
This Is Driving Me Loopy: Efficient Loops in Arrowized
Functional Reactive Programs

Finnbar Keating

f.keating@warwick.ac.uk
University of Warwick

Coventry, United Kingdom

Michael B. Gale

mbg@github.com
GitHub

Oxford, United Kingdom

Abstract
Arrowized Functional Reactive Programming (AFRP) is one

approach to writing reactive programs declaratively, based

on the arrows abstraction in Haskell. While AFRP elegantly

expresses the relationships between inputs and outputs of a

reactive system, naïve implementations suffer from poor per-

formance. In particular, the loop combinator depends on lazy

semantics: this inflicts the overheads of lazy evaluation and

simultaneously prevents existing optimisation techniques

from being applied to it.

We present a novel program transformation which utilises

the Arrow and ArrowLoop laws to transform typical uses

of loop into restricted forms that have an execution order

that is known at compile-time and therefore can be executed

strictly. We evaluate the performance gained from our trans-

formations and prove that the transformations are correct.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Data flow languages.

Keywords: Functional Reactive Programming, reactive pro-

gramming, stream programming, arrows, program transfor-

mation

ACM Reference Format:
Finnbar Keating and Michael B. Gale. 2023. This Is Driving Me

Loopy: Efficient Loops in Arrowized Functional Reactive Programs.

In Proceedings of the 16th ACM SIGPLAN International Haskell
Symposium (Haskell ’23), September 8–9, 2023, Seattle, WA, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3609026.
3609726

1 Introduction
Arrowised Functional Reactive Programming (AFRP) [8] is

a paradigm for writing reactive programs [24], which was

popularised by the Haskell library Yampa. In AFRP, reactive

programs are built using signal functions: functions which

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

Haskell ’23, September 8–9, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0298-3/23/09.

https://doi.org/10.1145/3609026.3609726

arr 𝑠𝑢𝑚
pre 0

Figure 1. loop (arr sum≫ (id ∗∗∗ pre 0))

produce streams of outputs from streams of inputs. Execu-

tion of a program is broken up into time steps, in each of

which signal functions get an input and produce a corre-

sponding output. This means that the program effectively

reacts to its inputs over time by producing outputs at the

same rate. Signal functions can be combined with the arrow

combinators [9] to form larger programs.

As an example of AFRP in action, consider a reactive sum-

ming program which, at every time step, retrieves an input

and adds it to a running total, which is also the output. This

is implemented in Fig. 1 as a Yampa program and visualised

as a box-and-wire diagram.

The overall program, which is itself a signal function, is

built up from smaller signal functions. We have arr sum,

which sums two inputs and returns the sum as both outputs;

and pre 0, which returns 0 at the first time step and then

the previous input at future time steps. Their inputs and

outputs are routed as shown in the diagram using the ∗∗∗ and
≫ combinators. We finally enclose all this in loop, which
connects the second output of its internal signal function to

its second input.

loop seems to introduce a dependency cycle here, in which

the second input of arr sum needs the second output of

arr sum to be computed. Fortunately, pre can generate its

output at a given time step only using its previous input,

meaning that we get the output of pre before needing to

compute its input. Therefore the above program works by

retrieving the previous output of the program “stored” in

pre, applying arr sum to that and the current input of the

program to compute the new cumulative total, returning

that as the output of the program and “storing” it in the pre
for use at the next time step.

The above example shows how stateful programs are writ-

ten in AFRP: loop is used in tandem with pre in order to use

outputs from previous time steps as inputs at a subsequent

time step. However, within this pattern lies a performance

issue that has not yet been addressed by existing literature:

https://orcid.org/0000-0001-6933-3338
https://orcid.org/0000-0001-7711-6763
https://doi.org/10.1145/3609026.3609726
https://doi.org/10.1145/3609026.3609726
https://doi.org/10.1145/3609026.3609726

