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Abstract—In this paper we investigate the sparsity and recog-
nition capabilities of two approximate Bayesian classification
algorithms, the multi-class multi-kernel Relevance Vector Ma-
chines (mRVMs) that have been recently proposed. We provide
an insight on the behavior of the mRVM models by performing
a wide experimentation on a large range of real world datasets.
Furthermore, we monitor various model fitting characteristics
that identify the predictive nature of the proposed methods and
we compare against existing classification techniques. By intro-
ducing novel convergence measures, sample selection strategies
and model improvements, it is demonstrated that mRVMs can
produce state of the art results on multi-class discrimination
problems. In addition, this is achieved by utilizing only a very
small fraction of the available observation data.

Index Terms—Bayesian learning, classification, sparsity, multi-
class discrimination, kernel methods

I. INTRODUCTION

In Supervised Learning, classification or supervised dis-
crimination is the process of categorizing samples based on
available observations or past experience. We formulate a
mathematical model, captured as a function y(w; x) which
maps an observation x? with D features to a discrete label
c ∈ {1, ..., C}, where C denotes the number of different
classes. Thus given a set of N observations along with their
respective labels {xi, ti}Ni=1, we infer the appropriate values
for parameters w which give our model appropriate predictive,
descriptive and generalizing properties.

The training set {xi, ti}Ni=1 captures our past experience,
either as a subset of our past measurements which we consider
reliable or the only available knowledge of a phenomenon.
The latter is not usually the case for todays systems, where
advances in sensor technology allow the collection of vast
amount of measurements [2]. So, research has been driven
towards formulating models which identify the key observa-
tions of a phenomenon, providing insight on its generic nature
and retaining low computational complexity. These models
belong to the sparse family of Supervised Learning methods
because they utilize only a subset of the training set data,
by informatively pruning out unnecessary samples or features
based on a certain performance criterion . Some of the most
popular sparse models are Support Vector Machines (SVMs)
[11] , Informative Vector Machines (IVMs) [9] , Relevance
Vector Machines (RVMs) [14] , and Lasso [13] which often
provide state of the art results in many problems.
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In addition to identifying the key elements of a data set,
another important issue is to be able to capture predictive
errors in a systematic way. For this reason, many models
such as the Relevance Vector Machines employ a Bayesian
treatment in order to produce probabilistic outputs for class
membership (in classification) or continuous target value es-
timation (in regression). Measuring the predictive error is a
critically valuable aspect in modern applications with asym-
metric misclassification costs such as medicine or finance [2].

The Relevance Vector Machine (RVM) originally introduced
by M. Tipping (2001), is a Bayesian learning model which
provides state of the art results both in terms of accuracy
and sparsity via appropriate formulation of hierarchical priors,
effectively constraining the majority of the model parameters
wnc around zero. Thus, by maximizing the marginal likelihood
using a type-II maximum likelihood (ML) procedure, we
achieve solutions which utilize only a small subset of the
original basis functions, named the relevance vectors.

Although the Relevance Vector Machine provides signifi-
cantly competitive results in contrast to the traditional Support
Vector Machine, its adaptation to the multi-class setting has
been problematic, due to the bad scaling of the type-II ML
procedure with respect to the number of classes C [6] and
the dimensionality of the Hessian required for the Laplace ap-
proximation [3]. Recently, two novel classification algorithms,
mRVM1 and mRVM2 have been introduced which expand the
original Relevance Vector Machine to the multi-class multi-
kernel setting [6]. These algorithms achieve sparsity without
the constraint of having a binary class problem and provide
probabilistic outputs for class membership instead of the hard
binary decisions given by the traditional SVMs.

mRVMs expand the original RVM to the multi-class setting
by introducing auxiliary variables Y, that act as intermediate
regression targets, that naturally lead to the multinomial probit
likelihood [1] for the estimation of class membership proba-
bilities. In the case of mRVM1, the fast type-II ML is adapted
to the multi-class setting while in mRVM2 a flat prior for
the hyper-parameters is explicitly employed that controls the
sparsity of the resulting model. The two versions of mRVM
differ on how they manipulate the kernel during the training
phase; the mRVM1 follows a constructive approach, incre-
mentally adding samples to the model based on a contribution
criterion while the mRVM2 follows a top-down approach,
loading the whole training set and pruning out uninformative
samples. Adopting one of the two variants depends heavily
on parameters of the problem context, such as the size of the
initial training set and the available computational resources
(see following sections). Additionally, mRVMs can be utilized
in multiple kernel learning (MKL) problems as seen in [6].
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In the present work, our intention is to provide:
• A theoretical insight on mRVMs and their convergence

properties.
• Investigate the sparsity versus accuracy trade-off and

prediction confidence of the probabilistic outputs.
• Propose an ‘informative sample selection’ methodology

for mRVM1, a technique to reduce its computational
complexity and convergence criteria for both models.

• Provide an extensive evaluation of mRVM1 and mRVM2

along with a comparison against other classification mod-
els.

Initially, we provide the theoretical basis of mRVMs along
with their respective pseudocodes. Then we present our experi-
mentation results and we compare the performance of mRVMs
against competing methods. Finally we conclude by analyzing
our results and by providing ideas for future work.

II. MODEL FORMULATION

Following the standard approach in the Machine Learning
literature [3] [2], in classification we are given 1 a training set
{xi, ti}Ni=1 where x ∈ <D our D featured observations and
t ∈ {1...C} their respective class labels. More conveniently,
our observations can be expressed as X ∈ <N×D from which
we derive our training kernel K ∈ <N×N based on a dataset-
dependent kernel function.

