Problem 1

(35 points) Let $F : \{0, 1\}^n \rightarrow \{0, 1\}$ be the logical OR function (that is, $F(x_1, x_2) = 0$ if and only if $x_1 = x_2 = 0$).

1. Convert F into a the $\{-1, 1\}$-valued function $f : \{0, 1\}^2 \rightarrow \{-1, 1\}$.
2. Write the quantum state $|f\rangle$.
3. Compute the Fourier spectrum of f; that is $\hat{f}(x)$ for each $x \in \{0, 1\}^2$.
4. Express f in its Fourier expansion.
5. Write the quantum state $|\hat{f}\rangle$.
6. What will we get if we apply $H \otimes^2$ to $|f\rangle$?
7. What will we get if we apply $H \otimes^2$ to $|\hat{f}\rangle$?

Problem 2

(35 points) Let $f_0 : \{0, 1\}^n \rightarrow \{-1, 1\}$ be a function such that $\hat{f}(00\cdots0) = \sqrt{2/3}$, and let $f_1 : \{0, 1\}^n \rightarrow \{-1, 1\}$ be a function such that $\hat{f}(11\cdots1) = \sqrt{2/3}$. Design and analyse an $O(1)$-query quantum algorithm that can distinguish between f_0 and f_1 with probability at least 99%.

Problem 3

(30 points) Let $f : \sqrt{N} \times \sqrt{N} \rightarrow 0, 1$ be a function representing a $\sqrt{N} \times \sqrt{N}$ Boolean matrix. Design an $O(N^{3/4} \log(N))$-query quantum algorithm that checks whether there exists at least one row that consists of only ones; that is, there exists x such that $f(x, y) = 1$ for all y. What is the time complexity of your algorithm?

Problem 4 – BONUS

(10 additional points, max mark is still 100 though...)

1. Watch the following Qiskit tutorials:
 https://www.youtube.com/playlist?list=PL0FEBzvs-Vvp2xg9-POLJhQwtVkt1YGbY
2. Implement a quantum algorithm of your choice (e.g., Deutsch, Deutsch-Jozsa, Bernstein-Vazirani, Fourier Sampling, Grover’s search, Simon’s algorithm, etc.) using Qiskit.
Some hints

1. Say algorithm A makes q queries and errs with probability at most $1/3$. Then for every m, there exists an algorithm A' that makes $O(q \log(m))$ queries and errs with probability at most $1/m$. **You can use this fact without proof.** The idea is simply to invoke the algorithm several times and rule by majority; See, e.g.,:

2. With a tiny modification, Grover's algorithm can find a 0 in a haystack of 1's (rather than a 1 in a haystack of 0's).

3. Recall that Grover's algorithm makes $O(\sqrt{N})$ queries (even if the number of 1's is unknown) and is correct with high probability (say, $2/3$), not with probability 1.

4. Say A is an algorithm that is correct with high probability, and we want to run it t times on t different inputs. If we want all t runs to be correct with high probability, we first need to reduce the error probability of A to $O(1/t)$.