Using Counter Machines to Find Cliques and Cycles in Graphs

Henry Sinclair-Banks

About a part of joint work with Marvin Künnemann,
Filip Mazowiecki, Lia Schütze, and Karol Węgrzycki.

Warwick Postgraduate Colloquium in Computer Science
Theory and Foundations
24th March 2023

Paths in Graphs

From e can you reach g ?
Yes, just run BFS in linear time!

Never Negative Paths in $\{-1,0,+1\}$-Weighted Graphs

all path prefixes have non-negative weight

From (e) can you reach \boldsymbol{g} with a never negative path?
Yes, modify your favourite shortest path algorithm!

Coverability in 1-VASS

Yes, modify your favourite shortest path algorithm!

Coverability in 2-VASS

Background

Theorem: Coverability in 1-VASS can be decided non-deterministic log-space.

Theorem: Coverability in d-VASS can be decided non-deterministic log-space, for every fixed $d \geq 1$.
[Rackoff '78]

Theorem: Finding a path between two nodes in a (directed) graph is hard for (non-)deterministic log-space.
[folklore]
Corollary: Coverability in d-VASS is complete for non-deterministic log-space, for every fixed $d \geq 1$.

What about the time needed to decide coverability?

This Presentation

Claim: Coverability in 2-VASS requires quadratic time*.

Proof: Reduction from finding a k-cycle in a graph.

Observation: Coverability in 2-VASS is harder than finding a path in a graph*.
*subject to the k-cycle hypothesis.

k-Cycle Hypothesis

Hypothesis: Finding a k-cycle in a graph of m edges requires $\Omega\left(m^{2}\right)$-time.

It suffices to only consider k-circle layered graphs:
[Lincoln, Williams, and Williams '18]

Reduction Sketch

Suppose you leave V_{1} via the i-th node and arrive at V_{1}^{\prime} via the j-th node.
First component $\Longrightarrow i \geq j$ and second component $\Longrightarrow j \geq i$.
Coverability ensures that the start and ends nodes of the cycle match.

Conclusion

Hypothesis: Finding a k-cycle in a graph of m edges requires $\Omega\left(m^{2}\right)$-time.

$$
+
$$

Lemma: Linear-time reduction from finding a k-cycle in a graph to coverability in 2-VASS.

$$
\Downarrow
$$

Corollary: Assuming the k-cycle hypothesis, coverability in a 2-VASS of size n requires $\Omega\left(n^{2}\right)$-time.

Thank You!

Presented by Henry Sinclair-Banks
For Warwick Postgraduate Colloquium in Computer Science 2023