The training kernel captures our prior knowledge over the
data; each row kn of the kernel K expresses how related,
based on the selected kernel function, is the observation n to
the others of the training set. The learning process involves
the inference of the model parameters W ∈ <N×C , which by
the quantity WTK act as a voting system to express which
relationships of the data are important in order for our model
to have appropriate discriminative properties.

Multiple class discrimination is achieved by the introduction
of auxiliary variables Y ∈ <C×N that act as the regression
targets of WTK following a standardized noise model
ycn|wc,kn ∼ Nycn

(
wT
c kn, 1

)
[1]. The auxiliary variables are

endowed with independent standardized Gaussian probability
distributions to ensure statistical identifiability and enable
closed form iterative inference [1]. By following the intuition
in [4] , as the regressors W express the weight with which a
datapoint “votes” for a specific class, the auxiliary variables Y
express a class membership ranking system; given a sample n,
we assign it to the class c with the highest ycn . The continu-
ous nature of Y not only allows multiple class discrimination
via the multinomial probit link [1] tn = i if yni > ynj ∀ j 6= i
but also a probabilistic output for class membership via the
resulting multinomial probit likelihood function [5] [7]:

P (tn = i|W,kn) = Ep(u)

∏
j 6=i

Φ
(
u+ (wi −wj)

T kn
)

(1)
Where u ∼ N (0, 1) and Φ the Gaussian cumulative distri-

bution function (CDF).

1Throughout this paper m denotes scalar, m vector and M a matrix. Given
the matrix M, mi denotes the row vector from the i-th row of M unless
stated otherwise.

In accordance to the original Relevance Vector Machine
[14], the regressors wnc from W follow a standard normal
distribution with zero mean and variance a−1

nc , where anc
belongs to the scales matrix A ∈ <N×C and follows a Gamma
distribution with hyperparameters τ , υ. With sufficiently small
τ, υ (< 10−5) the scales A restrict W around its zero mean
due to small variance. Thus, only a small subset of the
regressors wnc are non-zero, subsequently leading to a sparse
solution.

The diagram of the overall model is illustrated in Fig. 1. As
seen in [14], this hierarchical Bayesian framework results in
an implicit Student-t distribution that encourages sparsity by
restricting the regression coefficients W posterior distribution
around zero.
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Fig. 1: Plates diagram of the model.

The training procedure involves consecutive updates of the
model parameters based on a standard Expectation Maxi-
mization (E-M) scheme. Based on Fig. 1 we can derive the
regressors W closed form posterior:

P (W|Y) ∝ P (Y|W)P (W|A)

∝
C∏
c=1

N ((KKT +Ac)−1KyTc ,(KKT +Ac)−1)

Where Ac a diagonal matrix derived from the c column
of A which expresses the scales αic across samples. Based
on the above, the Maximum a Posteriori (MAP) estimator for
the regressors is Ŵ = argmax

W
P (W|Y,A,K). So given a

class, the parameters across samples are updated based on the
maximum a posteriori value:

ŵc = (KKT + Ac)−1KyTc (2)

From (2) and by following [4], we derive the posterior
distribution of the auxiliary variables, which is a product of
C ×N dimensional conically truncated Gaussians. So, given
a class i, the E-step ∀c 6= i is:

ỹcn ← ŵT
c kn −

Ep(u){Nu
(
ŵT
c kn − ŵT

i kn, 1
)

Φn,i,cu }
Ep(u){Φ

(
u+ ŵT

i kn − ŵT
c kn

)
Φn,i,cu }

(3)

and for the i-th class:

ỹin ← ŵT
i kn −

∑
j 6=i

ỹjn − ŵT
j kn

 (4)

where the ‘tilde’ symbol above y denotes the expected
value.
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Finally, we define the update step for the hyperpriors
αnc which are again derived from the mean of a Gamma
distribution, given the hyper-parameters τ, υ. Again, our closed
form posterior is:

P (A|W) ∝ P (W|A)P (A|τ, υ)

∝
C∏
c=1

N∏
n=1

G(τ +
1
2
,
w2
nc + 2υ

2
)

The mean of the above Gamma distribution is:

α̃nc =
2τ + 1
w2
nc + 2υ

(5)

Each iteration of the learning (training) procedure involves
the updates from (5), (2), (3), (4) for each model parameter,
until an appropriate convergence measure is satisfied. In the
following sections we describe in detail how each mRVM ex-
tends the above standard Expectation Maximization scheme in
terms of sparsity induction, convergence and sample selection.

III. MRVM1

A. fast type-II ML

The mRVM1 is an extension of the ‘new’ RVM [15] [8]
to the multi-class and multi-kernel setting. mRVM1 achieves
sparsity based on a constructive approach by starting with
an empty model and adding or removing samples from the
training kernel based on their contribution to the model fitness.

mRVM1 employs a fast type-II Maximum Likelihood (ML)
procedure, where we maximize the marginal likelihood of
the model P (Y|K,A) =

∫
P (Y|K,W)P (W|A)dW with

respect to the scales A. In this model, in order to have a
differentiable marginal likelihood, we follow the assumption
that each sample n has a common scale αn which is shared
across classes. The procedure we follow [15] is to decompose
the log-marginal likelihood into contributing terms based on
each sample so we can derive criteria to add, remove or update
the hyperparameter αn of an observation.

