Using Counter Machines to Find Cliques and Cycles in Graphs

Henry Sinclair-Banks

About a part of joint work with Marvin Künnemann, Filip Mazowiecki, Lia Schütze, and Karol Węgrzycki.

Warwick Postgraduate Colloquium in Computer Science Theory and Foundations 24th March 2023

Paths in Graphs

Coverability in 1-VASS

Coverability in 2-VASS

Background

Theorem: Coverability in 1-VASS can be decided non-deterministic log-space. [Valiant and Paterson '75]

Theorem: Coverability in *d*-VASS can be decided non-deterministic log-space, for every fixed $d \ge 1$. [Rackoff '78]

Theorem: Finding a path between two nodes in a (directed) graph is hard for (non-)deterministic log-space. [folklore]

Corollary: Coverability in *d*-VASS is complete for non-deterministic log-space, for every fixed $d \ge 1$.

What about the time needed to decide coverability?

This Presentation

Claim: Coverability in 2-VASS requires quadratic time*.

Proof: Reduction from finding a *k*-cycle in a graph.

Observation: Coverability in 2-VASS is harder than finding a path in a graph*.

*subject to the k-cycle hypothesis.

k-Cycle Hypothesis

Hypothesis: Finding a k-cycle in a graph of m edges requires $\Omega(m^2)$ -time.

It suffices to only consider k-circle layered graphs:

[Lincoln, Williams, and Williams '18]

Reduction Sketch

Suppose you leave V_1 via the *i*-th node and arrive at V'_1 via the *j*-th node. First component $\implies i \ge j$ and second component $\implies j \ge i$. Coverability ensures that the start and ends nodes of the cycle match.

Conclusion

Hypothesis: Finding a k-cycle in a graph of m edges requires $\Omega(m^2)$ -time.

Lemma: Linear-time reduction from finding a *k*-cycle in a graph to coverability in 2-VASS.

Corollary: Assuming the *k*-cycle hypothesis, coverability in a 2-VASS of size *n* requires $\Omega(n^2)$ -time.

Thank You!

Presented by Henry Sinclair-Banks For Warwick Postgraduate Colloquium in Computer Science 2023