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Finnbar Keating and Michael B. Gale

in order to implement pre as shown, loop’s definition de-

pends on lazy semantics. In pseudo-Haskell, we can define a

simplified semantics of loop as follows, where evalSF takes

a term of the form loop 𝑓 , 𝑓 is some signal function, and 𝑎 is

an input at the current time step. The definition is recursive

and we can see that the second input 𝑐 depends on the result

of the recursive call:

evalSF :: SF a b -> a -> b
evalSF (loop f) a =
let (b, c) = evalSF f (a, c) in b

When evaluating loop 𝑓 , the order in which signal functions

in 𝑓 are evaluated to determine 𝑐 is not always the same or

obvious as the signal functions are not always run from left to

right: in the example in Fig. 1 we have to first run pre 0 to get
its output, which corresponds to the 𝑐 that is the second input

to arr sum. The execution order is determined at runtime

by lazily evaluating 𝑓 , which means that evaluating loop 𝑓

suffers from the overheads needed for lazy evaluation.

This lazy evaluation does not happen just once at the start

of the program, however. When Yampa evaluates a signal

function for a single input, it also returns a possibly different

signal function to run at the next time step. This is necessary

for signal functions like pre v which need access to previous

state: when we run pre v with input 𝑎, we get the output

𝑣 and a new signal function pre a, which embeds the new

state within the next signal function [17]. This approach to

reactive programs that are essentially rewriting themselves

at runtime might require us to re-evaluate the order of oper-

ations in 𝑓 that needs to be performed at each time step.

Another issue with dependency resolution through lazy

evaluation is that some well-typed loop 𝑓 contain depen-

dency cycles so cannot be run. Consider the program in Fig. 1

but with the pre term omitted: this contains a dependency

cycle as arr sum needs its inputs to compute its outputs, but

the second output of arr sum depends on its own second

input. The presence of a dependency cycle is only noticed

when trying to evaluate the loop, causing a runtime error.

We address the problems caused by evaluating loop lazily

by introducing a program transformation which transforms

loop 𝑓 with no dependency cycles into alternative forms with

known execution order, which can be executed strictly. More

concretely, our contributions are as follows:

• Weprovide a program transformation for a subset of Yampa

(Section 3) which transforms loop 𝑓 without dependency

cycles to use variants of loop with known execution orders.
We accomplish this by applying the arrow laws [9] as well

as novel rules to rewrite loop 𝑓 so that uses of pre happen
before everything else.

• We prove that our transformation works on programs

without dependency cycles in them, and that this transfor-

mation does not affect program meaning (Section 4).

• We present a Haskell implementation, Severn, of this trans-
formation (Section 5), which runs the resulting program

arr 𝑓 pre 𝑣

Primitive arrows

𝑓 𝑔

𝑓 ≫ 𝑔

𝑓

𝑔

𝑓 ∗∗∗ 𝑔 =

first f ≫ second g

𝑓

loop f

Figure 2. The minimal set of arrow operators used in this

paper, presented as box-and-wire diagrams.

strictly. We compare the performance of programs written

in Severn to their equivalent Yampa programs (Section 6).

2 Yampa and Arrow Laws
For the benefit of readers unfamiliar with arrows and Yampa,

we briefly introduce the arrow constructors and laws that

we use throughout this paper.

Our work builds on Yampa, an AFRP implementation built

around signal functions (SFs). We consider a minimal set of

arrow operators
1
which are enough to define many useful

Yampa programs: this minimal set is presented in Fig. 2. We

also make use of first f and second f throughout as synonyms

for 𝑓 ∗∗∗ id and id ∗∗∗ 𝑓 respectively.

We briefly describe each operator in turn: arr f allows

pure functions to be turned into SFs where 𝑓 transforms an

input into an output. SFs can then be composed sequentially

with≫ and in parallel with ∗∗∗. These operators give us the
ability to run SFs consisting of pure functions and compose

them into larger programs.

pre v2 introduces the effect of state by mirroring its input

stream as output, delayed by one timestep. For example, the

inputs 1, 2, 3 passed to pre v give us the outputs 𝑣, 1, 2.