So, given the log of the marginal likelihood L(A) =
logP (Y|K,A) = log

∫
P (Y|K,W)P (W|A)dW we de-

rive:

L(A) =
C∑
c=1

−1
2

[N log 2π + log |C|+ yTc C−1yc] (6)

where C = I + KTA−1K, so by decomposing as in [15]:

|C| = |C−i| |1 + α−1
i kTi C−1

−iki|, (7)

where C−i denotes the value of C with the i-th sample
removed. Thus:

C−1 = C−1
−i −

C−1
−ikik

T
i C−1
−i

αi + kTi C−1
i ki

. (8)

we have now expressed the quantity C based on the con-
tribution of an i-th sample. Now we can decompose the log-
marginal likelihood as:

L(A) = L(A−i) +
C∑
c=1

1
2

[
logαi − log(αi + si) +

q2ci
αi + si

]
(9)

where we follow [15] in defining the “sparsity factor” si and
also the new multi-class “quality factor” qci as:

si = kTi C−1
−iki and qci = kTi C−1

−iyc (10)

The sparsity factor si defines the measure of overlap be-
tween a sample ki and the ones already included in the model.
That is, how much of the descriptive information of sample-i
is already given from the existing samples. The quality factor
qci measures how good the sample is in helping to describe a
specific class. Thus, in an extension of the binary maximum
solution proposed by [14], the descriptive quality of a sample
is now assessed across classes.

Having decomposed the marginal likelihood into sample
specific contributions we can seek the maximum with respect
to an αi. The only term that is a function of αi is l(αi) and the
only difference, in that term, with its binary definition is the
extra summation over classes and the multi-class factor qci.
By setting the derivative ∂L(A)

∂αi
= 0 we obtain the following

stationary points:

αi =
Cs2i∑C

c=1 q
2
ci − Csi

, if
C∑
c=1

q2ci > Csi (11)

αi = ∞, if
C∑
c=1

q2ci ≤ Csi (12)

It can be easily shown that for the above stationary points
the second derivative is always negative. Thus, those solutions
which maximize the marginal likelihood provide the rules for
inclusion of the sample in the model (11), removal (12) or
scale update (11).

The quantity:

θi =
C∑
c=1

q2ci − Csi (13)

defines the contribution of the i-sample to the marginal
likelihood, in terms of how much additional descriptive infor-
mation it provides to the model. Thus during each iteration,
we must have a set A populated by M active samples for
which θi > 0 ∀ i ∈ A. Otherwise, if a sample not in A has
a positive θ it must be included in A and reversely if a sample
with negative θ exists in A it must be excluded.

So during model training, the MAP update step (2) for
regressors Ŵ is modified to:

Ŵ? =
(
K?KT

? + A?

)−1
K?ỸT , (14)

where K? ∈ <M×N , and A? ∈ <M×M ,M << N the
matrices now with reduced dimensions. The training phase
follows the consecutive updates of A from (11) or (12), W
from (14) and Y from (3) and (4).

Finally, from (10) and (11) and given that C = I we
initialize the scales αi from:

αinitiali =
C||ki||2∑C

c=1 ||kTi yc||2/||ki||2 − C
(15)
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B. Sample selection

The selection of each sample is based on its contribution
to the marginal likelihood. During each iteration, we calculate
the contributions θi ∀i ∈ {1...N}. Then, if a sample which
is not yet included in the model has a positive contribution,
it is selected for the next iteration. Otherwise, if an already
included sample is found to have a negative contribution, it is
selected in order to be excluded. If none of the above criteria
are met, we select a random sample from inside the model.
This informative sample selection is not affected by problems
with heavily skewed classes (as the contribution of samples
from the under-represented class is by definition high) and
leads to faster convergence, see Fig. 5.

C. Convergence criteria for mRVM1

We consider two convergence criteria for mRVM1. The first
one labeled conv1, directly follows [15] while the second,
conv2 is an extension of conv1 that produces better results
both in terms of class recognition and sparsity:
• conv1 terminates the algorithm under three conditions:

1) θi > 0 ∀i ∈ A (all included samples contribute).
2) θi < 0 ∀i /∈ A (all excluded samples do not

contribute).
3) | logA(κ) − logA(κ−1)| < ε (the scales A update

from previous iteration is insignificantly small).
• conv2 follows all the above three conditions with the

addition of a minimum number of iterations:
4) κmin = λNtrain, where λ is a positive integer and

Ntrain the size of the training set.
As it will be demonstrated in the ‘Experiments’ section,

applying conv1 generally leads to an early termination of the
training phase, achieving suboptimal solutions with more rel-
evant vectors than needed. On the other hand, the introduction
of a minimum number of iterations κmin, although an empir-
ical termination condition, allows additional updates based on
Step 5 of Algorithm 1 that lead to more reconsiderations of
the θi contributions of active samples and thus a potentially
improved solution. A detailed comparison of the two criteria
across a variety of datasets will be provided.

D. Initialization

We can also employ a similar informative methodology for
the selection of the first sample, upon the condition that the
computation of each kernel function ki at the beginning of the
algorithm is computationally acceptable. Given that C = I, we
follow [15] by including the ki with the largest projection to
the auxiliary variables Y normalized by ||ki||2 and the number
of classes C:

θinitiali =
∑C
c=1 q

2
ci

Csi
=
||kiYT ||
C||ki||2

(16)

The above requires the computation of the kernel function
for every training sample. If this is not feasible due to
computational constraints, then a simple random selection of
the first sample must be employed.

