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Abstract

Gaining an insight into the potential effectiveness of Multiple Kernel Learning
(MKL) methods requires analysis of the underlying ensemble process and result-
ing loss. An attempt to suggest such directions is described in this work which
presents some preliminary results based on the “Flat Maximum Effect” and de-
compositions of the loss which leads to MKL problem being recast as one of
optimal Design of Experiments (DoE).

1 Introduction

Multiple Kernel Learning methods aim at learning an optimal (in a predefined model-specific sense
such as predictive likelihood or zero-one loss) combination of individual base kernels. Therefore
such approaches follow the basic assumption that kernel combination parameter inference is crucial
and beneficial over a fixed a priori combination. However, in a number of reported cases (Girolami
and Zhong, 2007; Lewis et al., 2006) it has been observed that there is none or little such benefit.
The opposite phenomenon of a significant performance improvement from an a posteriori combi-
nation rule has also been observed on other problems (Damoulas et al., 2008; Zien and Ong, 2007)
indicating dataset dependent MKL behaviour. In this contribution we attempt to suggest preliminary
ideas to provide a formal reasoning behind this phenomenon. Borrowing ideas from classifier con-
struction analysis (Hand, 2006) and decomposition of the loss (Krogh and Vedelsby, 1995; Ueda and
Nakano, 1996) we examine the conditions under which parameterised MKL methods are expected
to improve over a priori fixed combinations. This leads to an optimal experiment design perspective
on MKL.

2 Flat Maximum Effect

Hand (1997) first described the “Flat Maximum Effect” in the context of classifier performance as the
phenomenon when “often quite large deviations from the optimal set of weights will yield predictive
performance not substantially worse than the optimal weights”. In Hand (2006) a set of regression
coefficients are shown to be highly correlated with any other random set of regression coefficients if
the predictor variables are correlated. This is generalised here for the kernel combination parameters
and provides a starting argument for the need of diversity between individual information sources
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embedded as kernels. Consider S sources of information represented by S standardised kernels
describing similarities between N training objects. For a test object xi = {x1, . . . , xD} ∈ RD the
responses for two different convex linear combinations b and β are given by:

yb =
N∑
j=1

wj

S∑
s=1

bsks(xi,xj) =
S∑
s=1

bsθs and yβ =
N∑
j=1

wj

S∑
τ=1

βτkτ (xi,xj) =
S∑
τ=1

βτθτ (1)

The correlation between these two responses yb and yβ is directly related and lower bounded by the
correlation between the weighted base kernels:

ρ (yb, yβ) =

S∑
s,τ=1

bsβτρ (θs, θτ )√√√√ S∑
s,τ,λ,k=1

bsbτβλβk∆sτ∆λk

=⇒
∆sτ≤1∀s,τ∈R

ρ(yb, yβ) ≥
S∑

s,τ=1

bsβτρ (θs, θτ ) (2)

where ∆sτ = E (θsθτ )−E (θs) E (θτ ) is the covariance. Hence, when the sources of information are
highly correlated then any two responses y created by different sets of kernel combination weights
b and β will be highly correlated, exhibiting the so called Flat Maximum Effect (FME) on MKL
problems. FME therefore induces an insensitivity of the linear responses to tuning of the kernel
combination weights, especially if sources have highly overlapping information content and are not
diverse. In order to explicitly identify the role of diversity, we now examine two decompositions of
the ensemble loss.

3 Ambiguity Decomposition

The first decomposition follows the ensemble regression analysis introduced by Brown and Wyatt
(2003) which is an extension of the well-known bias-variance decomposition by Krogh and Vedelsby
(1995). This so called ambiguity decomposition analysis is adopted and applied on the MKL sce-
nario to identify the effect of diversity. Consider the (ensemble) response of the model for sample i
under the standard convex linear combination of base kernels:

ye =
N∑
j=1

wj

S∑
s=1

βsks(xi,xj) =
S∑
s=1

βsys (3)

with the individual base kernel response defined as ys =
∑N
j=1 wjks(xi,xj) and the typical convex

combination constraint
∑S
s=1 βs = 1. Defining ŷ as the target regression variable and analysing the

expression
∑S
s=1 βs (ys − ŷ)T (ys − ŷ) leads to:

(ye − ŷ)T (ye − ŷ)︸ ︷︷ ︸
Composite Error

=
S∑
s=1

βs (ys − ŷ)T (ys − ŷ)︸ ︷︷ ︸
Weighted Ind. Error

−
S∑
s=1

βs (ys − ye)
T (ys − ye)︸ ︷︷ ︸

Ambiguity

(4)

where the first term of the right hand side is the weighted average error of individual base kernel
responses and the second term is the Ambiguity term which describes the variability or diversity of
the individual base kernels with respect to the ensemble response.