Finally, loop 𝑓 provides a way to introduce feedback into

our arrow programs by directly connecting the second out-

put of 𝑓 to its own second input. This is where Yampa re-

quires lazy evaluation, as we cannot run 𝑓 strictly without

its second output. In this work, we focus on its interactions

with the pre operator: since pre can generate an output at

a given timestep without its corresponding input, it can be

used to generate the second output of 𝑓 without needing the

second input. We saw this in Fig. 1, where the second input

of the loop is the second output of loop from the previous

time step due to pre.
These operators are enough to define common Yampa

programs. We discuss additional operators, such as switch,
in Section 7.3.

1https://hackage.haskell.org/package/base/docs/Control-Arrow.html
2
We use pre following Yampa’s terminology, but Liu et. al [15] introduce it

as the init operator, and it has also appeared elsewhere as delay or iPre.

https://hackage.haskell.org/package/base/docs/Control-Arrow.html

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Seattle, WA, USA

Since SFs are instances of Haskell’s Arrow and ArrowLoop
type classes, SFs must obey their laws. These laws define

required equivalences between programs, which we use

throughout our work to prove that each step of our program

transformation preserves program meaning. Throughout

this paper we introduce necessary laws as they are needed,

beginning with two keys ones below. Interested readers can

consult Hughes [9, Section 7] for the full set.

first 𝑓 ≫ first 𝑔 = first (𝑓 ≫ 𝑔) (arrow functor)

(𝑓 ≫ 𝑔)≫ ℎ = 𝑓 ≫ (𝑔≫ ℎ) (associativity)

2.1 Commutative Causal Arrows (CCAs)
Liu et. al define CCAs, which extend arrows with two addi-

tional laws that hold for Yampa [14, 15]:

first 𝑓 ≫ second 𝑔 = second 𝑔≫ first 𝑓 (commutativity)

pre 𝑖 ∗∗∗ pre 𝑗 = pre (𝑖, 𝑗) (product rule)

With these additional laws, whole AFRP programs can be

transformed into one of two forms: a single arr, or a loop
of the form LoopD f i = loop (𝑓 ≫ second (pre i)) [30].
This transformation is performed using the ArrowLoop laws,
which merge composed and nested loops together into a

single loop using routing functions.

At first glance, this seems to solve the problem we are

addressing in this paper: LoopD f i can be executed strictly

by first executing pre i and then executing 𝑓 . However, the

routing functions used by the transformation still rely on

lazy evaluation, and thus the LoopD created by the CCA

transformation cannot be executed strictly.

3 Transforming loop Into Strict Variants
We claim that the lazy semantics required to evaluate loop 𝑓

is a cause of performance issues due to the involved over-

heads. Our goal is therefore to determine the execution order

of 𝑓 within loop 𝑓 at compile-time.

We achieve this by finding decoupled [27] parts of 𝑓 : those

which can produce outputs at time step 𝑡 without any of

their inputs at 𝑡 , like pre. We define restricted forms of loop
where those decoupled parts are separated out from the rest

of 𝑓 , with the aim of running those parts first. An example

of this, and the main restricted form of loop we consider, is

Yallop and Liu’s LoopD 𝑓 ′ 𝑖 construct3 [30]. We define this

as follows alongside an interpreter runLoopD which maps

LoopD 𝑓 ′ 𝑖 to a corresponding signal function.

data LoopD a b = LoopD (SF (a,c) (b, c)) c

runLoopD :: LoopD a b -> SF a b
runLoopD (LoopD f i) = loop (f >>> second (pre i))

A loop 𝑓 can be expressed as LoopD only if 𝑓 contains a pre
just before its second output. Since pre can produce an output
at a given time step without the input at that time step, we

3
This is called loopPre in Yampa.

𝑓
𝑔 pre 𝑣 ℎ

𝑓
ℎ 𝑔 pre 𝑣

Figure 3. Right sliding of loop (𝑓 ≫ (id ∗∗∗ 𝑔) ≫ (id ∗∗∗
pre 𝑣)≫ (id ∗∗∗ ℎ))

know the execution order of LoopD f ′ i: evaluate the final
pre i to produce the second output, use it as second input,

and run the rest of 𝑓 ′ with both inputs. No lazy evaluation

is required.

The question is then how to transform arbitrary loop 𝑓 into
equivalents that can be expressed as LoopD 𝑓 ′ 𝑖 . Informally,

given a loop 𝑓 , our aim is to move a single pre within 𝑓 to

appear just before 𝑓 ’s second output while preserving the

semantics of that loop.