E. Computational complexity

During the fast multi-class type II ML procedure we per-
form two matrix inversions (O(M3), where M << N ) per
training iteration. The first one is for the calculation of C−i
in order to derive the sparsity and quality factors si and qci.
The second one is the posterior update step of the regressor
parameters W from (14). Both of these calculations are based
on the training kernel K so by following [15] we propose a
methodology to avoid one of the two inversions. The sparsity
and quality factors of all the observations of the training set
are given by the following matrices:

S = KTC−1K and Q = KTC−1YT (17)

So if during a certain iteration of the training phase, the
number of active samples in our model is M , the training
kernel is K? ∈ <M×N and C = I+KT

?A−1
? K?. By utilizing

the Woodbury identity we decompose (17) to:

S = KKT −KKT
?

(
K?KT

? + A?

)−1
K?K (18)

Q = KYT −KKT
?

(
K?KT

? + A?

)−1
K?YT (19)

Where the quantity
(
K?KT

? + A?

)−1
can be reused for

the regressor W posterior update in (14), thus reducing the
number of matrix inversions per iteration.

If a selected sample i is not included in the model, its spar-
sity and quality factors are directly derived from (18) because
the matrix C−1 is in fact C−1

−i so si = Si and qci = Qci.
Otherwise, we must tune the above factors in order not to
include the existing information given by sample i to the C−1:

sm =
αmSm
αm − Sm

(20)

qcm =
αmQcm
αm − Sm

(21)

Algorithm 1 mRVM1 and the Fast Multi-class Type-II ML
procedure

1: Initialize Y to follow target labels t, set all αi =∞.
2: Initialize model with a single sample and set αi from (15).
3: while Convergence Criteria Unsatisfied do
4: if θi > 0 and αi <∞ then
5: Update αi from (11) (sample already in the model).
6: else if θi > 0 and αi =∞ then
7: Set αi from (11) (sample added in the model).
8: else if θi ≤ 0 and αi <∞ then
9: Set αi = ∞ from (12) (sample deleted from the

model).
10: end if
11: M-Step for Ŵ? : (14).
12: E-Step for Y : (3) and (4)
13: Re-calculate θi ∀ i ∈ {1...N}
14: if ∃ θj > 0 for j /∈ A then
15: find the j /∈ A for which

θj > θn ∀n /∈ A
16: else if ∃ θj < 0 for j ∈ A then
17: find the j ∈ A for which

θj < θn ∀n ∈ A
18: else
19: Set j = one random sample from A
20: end if
21: Set i = j
22: end while
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IV. MRVM2

The training phase in mRVM2 consists of subsequent up-
dates of the parameters A W Y from (5), (2), (3) and (4). The
only difference from the standard Expectation Maximization
scheme is that we explicitly remove samples with scales αic
large enough to “switch off” their respective regressors wic.
In other words, if for the i-th sample we have αic > 105 ∀ c
∈ {1, ..., C} then it is removed from A.

mRVM2 follows a ‘top-down’ approach by loading the
whole training kernel into memory and iteratively removing
insignificant samples. Although relatively more expressive
than mRVM1 because each sample i has a different scale
αic across classes, if mRVM2 prunes a sample it can not be
reintroduced in the model.

Convergence criteria for mRVM2

For mRVM2 we used two different convergence criteria:

• convA that terminates the model when
| logA(k) − logA(k−1)| < ε (insignificant change in the
scales A)

• convN when the number of iterations are λNtrain.

The intuition behind convA is that we stop model training
when we have insignificant changes in the hyperpriors that
control the sparsity, thus the relevant vectors of the model. The
second measure convN is an alternative termination decision
that (as conv2 in mRVM1) is found to yield better results.

Algorithm 2 mRVM2

1: while Convergence Criteria Unsatisfied do
2: E-Step for αic ∀ i ∈ A and c ∈ {1, ..., C}: (5).
3: if ∃ i for which aic > 105 ∀ c ∈ {1, ..., C} then
4: Remove i from A
5: Prune wi, ki αi
6: end if
7: M-Step for Ŵ? : (14)
8: E-Step for Y : (3) and (4)
9: end while

V. QUADRATURE APPROXIMATION

As mentioned previously, the estimation of (1) can not
be computed analytically, so a numerical estimation must
be employed, like the Monte Carlo estimation [6] [5] with
sampling of the random variable u. In the present work, we
follow a different approach using a Quadrature approximation.
As we take the expected value of (1) and for the random
variable u we have u ∼ N (0, 1), we can write (1) as:

P (tn = i|W,kn) = Ep(u) {F(u)} =
1√
2π

∫
F(u) e−u

2
du

(22)
Where the quantity e−u

2
is the standard Gauss-Hermite

weight function W (x). Typically, 2 roots are enough for
a good approximation and provide as accurate results as
the previous Monte Carlo simulation. The advantage of this
methodology is that it is computationally faster than sampling.

VI. PREDICTIVE LIKELIHOOD

In most cases, apart from a high recognition rate, we are
also interested that our model has an acceptable prediction
confidence i.e we want our class membership probabilities to
be as much diverged from a random guess as possible. In
order to measure that characteristic, we define the predictive
likelihood as the quantity P1 derived from the logarithm of the
probability pnc of a sample n belonging to the correct class c
specified by our target label during the model training:

P1 = log pnc (23)

The predictive likelihood measures the model confidence
for the prediction of the ‘correct’ (based on the target label)
class ignoring all other class memberships.

VII. ILLUSTRATION USING AN ARTIFICIAL DATASET

In this section we will demonstrate the two models in
an artificial problem. This dataset was designed specifically
to illustrate the behavior of mRVM1 and mRVM2 in terms
of sample selection and level of sparsity. This toy example
consists of N = 140 observations that belong to C = 3
different classes, represented as “asterisks” (∗), “dots” (•)
and “crosses” (+). The data was randomly generated by five
different Gaussian distributions.
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class 3
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Fig. 2: A toy dataset with three classes.

