with one binary counter and one unary counter is in NP. [our result]

Open Problem: Is reachability also in NP?

Open Problem: is there a k < 4 such that binary coverability in unary k-VASS is NP-hard?

Open Problem: is there a k < 8 such that binary coverability in unary k-VASS is PSPACE-hard?

CONCLUSION

Theorem: Coverability in 2-VASS with one binary counter and one unary counter is in NP. [our result]

Open Problem: Is reachability also in NP?

Open Problem: is there a k < 4 such that binary coverability in unary k-VASS is NP-hard?

Open Problem: is there a k < 8 such that binary coverability in unary k-VASS is PSPACE-hard?

THANK YOU!

Presented by Henry Sinclair-Banks, University of Warwick **#** For OFCOURSE, MPI-SWS, Kaiserslautern **—**