In the rest of this section we present the necessary trans-

formation for LoopD and other restricted forms of loop with

known execution orders. We do this in four parts, as follows:

1. In Section 3.1 we apply ArrowLoop’s sliding law to trans-

form some loop f into LoopD 𝑓 ′ 𝑖 by moving pre 𝑖 within
𝑓 to be just before the second output. We also discuss a

variety of transformations that may need to be applied

in order to allow sliding, and introduce CCA composition
form to make sliding easier to apply.

2. Sometimes there are multiple looped values in a loop: a
transformed loop f will be of the form LoopD 𝑓 ′ (𝑖, 𝑗). For
this we slide a single pre (𝑖, 𝑗) to be before the second

output of 𝑓 . However, pre (𝑖, 𝑗) can be expressed in a few

different ways, such as pre 𝑖 ∗∗∗ pre 𝑗 . To make sure that

we are able to work with these equivalent statements of

pre (𝑖, 𝑗), we use CCA’s product rule and a new split rule
which finds nearby pre to combine them into a single

pre (𝑖, 𝑗). (Section 3.2)

3. There are some loops where the pre is “trapped” between
two non-pre arrows that we cannot slide and which there-

fore cannot be transformed by the above two steps. For-

tunately, such loops also have a trivial execution order,

for which we define another restricted form of loop called

LoopM in Section 3.3.

4. We then look at the case where multiple loops are present
in a program, e.g. loop (loop 𝑓), in Section 3.4. The inner

loop is transformed using the above transformations, and

then LoopD and LoopM are modified to allow nesting.

5. Finally, we combine these transformations into an algo-

rithm in Section 3.5.

We justify that these steps cover all possible cases of a loop
with no dependency cycles in Section 4.

3.1 Sliding
We start by looking at how to move a single pre to the right-

most position of a loop body. Examples of loops which can

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Finnbar Keating and Michael B. Gale

𝑓
ℎpre 𝑣𝑔

𝑓
ℎ 𝑔 pre 𝑣

Figure 4. Left sliding of loop ((id ∗∗∗𝑔)≫ (id ∗∗∗ pre 𝑣)≫
(id ∗∗∗ ℎ)≫ 𝑓)

be transformed into LoopD in this way can be seen on the

left sides of Fig. 3 and Fig. 4, along with their transformed

versions on the corresponding right sides.

In these cases, we can employ sliding from the ArrowLoop
laws, which allows parts of our program to be moved around

inside the loop. Sliding is defined as follows:

loop (𝑔≫ arr (𝑖𝑑 ∗∗∗ 𝑘)) = loop (arr (𝑖𝑑 ∗∗∗ 𝑘)≫ 𝑔)

If we have loop f , we can move a signal function 𝑘 which

appears just before the second output of 𝑓 to be just after

the second input of 𝑓 , and vice versa. The equivalence holds

because 𝑘 still receives inputs from and gives outputs to

the same signal functions as before. Figure 3 shows this at

work with ℎ, which is connected to the same signal functions

before and after sliding. Note that, by design, this law does

not permit 𝑔 to be composed with an effectful computation.

Since 𝑖𝑑∗∗∗𝑘 is enclosed in arr , it is a signal function consisting
of a pure function. In general, this is important, because

changing the order of operations might lead to different

results in the presence of implicit, computational effects.

However, we focus on a minimal subset of the arrow op-

erators, which does not allow for effectful signal functions.

Therefore we can generalise the sliding rule slightly:

loop (𝑓 ≫ (𝑖𝑑 ∗∗∗ 𝑘)) = loop ((𝑖𝑑 ∗∗∗ 𝑘)≫ 𝑓)

We discuss the consequences of this decision in AFRP sys-

tems where signal functions can be effectful in Section 7.1.

We refer to transforming a program of the form on the

left to the form on the right as right sliding, since we move

the body of the loop to the right, causing 𝑘 to fall off the end

and reappear on the left side. We call the reverse direction

left sliding. Sliding gives us the rules needed to justify the

transformations in Fig. 3 and Fig. 4. The first example is

solved through right sliding, moving ℎ from the right of the

loop to the left. In the second example we can left slide twice,

moving 𝑔 and then pre 𝑣 from the left of the loop to the right.