In Fig. 3, 4 we illustrate the progression of each model into
sample selection. Circles around a point mark it as a “relevant
vector” while the labels on the decision boundaries represent
which classes they separate. We selected three random itera-
tions from the beginning, the middle and the end of the training
phase. In Fig. 3 we see that mRVM1 starts by constructing an
initial collection of relevant vectors and then prunes out the
unnecessary ones, while in Fig 4 mRVM2 begins with the
whole training set and proceeds in a deconstructive manner.

In Fig. 5 we show the advantage of informative sample
selection in mRVM1 versus random choice. We monitor the
number of relevant vectors per iteration across a 10 times the
size of the training set run. We see that using informative
sample selection our model quickly converges to the actual
solution where otherwise, the model does not reach the optimal
solution even after reaching the maximum iterations.
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Fig. 3: The sample selection scheme of mRVM1.

VIII. EXPERIMENTS

A. Set-up

The study on mRVMs involved large scale experimentation
on a range of different data-sets, which we selected in order to
test the models on a variety of real world problems. Our source
for the data-sets, apart from ‘Crabs’ [18], was the University
of California Irvine (UCI) Machine Learning Repository [17].

TABLE I: Datasets used for experimentation

Dataset N C D Kernel used
Breast Cancer 569 2 30 Gaussian

Ecoli 336 8 7 Gaussian
Glass 214 6 9 Polynomial

Haberman 306 2 3 Gaussian
Ionosphere 351 2 34 Polynomial

Iris 150 3 4 Gaussian
Liver 345 2 6 Polynomial

Parkinsons 195 2 22 Polynomial
Pima 768 2 8 Gaussian
Wine 178 3 13 Linear

Soybean(small) 47 4 35 Linear
Vehicle 846 4 18 Polynomial
Balance 625 3 4 Polynomial

Crabs 200 4 5 Linear

For each of the above data-sets, we ran both mRVM1 and
mRVM2 by performing a 10 times 10 fold cross-validation
procedure, in order to minimize any result variance produced
by ‘improper’ folds. As our models do not employ any
automated kernel parameter learning scheme, we selected a
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Fig. 4: The sample selection scheme of mRVM2.
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convergence.
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bandwidth of 1/D for the Gaussian kernels as employed
in previous works [10]. Cross-validation or gradient ascent
methods may be used to further improve performance but
its beyond the scope of this paper and interesting future
directions. During each run, we monitored:

• the % accurate recognition rate i.e the number of correctly
classified test samples versus the size of the test set.

• the marginal likelihood for mRVM1 and the joint likeli-
hood for mRVM2.

• the model confidence, captured as the predictive likeli-
hood of the class membership probabilities.

• the number of relevant vectors, i.e active samples used
for the model training.

• the number of iterations upon which each convergence
condition was satisfied.

• other auxiliary quantities, such as the % change in the
model parameters W , Y and A.

The models were implemented using MATLAB and the
scripts 2 were run on a 416 core compute cluster.

B. Results of mRVM1

In this section we provide the results for each dataset, in
terms of % accurate recognition rate and number of relevance
vectors for each of the proposed convergence measures. In
Table II the second column of the table specifies the %
accurate recognition rate when the model has reached the
maximum number of iterations (in our experiments is 6 times
the size of the training set), while the third and fourth columns
represent the accuracies achieved by the two convergence
measures described in the relevant section (for λ = 1).
Additionally, in Table III we provide the number of relevant
vectors, again for each of the termination criteria we described.
With bold text we depict the top performance achieved that in
most cases is not statistically significant due to large variance
of the cross validation scheme.

In the graphs, we monitor the % accurate recognition rate,
the predictive likelihood P1, the log-marginal likelihood and
the number of relevance vectors. The points where we achieve
convergence are identified by the symbols ‘1’ and ‘2’, for
conv1 and conv2 respectively. The horizonal axis in the graphs
represents the number of iterations during the training phase.

TABLE II: % recognition rate of mRVM1

Dataset max it conv1 conv2

Breast c. 97.07 ± 0.85 97.54 ± 1.98 97.29 ± 2.04
Ecoli 83.33 ± 2.56 83.48 ± 5.99 83.76 ± 5.99
Glass 64.14 ± 3.68 64.19 ± 8.57 64.10 ± 9.02

Haberman 75.10 ± 2.45 74.63 ± 8.09 75.23 ± 7.66
Ionosphere 90.14 ± 1.34 89.74 ± 4.63 90.17 ± 4.72

Iris 93.47 ± 1.74 93.33 ± 6.77 93.80 ± 6.01
Liver 58.85 ± 2.21 58.65 ± 7.94 58.82 ± 8.03

Parkinsons 84.63 ± 2.39 83.79 ± 8.78 84.58 ± 8.57
Pima 77.11 ± 1.72 77.17 ± 4.38 77.14 ± 4.09
Wine 96.00 ± 1.86 95.71 ± 4.72 95.94 ± 4.71

Soybean 89.25 ± 5.53 88.25 ± 19.93 91.75 ± 16.30
Vehicle 73.82 ± 1.42 73.07 ± 4.47 73.77 ± 4.93
Balance 96.63 ± 0.53 92.35 ± 3.52 95.03 ± 3.12

