Walks of Given Length in One-Counter Systems Henry Sinclair-Banks

WPCCS'21 Presentation Monday $13^{\text {th }}$ December

One-Counter Systems

Directed Graph

$$
\text { Counter }=0
$$

- Integer weighted edges

Represented in binary

- Controls an integer counter

Counter starts with zero

- Counter must remain non-negative
"Counter condition"

Walks of Given Length

Walks - a sequence of edges
(Valid if counter condition not violated)

```
Counter = 0
```

Length - the number of edges
(Not the sum of the weights)
INPUT:
\mathcal{A} one-counter system, u start node, v end node, \underline{n} walk length.
(given in binary)

QUESTION:

Does there exist a valid walk in \mathcal{A} from u to v of length n ?

Example \& Complexity Gap

"YES" instance:
a start node and d end node, and $n=42$ walk length.
"NO" instance:
a start node and f end node, and $n=42$ walk length.
$N L$-hard and in $N P$
...but not known to be $N P$-hard or in P

Motivation

Petri Nets and Vector Addition Systems with States:

- Related to short paths in VASS, and thus short paths in Petri Nets.
- Generalises 1-VASS Coverability (known to be in P).

Compressed Algorithmics:

- Length compression applied to stack actions of pushdown automata with a unary stack.

Verification of safety conditions:

- Systems with control flow represented by a single integer variable.

Special Case: Linear Path Schemes

A sequence of non-overlapping cycles connected by a simple path

Conjecture: For linear path schemes, the given length walks decision problem is in P.

Polynomial Time Algorithm Features

Idea: compute the set of all reachable points. NP-hard! (n, c) is a reachable point if there exists a valid walk of length n ending with counter value c.

New idea: compute some useful subset of reachable points.
Points of interest: c is the greatest counter value achievable for a walk of length n.
Requirements: careful representation of subset of reachable points.
Succinct: poly-sized subset output \& Efficient: easy to query target walk lengths.
Dynamic programming approach.
Sequentially considers each cycle, then edge, then cycle, ...

Algorithm Behaviour by Example

Initialisation:
Only $(0,0)$ is reachable.

Algorithm Behaviour by Example

After first edge:
Walk length increments, so $(1,0)$ is reachable.

Algorithm Behaviour by Example

After first cycle:

Algorithm Behaviour by Example

After second edge: $\left.\begin{array}{l}(22,0) \\ (26,4) \\ (30,8) \\ \ldots\end{array}\right\}$ period still $+(4,4)$

Algorithm Behaviour by Example

After second cycle:

> First period $+(4,4)$
> Second period $+(3,6) \ldots$ better!

Extensions

*Case when several first cycles are negative is in progress

Beyond linear path schemes
Series parallel based, directed acyclic graph based, arbitrary.
Beyond walks of a given length
Other decision problems, e.g.: "is there a walk of every length?".

Questions?

"Walks of Given Length in One-Counter Systems" by Henry Sinclair-Banks

WPCCS'21 Presentation Monday $13^{\text {th }}$ December