We can now see that in order to achieve a low overall composite error we need accurate (low
weighted individual error) but diverse (high “ambiguity”) individual base kernels with respect to
the resulting ensemble.

2



3.1 Bias-Variance-Covariance Decomposition

The diversity requirement identified above is only with respect to any base kernel response and
the overall ensemble, with no insight regarding the interaction of the base kernels. Towards that,
we propose an analysis following the Bias-Variance-Covariance loss decomposition of Ueda and
Nakano (1996) which is here extended to the case of the MKL ensemble output ye:

E
{

(ye − ŷ)
T

((ye − ŷ)
}

=
S∑

s,σ=1

β
T

sβσ (E {ys} − ŷ)
T

(E {yσ} − ŷ)︸ ︷︷ ︸
BiasTBias

+
S∑
s=1

β
T

sβs E
{

(ys−E{ys})
T

(ys−E{ys})
}

︸ ︷︷ ︸
Variance

+
S∑

s=1,σ 6=s

βsβσ E
{

(ys − E{ys})
T

(yσ − E{yσ})
}

︸ ︷︷ ︸
Covariance

(5)

The above decomposition of the MKL regression loss follows other ensemble learning methods (Kit-
tler et al., 1998; Tax et al., 2000; Ueda and Nakano, 1996) in including an additional Covariance
term between the ensemble members (base kernels in our case) which offers an alternative descrip-
tion for the effect of diversity and its contribution on the overall loss. Hence now there is a trade-off
not only between bias and variance of our estimates (fitting versus generalisation) but also between
the latter and the covariance across base kernels (fitting versus generalisation versus diversity).

The conclusions from the FME and the loss decompositions identify the key role of diversity be-
tween base kernels but also the significance of individual accuracy (bias and weighted individual
error terms). This results in the need to assess the information content and the (co)variance of the
base kernel estimates which directly leads to Fisher Information and optimality criteria based on the
Design of Experiments (DoE).

4 Optimal Experiment Design and Fisher Information

MKL naturally fits into the experiment design framework in that a Design Matrix has to be optimally
constructed where in this case the design points are all fixed across differing data representations and
the overall weighting has then to be selected. Following the optimal experiment design principles
we seek to maximise the information content for the model parameters with respect to the evidence
observed. This leads to examination of the log-likelihood curvature which expresses the variance
of the latter with respect to small parameter permutations and hence acts as a measure of the infor-
mation density in specific regions of the parameter space. The Fisher Information for parameters θ,
evidence y and log-likelihood L = log p(y|θ) follows in standard form as:

F(θ) = −E
{

∂2L
∂θ∂θT

}
(6)

where expectation is taken with respect to the likelihood. In this section, a linear regression example
for MKL is considered y = Kβw + ε with ε ∼ N (0, I) where Ks is the sth base kernel ∈ RN×N
and Kβ is the composite kernel ∈ RN×N . The Fisher information matrix for the parameters of the
linear model is then given by F(w) = K

T

βKβ. We now seek to find the optimal design parameters
β̂ that maximize an optimal design criterion (Fisher, 1935). Following the A-optimality criterion of
Trace(F(w)) results in a constrained quadratic optimisation, with respect to β, of

argmax β
T

Ωβ s.t. β
T

1 = 1 (7)

where Ωs,k =
∑
m,nK

s
m,nK

k
m,n is an empirical estimate of the correlation between kernels (data

sources). This can be employed in a probit regression setting although there will now be a condi-
tioning on the N auxiliary variables. The formulation makes it amenable to some analysis which
provides insights into the MKL problem and details of this along with examples will be presented at
the workshop.
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