Crabs 94.70 ± 1.75 94.49 ± 5.78 94.80 ± 5.71

2Available in http://www.dcs.gla.ac.uk/inference/pMKL

TABLE III: Number of relevant vectors mRVM1

Dataset Ntrain max it. conv1 conv2

Breast c. 513 4 ± 0 9 ± 5 5 ± 1
Ecoli 303 7 ± 0 16 ± 7 9 ± 5
Glass 193 7 ± 0 13 ± 3 9 ± 1

Haberman 276 4 ± 0 10 ± 3 5 ± 1
Ionosphere 316 9 ± 0 17 ± 5 10 ± 2

Iris 135 4 ± 0 8 ± 2 5 ± 1
Liver 311 2 ± 0 3 ± 1 2 ± 1

Parkinsons 176 6 ± 0 10 ± 3 7 ± 1
Pima 692 8 ± 0 16 ± 4 8 ± 1
Wine 161 3 ± 0 5 ± 2 3 ± 1

Soybean 43 3 ± 0 5 ± 2 4 ± 2
Vehicle 762 14 ± 1 38 ± 15 15 ± 3
Balance 563 8 ± 0 13 ± 5 8 ± 1

Crabs 180 4 ± 1 5 ± 2 4 ± 2

C. Results of mRVM2

Similarly to mRVM1, in Table IV we demonstrate the pre-
dictive power and in Table V the sparsity inducing capabilities
of mRVM2 across different datasets. In the graphs we monitor
the % accurate recognition rate, the predictive likelihood P1,
the log-joint likelihood and the number of relevance vectors.
The points where we achieve convergence are identified by
the symbols ‘A’ and ‘N’, for each of the criteria convA and
convN described in the mRVM2 model formulation section.

TABLE IV: % recognition rate of mRVM2

Dataset max it convA convN

Breast c. 97.07 ± 0.55 97.20 ± 2.13 97.14 ± 0.72
Ecoli 84.73 ± 2.98 85.00 ± 6.22 84.85 ± 2.66
Glass 67.49 ± 2.33 67.21 ± 27.10 67.37 ± 2.38

Haberman 74.97 ± 2.13 75.34 ± 7.78 74.87 ± 2.45
Ionosphere 90.49 ± 1.88 90.63 ± 4.60 90.54 ± 1.32

Iris 93.80 ± 1.75 93.87 ± 6.04 93.87 ± 1.80
Liver 68.71 ± 3.10 68.65 ± 7.79 68.74 ± 3.11

Parkinsons 84.11 ± 1.31 83.95 ± 7.34 84.00 ± 2.12
Pima 77.13 ± 1.47 77.22 ± 4.86 77.18 ± 1.53
Wine 95.94 ± 1.02 96.24 ± 4.77 96.24 ± 0.97

Soybean 96.50 ± 2.11 96.21 ± 9.01 97.00 ± 1.58
Vehicle 75.88 ± 2.03 76.26 ± 5.08 76.30 ± 1.72
Balance 92.71 ± 0.69 92.26 ± 3.52 92.63 ± 0.69

Crabs 94.85 ± 1.33 93.70 ± 5.53 93.85 ± 1.55

TABLE V: Number of relevant vectors mRVM2

Dataset Ntrain max it. convA convN

Breast c. 513 7 ± 0 10 ± 2 8 ± 0
Ecoli 303 11 ± 0 11 ± 1 11 ± 0
Glass 193 11 ± 1 11 ± 6 11 ± 1

Haberman 276 5 ± 0 6 ± 1 5 ± 0
Ionosphere 316 12 ± 0 13 ± 2 13 ± 1

Iris 135 6 ± 0 6 ± 1 6 ± 0
Liver 311 5 ± 0 5 ± 1 5 ± 0

Parkinsons 176 9 ± 0 9 ± 2 9 ± 0
Pima 692 11 ± 1 13 ± 2 12 ± 1
Wine 161 5 ± 0 5 ± 1 5 ± 0

Soybean 43 5 ± 0 6 ± 1 6 ± 0
Vehicle 762 36 ± 1 41 ± 3 38 ± 1
Balance 563 14 ± 0 15 ± 2 14 ± 0

Crabs 180 8 ± 0 9 ± 1 9 ± 0

D. Result interpretation of mRVM1

As mentioned previously, mRVM1 incrementally builds up
the training kernel based on each sample contribution. It can
be seen from Fig. 6, 7 and 8, that during the initial iterations
there is a massive build-up in the training kernel. At this
point, the quality factor qci of the samples plays the most
important role to the contribution θi, because in an initially
low populated A the descriptive overlap si is small due to the
low dimensionality of C. Thus, any sample which can describe
a class is included during this phase.
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Then the model reaches a point that is illustrated as the
“peak” in the number of relevance vector diagram, where
all class descriptive samples have been included. From this
point on, the matrix C reaches its highest dimensionality
thus the sparsity factor si becomes significant and samples
which provide redundant descriptive information are pruned
out. Because in some cases a sample contributes to the
solution in combination with another, there might be some
small fluctuations in the % recognition rate until the best
sample combination is correctly tuned. This particular region,
around the peak of the relevant vectors graph is usually where
dataset dependent phenomena are observed, e.g small peaks
or fluctuations in the predictive or marginal likelihood. The
model continues to prune out samples, until it reaches a very
small subset of the training set, sometimes with size the same
as the number of classes.
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Fig. 6: Results of mRVM1 for Ecoli dataset.

