CS419: Quantum Computing – Assignment 1

Problem 1

Formally state the following postulates of quantum mechanics:

- 1. State space (superposition).
- 2. Measurement (in a general basis).
- 3. Unitary evolution.

Problem 2

Consider the following unitary matrices, known as the Pauli matrices.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

For each one of the Pauli matrices, find out where the transformation maps the states $|0\rangle$, $|1\rangle$, $|-\rangle$, $|+\rangle$. (That is, compute $X |0\rangle$, $X |1\rangle$, $X |-\rangle$, ..., $Z |-\rangle$, $Z |+\rangle$.)

Problem 3

Consider the state $|\psi\rangle = \sqrt{\frac{3}{5}} |0\rangle + \sqrt{\frac{2}{5}} |1\rangle$.

- 1. Compute the inner product $\langle \psi | \psi \rangle$.
- 2. Compute the **matrix** $|\psi\rangle\langle\psi|$.
- 3. What will be the outcome of measuring ψ in the computational $(\{|0\rangle, |1\rangle\})$ basis?
- 4. What will be the outcome of measuring ψ in the $\{|+\rangle, |-\rangle\}$ basis?

Problem 4

Consider the the rotation gate

$$R_{\epsilon} = \begin{pmatrix} \cos(\epsilon) & -\sin(\epsilon) \\ \sin(\epsilon) & \cos(\epsilon) \end{pmatrix}.$$

- 1. If we measure $R_{\epsilon}|0\rangle$ in the $\{|0\rangle, |1\rangle\}$ -basis, what is the probability we will observe $|1\rangle$?
- 2. If we measure $R_{\epsilon} |1\rangle$ in the $\{|+\rangle, |-\rangle\}$ -basis, what is the probability we will observe $|+\rangle$?