3.1.1 Distributivity of Composition. This presentation
of sliding may not be applicable if programs are written in

subtly different, but equivalent ways. An equivalent way to

write Fig. 3 is loop (𝑓 ≫ (id ∗∗∗ (𝑔≫ pre 𝑣 ≫ ℎ))). How-
ever, applying right sliding here moves all of𝑔≫ pre 𝑣 ≫ ℎ

over to the left side, preventing us from getting pre 𝑣 into the
desired position. We solve this by noting that≫ distributes

over ∗∗∗ for CCAs, proved as follows:

(𝑓 ≫ ℎ) ∗∗∗ (𝑔≫ 𝑖)
= { first 𝑓 ≫ second 𝑔 = 𝑓 ∗∗∗ 𝑔 }

first (𝑓 ≫ ℎ)≫ second (𝑔≫ 𝑖)
= { by Arrow Functor law }

(first 𝑓 ≫ first ℎ)≫ (second 𝑔≫ second 𝑖)
= { we ignore brackets as≫ is associative }

first 𝑓 ≫ first ℎ≫ second 𝑔≫ second 𝑖

= { by CCA’s commutativity law }

first 𝑓 ≫ second 𝑔≫ first ℎ≫ second 𝑖

= { first 𝑓 ≫ second 𝑔 = 𝑓 ∗∗∗ 𝑔 }

(𝑓 ∗∗∗ 𝑔)≫ (ℎ ∗∗∗ 𝑖)
With this distributive law, we can rewrite id∗∗∗(𝑔≫ pre 𝑣 ≫
ℎ) to (id ∗∗∗ 𝑔) ≫ (id ∗∗∗ pre 𝑣) ≫ (id ∗∗∗ ℎ). This is the
same as the original definition of Fig. 3, allowing us to apply

right sliding to get the pre 𝑣 into the correct position.

3.1.2 Sliding next to non-id. Another obstacle that can
arise is when we have a term in parallel with the one we are

trying to slide, as in the first diagram in Fig. 5. We are unable

to apply left sliding here since it requires id ∗∗∗ 𝑘 at the start

of the loop, but we have 𝑦 ∗∗∗𝑔 instead of id ∗∗∗𝑔. We require

a more general pair of program equivalences:

loop (𝑓 ≫ (𝑔 ∗∗∗ 𝑘)) (right sliding)

= loop ((𝑖𝑑 ∗∗∗ 𝑘)≫ 𝑓 ≫ (𝑔 ∗∗∗ 𝑖𝑑))

loop ((𝑔 ∗∗∗ 𝑘)≫ 𝑓) (left sliding)

= loop ((𝑔 ∗∗∗ 𝑖𝑑)≫ 𝑓 ≫ (𝑖𝑑 ∗∗∗ 𝑘))
We prove the first of these below. The second is proved

symmetrically.

loop (𝑓 ≫ (𝑔 ∗∗∗ 𝑘))
= { identity of≫ }

loop (𝑓 ≫ ((𝑔≫ 𝑖𝑑) ∗∗∗ (𝑖𝑑 ≫ 𝑘)))
= { distributive law }

loop (𝑓 ≫ ((𝑔 ∗∗∗ 𝑖𝑑)≫ (𝑖𝑑 ∗∗∗ 𝑘)))
= { ArrowLoop Laws’ right sliding }

loop ((𝑖𝑑 ∗∗∗ 𝑘)≫ 𝑓 ≫ (𝑔 ∗∗∗ 𝑖𝑑))
With these, we can apply our new left sliding rule to reach

loop ((𝑦∗∗∗𝑖𝑑)≫ (𝑥 ∗∗∗pre 𝑣)≫ 𝑓 ≫ (𝑖𝑑∗∗∗𝑔)) as shown in
the second diagram in Fig. 5, which makes progress towards

getting pre 𝑣 into the expected position. Unfortunately, we

are now stuck – if we keep applying left sliding, all we do is

keep sliding id, which does not help us move the pre 𝑣 .