In terms of convergence, conv1 terminates the model train-
ing when a first ‘good’ solution is found (conditions 1+2
of the ‘Convergence’ section), as it evaluates the change in
scales A only based on the previous iteration (condition 3).
On the other hand, conv2 is less prone in falling into local
maxima, as it imposes more updates on the scales of active
samples (condition 4), changing the overall solution if some
these observations turn out to be uniformative. It can be seen
from the mRVM1 result tables II, III that conv2 generally gives
better solutions, both recognition and sparsity-wise.

There are also datasets for which we have a fall in the
confidence as defined by the predictive likelihood P1 such as
Ecoli in Fig. 6. For those datasets, we do not have only a trade-
off between sparsity and accuracy but also between sparsity
and model confidence. For those datasets, during the initial
relevance vector collection build-up the predictive likelihood
increases until a certain problem dependent point, which is
not the same as the one where we have maximum number
of active samples. It is important to mention that this fall
of the mean predictive likelihood does not compromise the
predictive power of the model, i.e does not neither align
with a significant fall in the % accurate recognition rate nor
represents a significant fall in the membership probability for
the correct class. The dominant characteristic for problems
with decreasing predictive likelihood is the significant variance
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Fig. 7: Results of mRVM1 for Balance dataset.
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Fig. 8: Results of mRVM1 for Vehicle dataset.

of the model confidence.

E. Result intepretation of mRVM2

For mRVM2, it can be seen from Fig. 9, 10 and 11 that
during the initial iterations the sample removal is cataclysmic
and the model ends up very early to the final solution. So
in contrast to mRVM1, mRVM2 speeds up as the training
phase progresses (due to the decreasing dimensionality of the
training kernel) and the final collection of samples is built up in
considerably less iterations. Another difference from mRVM1

is that the performance of mRVM2 in terms of % accurate
recognition rate is more stable across iterations. This is very
natural for the earlier iterations, as the algorithm starts with
the whole training set while during the subsequent iterations,
we see only small fluctuations of test accuracy, for example
in ‘Ionosphere’ (see Fig. 11) or ‘Parkinsons’ (see Fig. 9).

It can be seen from the result tables and graphs that for the
maximum number of iterations mRVM1 leads to more sparse
solutions than mRVM2 and more confident predictions. From
the perspective of a generative model, mRVM1 builds the class
membership distribution more sharply peaked around a small
collection of prototypical samples. Thus, points which are near
to the probability mass are classified with more confidence
(higher probability of class membership) in contrast to samples
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Fig. 9: Results of mRVM2 for Parkinsons dataset.
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Fig. 10: Results of mRVM2 for Crabs dataset.

which are near to the class boundary. So, although we have
very confident predictions for samples which are very typical
to their class, more outlying observations are more prone to
being misclassified, due to the significantly low probability
mass in their area. On the other hand, mRVM2 keeps a larger
subset of training samples, which spread the class conditional
probability mass to a larger area. This leads to better identifica-
tion of boundary samples, as they take a significantly higher
class membership probability than mRVM1, but with lower
prediction confidence.
F. Solution Stability

The solution produced by each of the two sparse models
is a collection of relevant vectors which describe each class
of the problem. In this section we discuss the stability of that
solution, i.e if the prototypical observations identified by our
models appear frequently across individual runs. As mentioned
in the experiments section we performed a 10 times 10 fold
cross validation procedure, so we study the appearance of
each observation to 100 solutions for each model. Although
sometimes a sample may appear in the test set due to our
cross validation scheme, it is more important to assess the
importance of an prototypical sample when belonging to
different training sets of the same problem rather than perform
multiple runs of the same training set.
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Fig. 11: Results of mRVM2 for Ionosphere dataset.

In Fig. 12 we see the histogram where the horizontal axis
represents the indices of samples and the vertical bar the
number of occurrences of each sample in our model solution,
for maximum number of iterations. The dashed vertical lines
represent the class boundary. It can be seen that mRVM1

holds a smaller number of relevant vectors and has better
identification properties as the same samples appear more
frequently in the solution. On the other hand, mRVM2 has
smaller prototypical identification power as nearly the majority
of samples appear at least a couple of times in the model
solution. Similar observations occurred in other datasets from
our collection.
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Fig. 12: Solution stability for the Wine dataset.
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TABLE VI: Comparison with the non-sparse Expectation Maximization model

mRVM1 mRVM2 E-M
Dataset % recognition rate RVs used % recognition rate RVs used % recognition rate Ntrain

Breast c. 97.54 ± 1.98 9 ± 5 97.20 ± 2.13 10 ± 2 96.96 ± 1.89 513
Ecoli 83.76 ± 5.99 9 ± 5 85.00 ± 6.22 11 ± 1 85.76 ± 6.23 303
Glass 64.19 ± 8.57 13 ± 3 67.49 ± 2.33 11 ± 1 70.00 ± 13.48 193

Haberman 75.23 ± 7.66 5 ± 1 75.34 ± 7.78 6 ± 1 73.33 ± 7.37 276
Ionosphere 90.17 ± 4.72 10 ± 2 90.63 ± 4.60 13 ± 2 93.14 ± 5.75 316

Iris 93.80 ± 6.01 5 ± 1 93.87 ± 1.80 6 ± 0 93.33 ± 5.44 135
Liver 58.85 ± 2.21 2 ± 0 68.74 ± 3.11 5 ± 0 68.53 ± 7.73 311

Parkinsons 84.63 ± 2.39 6 ± 0 84.11 ± 1.31 9 ± 0 89.47 ± 6.56 176
Pima 77.17 ± 4.38 16 ± 4 77.22 ± 4.86 13 ± 2 75.79 ± 5.20 692
Wine 96.00 ± 1.86 3 ± 0 96.24 ± 0.97 5 ± 0 95.88 ± 3.97 161

