The Complexity of Coverability in Vector Addition Systems with States

Henry Sinclair-Banks

About joint work with Marvin Künnemann, Filip Mazowiecki, Lia Schütze, and Karol Węgrzycki.

Warwick FoCS Theory Day

8th June 2023

Never Negative Paths in Weighted Graphs

Never Negative Paths in Multi-Weighted Graphs (0,1)(1, -1) \boldsymbol{e} С (-2, 2)(4, -5)(-7, -7)(3,8) \boldsymbol{a} (5, 0)(2, 0)(-4, -9)(-4, -9)(-6, 10)(-5, -20)0 h YES! Question: from (a) can you reach (g) via a path that is *never negative on any component*? (3, 8)(-2, 2)(4, -5)(2, 0)[-5, -20]eС \boldsymbol{a} (1, 10)(1, 10)

3 / 10

Coverability in <u>Vector Addition Systems with States</u>

Coverability problem: from p can you reach q via a path that is never negative on any component?

 $\mathsf{VASS} \implies \mathsf{dimension} \text{ is not fixed}$

Size of a *transition* is the absolute value of its maximum weight.

 $d ext{-VASS} \implies ext{dimension} \ d \ ext{is fixed}$

Size of a VASS n is the number of *states* plus sizes of all transitions.

History of Coverability

Theorem: Coverability in VASS is EXPSPACE-hard.	[Lipton '76]
"Lipton's construction": there are instances only admitting $n^{2^{\Omega(d)}}$ length runs.	
\implies Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space.	
<u>Theorem 1</u> : The reachability problem for vector addition systems requires at least space infinitely often for some constant $c > 0$.	2 ^{cn}
Theorem: Coverability in VASS is in EXPSPACE.	[Rackoff '78]
"Rackoff's bounding technique": argue (inductively) that there are always $n^{2^{\mathcal{O}(n\log n)}}$ leng	th runs.
\implies Coverability in VASS can be decided in $2^{\mathcal{O}(d\log d)} \cdot \log(n)$ -space.	
Theorem 3.5. The covering problem can be decided in space 2 ^{cn log} . for so constant c.	me

Vector Addition Systems (without states)

Theorem: States and transitions can be simulated by 3 non-negative counters. [Hopcroft and Pansiot '79]

 $\begin{array}{ccc} \underline{\text{Precondition}} & \underline{\text{Precondition}} \\ \boldsymbol{x} \leftarrow \boldsymbol{2}, & \boldsymbol{y} \leftarrow k(k-\boldsymbol{2}), & \boldsymbol{z} \leftarrow \boldsymbol{0} & \boldsymbol{x} \leftarrow \boldsymbol{4}, & \boldsymbol{y} \leftarrow k(k-\boldsymbol{4}), & \boldsymbol{z} \leftarrow \boldsymbol{0} \end{array}$

Lemma 2.1. An n-dim VASS can be simulated by an (n + 3)-dim VAS.

Motivation to Revisit Coverability

Motivation to Revisit Coverability

Coverability in VAS can be decided	Coverability in <i>bidirected</i> VAS	
in $2^{\mathcal{O}(d\log d)} \cdot \log(n)$ -space.**	/ requires $2^{\Omega(d)} \cdot \log(n)$ -space.**	
[Rackoff '78]		
3. In [35] it has been shown that the VRS covering problem, to decide		
$ given (\alpha, \beta, \gamma)$ whether $\beta \gamma \in \gamma [\alpha]$ for some word γ , is decidable in space		
$\left\{ \begin{array}{c} c^{n^{2}\log n} \end{array} \right\}$. Our reduction of ESC to CSG implies a lower bound of space d^{n} for $\left[\begin{array}{c} c^{n^{2}\log n} \end{array} \right]$		
some $d > 1$. (This lower bound was originally obtained by Lipton [24].)		
Improve these bounds. YES!	[Lipton '76]	
**later refined by multiparameter analysis. [Mayr and Meyer '82]		
Using a similar approach, as was used in Section 2, an		
\ upper bound of $O((l + \log n)^* 2^{c^*k^* \log k})$ can be shown for the covering problem.		
(Finding better upper/lower bounds for this problem was mentioned as an open		
problem in [18].)		
L	[Rosier and Yen '85]	

Improving Rackoff's Space Upper Bound

Theorem: Coverability in VASS is always witnessed by $n^{2^{\mathcal{O}(d)}}$ length runs.

[Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and Węgrzycki '23]

Main idea is to carefully use "Rackoff's bounding technique" with sharper counter value bounds.

 \Rightarrow Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space. OPTIMAL! \Rightarrow Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time.

Conditionally Optimal Time Bound

 \implies Coverability in VASS can be decided in $n^{2^{\mathcal{O}(d)}}$ -time.

Theorem: Assuming the Exponential Time Hypothesis, there are no $n^{2^{o(d)}}$ -time algorithms forcoverability in VASS.[Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and Węgrzycki '23]

Exponential Time Hypothesis \implies there are no $n^{o(k)}$ -time algorithms for finding a k-clique in a graph.

Main idea is to reduce the problem of finding a $k = 2^d$ -clique in a graph to coverability in $\mathcal{O}(d)$ -VASS.

 \implies Coverability in VASS conditionally requires $n^{2^{\Omega(d)}}$ -time.

CONDITIONALLY OPTIMAL!

Conclusion

1976: Coverability in VASS requires $2^{\Omega(d)} \cdot \log(n)$ -space**.

1978: Coverability in VASS can be decided in $2^{\mathcal{O}(d \log d)} \cdot \log(n)$ -space**.

1985: **Refined by multiparameter analysis of coverability in VASS.

2023: Coverability in VASS can be decided in $2^{\mathcal{O}(d)} \cdot \log(n)$ -space and can be decided in $n^{2^{\mathcal{O}(d)}}$ -time.

2023: Coverability in VASS requires $n^{2^{\Omega(d)}}$ -time, under the Exponential Time Hypothesis.

Thank You!

Presented by Henry Sinclair-Banks Warwick FoCS Theory Day 2023