3.1.3 Pushing non-id terms through id. To avoid the

problem of having id block non-id terms which we want

to slide, we need rules to remove the offending id. We note

that since id terms do not change program meaning, we

can move them around and remove them as is needed. We

therefore define some new rules to “push” a non-id term to

take the place of an id, thus allowing it to be used by other

rules. Our aim in this section is to take programs such as

(𝑦 ∗∗∗ 𝑖𝑑) ≫ (𝑥 ∗∗∗ pre 𝑣), shown in the second diagram

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Seattle, WA, USA

𝑓
𝑥𝑦

pre 𝑣𝑔
𝑓

𝑥𝑦

𝑔pre 𝑣
𝑓

𝑥𝑦

𝑔 pre 𝑣

Figure 5. Left sliding of loop ((𝑦 ∗∗∗ 𝑔)≫ (𝑥 ∗∗∗ pre 𝑣)≫ 𝑓)

𝑖𝑑 ≫ 𝑖
left-fill
=====⇒ 𝑖 ≫ 𝑖𝑑

LFill-Id

𝑘 ≠ 𝑖𝑑

𝑘 ≫ 𝑖
left-fill
=====⇒ 𝑘 ≫ 𝑖

LFill-NonId

𝑎≫ 𝑏
left-fill
=====⇒ 𝑎′ ≫ 𝑏′

𝑐 ≫ 𝑑
left-fill
=====⇒ 𝑐′ ≫ 𝑑 ′

(𝑎 ∗∗∗ 𝑐)≫ (𝑏 ∗∗∗ 𝑑)
left-fill
=====⇒ (𝑎′ ∗∗∗ 𝑐′)≫ (𝑏′ ∗∗∗ 𝑑 ′)

LFill-∗∗∗

Figure 6. The three steps which define the left-fill rule.

in Fig. 5, and move the pre 𝑣 to be in parallel with the 𝑦 to

give us e.g. (𝑦 ∗∗∗ pre 𝑣)≫ (𝑥 ∗∗∗ 𝑖𝑑).
We start by defining the left fill operation, which takes a

composition of two terms and fills in any gaps (id) in the left

term with parts of the right term. This is defined using the

three rules shown in Fig. 6.

LFill-Id says that if we have an id as the left term, replace

it with the right term in order to fill the gap within the left

term. This does not change the meaning of the program since

𝑖𝑑 ≫ 𝑖 = 𝑖 = 𝑖 ≫ 𝑖𝑑 . LFill-NonId says that if there is no

id to fill, then do nothing.

LFill-∗∗∗ considers parallel compositions. This transforms

the input to (𝑎≫ 𝑏) ∗∗∗ (𝑐 ≫ 𝑑) via our distributive law,
uses the subordinate calls to left fill to transform 𝑎≫ 𝑏 and

𝑐 ≫ 𝑑 individually, and then uses the distributive law again

to combine the results of those subordinate calls to the result

of the main one.

Rather than using left fill just once when we have an id
to slide, we need to apply it multiple times. This is needed

to make sure that terms are propagated through multiple id
if needed: for example, (𝑖𝑑 ∗∗∗ 𝑓)≫ (𝑖𝑑 ∗∗∗ 𝑔)≫ (ℎ ∗∗∗ 𝑖)
requires a call to left fill on the last two terms and then on

the first two terms if we want the ℎ to be moved to the front

of the program. We therefore define left push to be repeated

application of left fill: given composition 𝑎1 ≫ 𝑎2 ≫ ...≫
𝑎𝑛 , we first left fill 𝑎𝑛−1 and 𝑎𝑛 , then 𝑎𝑛−2 and 𝑎𝑛−1 and so

on until we left fill 𝑎1 and 𝑎2.