Soybean 91.75 ± 16.30 4 ± 2 97.00 ± 1.58 6 ± 0 97.50 ± 7.91 43
Vehicle 73.82 ± 1.42 14 ± 1 76.30 ± 1.72 38 ± 1 75.95 ± 5.38 762
Balance 96.63 ±0.53 8 ± 0 92.71 ± 0.69 14 ± 0 95.00 ± 3.60 563

Crabs 94.80 ± 5.71 4 ± 2 94.85 ± 1.33 8 ± 0 86.50 ± 7.09 180

IX. COMPETING METHODS

In this section we compare the performance of our sparse
models against published results from other machine learning
algorithms: the standard non-sparse Expectation-Maximization
(E-M) model, the Variational Bayes approximation for the
kernel-based multinomial probit likelihood model (VBpMKL)
[4], the K-nearest neighbors (KNN) classifier [10] along with
its probabilistic version PK-nn [10]. Similarly to mRVMs, we
followed a 10 times 10 fold cross-validation methodology. In
Tables VI, VIII and VII we can see that our models produce
very competitive results using only a fraction of the original
training set while possessing prototypical sample identification
capabilities.

TABLE VII: Results comparison against K-nearest neighbors meth-
ods [10]

Dataset mRVM1 mRVM2 K-nn PK-nn
Glass 64.19 ± 8.57 67.49 ± 2.33 70.09 ± 9.22 73.33 ± 8.81

Iris 93.80 ± 6.01 93.87 ± 1.8 94.67 ± 5.25 96 ± 5.62
Crabs 94.80 ± 5.71 94.85 ± 1.33 85 ± 8.82 80.5 ± 6.85
Pima 77.17 ± 4.38 77.22 ± 4.86 73 ± 8.88 76 ± 14.68

Soybean 91.75 ± 16.30 97.00 ± 1.58 85.5 ± 16.74 95.5 ± 9.56
Wine 96.00 ± 1.86 96.24 ± 0.97 96.08 ± 3.77 96.63 ± 2.89

Balance 96.63 ± 0.53 92.71 ± 0.69 88.48 ± 2.99 89.77 ± 3.02
Liver 58.85 ± 2.21 68.74 ± 3.11 66.4 ± 6.98 63.74 ± 12.93

Vehicle 73.82 ± 1.42 76.30 ± 1.72 63.72 ± 5.16 62.78 ± 4.53

TABLE VIII: Results comparison against the Variational Bayes
method VBpMKL [4]

Dataset mRVM1 mRVM2 VBpMKL
Balance 96.63 ± 0.53 92.71 ± 0.69 93 ± 3.3

Crabs 94.80 ± 5.71 94.85± 1.33 86.5 ± 8.2
Glass 64.19 ± 8.57 67.49 ± 2.33 72.1 ± 10.1

Iris 93.80 ± 6.01 93.87 ± 1.80 97.3 ± 5.6
Soybean 91.75 ± 16.30 97.00 ± 1.58 95.16 ± 8.4
Vehicle 73.82 ± 1.42 76.30 ± 1.72 74.4 ± 4

Wine 96.00 ± 1.86 96.24 ± 0.97 98.9 ± 2.3

X. CONCLUSION

In this work we introduced and provided the theoretical
background of the two multi-class multi-kernel Relevance
Vector Machines, focusing on their multi-class discrimination
aspect. Additionally, we proposed a collection of methodolo-
gies that boost the performance of mRVM1 both in terms of
computational complexity and discrimination power. Follow-
ing wide experimentation on real world datasets, we showed
that mRVM1 has better prototypical sample identification
properties and leads to more confident predictions. On the

other hand, mRVM2 is more accurate in terms of predictive
power and has better outlier detection capabilities. Using the
fast type-II ML procedure, mRVM1 allows the incremental
building of the training kernel, making the method very
suitable for large scale problems. From the other hand, the
assumption of a common scale α across classes makes the
model less expressive than mRVM2, providing lower class
recognition rates. In terms of sparsity, our experiments showed
that we can retain a significant amount of class recognition
accuracy, using only a small fraction of the overall training
set, sometimes with size the same as the number of classes.

mRVMs have the profound advantage of introducing spar-
sity to the multi-class setting, with all the well recognized
properties of the original Relevance Vector Machine and
Bayesian probabilistic models in general. Extensions to the
binary type-II ML RVM such as the smoothing prior proposed
in [12] and further adopted in [16] can be now applied to
the multi-class setting for regression problems. As a future
work, it will be very interesting to extend mRVMs to the
joint feature and sample sparsity setting so that our solution
can not only identify prototypical class observations, but
also the most important sample features. As mRVMs have
multi-kernel adaptation capabilities, it would be an interesting
starting point to map the observations X ∈ <N×D into
D number of kernels, one for each feature. Then, assuming
the process in computationally scalable for large problems,
using the informative kernel combination scheme proposed in
[6] infer the important features for each sample while at the
same time prune insignificant samples. Additionally, a very
useful extension to the mRVMs would be a kernel parameter
learning scheme, as shown in [16]. In the case of large scale
applications in high performance computing, scalability can
be improved by adapting the incremental formulae provided
in [15]. Finally, a very interesting area of research would be
to evaluate the qualitative properties of mRVM solutions in
terms of the problem context. For example, for Bioinformatics
problems, prototypical sample identification might be more
interesting than sheer class recognition accuracy.
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