We can now use this to finish transforming Fig. 5:

loop ((𝑦 ∗∗∗ 𝑔)≫ (𝑥 ∗∗∗ pre 𝑣)≫ 𝑓)
= { left sliding }

loop ((𝑦 ∗∗∗ 𝑖𝑑)≫ (𝑥 ∗∗∗ pre 𝑣)≫ 𝑓 ≫ (𝑖𝑑 ∗∗∗ 𝑔))
= { left push }

loop ((𝑦 ∗∗∗ pre 𝑣)≫ (𝑥 ∗∗∗ 𝑖𝑑)≫ 𝑓 ≫ (𝑖𝑑 ∗∗∗ 𝑔))
= { left sliding }

loop ((𝑦 ∗∗∗ 𝑖𝑑)≫ (𝑥 ∗∗∗ 𝑖𝑑)≫ 𝑓 ≫
(𝑖𝑑 ∗∗∗ 𝑔)≫ (𝑖𝑑 ∗∗∗ pre 𝑣))

= { definition of LoopD }

LoopD ((𝑦 ∗∗∗ 𝑖𝑑)≫ (𝑥 ∗∗∗ 𝑖𝑑)≫ 𝑓 ≫ (𝑖𝑑 ∗∗∗ 𝑔)) 𝑣

With this set of new rules, we are now able to transform

loops which previously could not have left sliding applied to

them. We also utilise equivalent right fill and right push laws

to move non-id terms to the right for transforming loops to
have right sliding applied to them. We omit these definitions

as they are symmetric to those for left fill and left push.

3.1.4 CCA Composition Form. The issue of needing our
program to be of a certain form in order to apply a rule is

not unique to sliding. We also define CCA composition form,

which forces loops to have≫ at the top level only, in order

to restrict the shape that a loop can take and thus make it

easier to apply our rules.

We require that pre cannot contain a tuple value. This

is because when we apply rules such as sliding, we need

to have the ∗∗∗ to know that we can split the term in two:

for example, if we had loop (pre (𝑖, 𝑗) ≫ 𝑓), we could not

apply left sliding. Any pre (𝑖, 𝑗) can instead be written as

pre 𝑖 ∗∗∗ pre 𝑗 by CCA’s product rule.

We now formally state the definition of CCA composition

form.

Definition 3.1. An AFRP program is in CCA composition
form if it can be parsed by the following grammar, where

L is the start symbol, F is any pure function, and V is any

non-tuple value.

L F loop C Loop
C F C≫ C Composition

| P No composition
P F P ∗∗∗ P Parallel composition

| arr F Lifted pure function F
| pre V Pre with non-tuple argument V
| 𝑖𝑑 Identity
| L Internal loop

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Finnbar Keating and Michael B. Gale

𝑓
𝑔

pre 𝑗

pre 𝑖

ℎ

𝑓
𝑔

pre 𝑗

pre 𝑖

ℎ

Figure 7. loop (𝑓 ≫ second ((𝑔 ∗∗∗ pre 𝑗)≫ (pre 𝑖 ∗∗∗ℎ)))

For the rest of this paper, we present rules assuming that

our programs are in CCA composition form. This does not

affect the expressiveness of our system as it is possible to

transform any existing CCA into this form through applica-

tion of distributive law as we did back in Section 3.1.1 and

application of CCA product rule to avoid any pre (𝑖, 𝑗).

3.2 Combining Smaller pre into Larger Ones
We have shown that using a combination of our new gener-

alised sliding rule, distributive law and push, we can move

a single pre within loop f to be before the second of output

of 𝑓 . However, we sometimes work with multiple pre rather
than a single one, e.g. in loop (𝑔≫ second (pre 𝑖 ∗∗∗ pre 𝑗)).
This loop still has a clear execution order: run the two pre to
generate the second outputs of the loop body, which means

we get the second inputs and can run 𝑔. We cannot currently

transform it into LoopD however, since LoopD relies on there

being a single pre.
To represent this as a LoopD, we need to merge the two

occurrences of pre together into single use of pre using the
previously discussed CCA product rule: pre 𝑖 ∗∗∗ pre 𝑗 =

pre (𝑖, 𝑗). This means that whenever we encounter two uses

of pre in parallel, we can merge them and treat them as

one. With this, we can transform our example to loop (𝑔≫
second (pre (𝑖, 𝑗))), which is equivalent to LoopD 𝑔 (𝑖, 𝑗).

3.2.1 The split Rule. The CCA product rule lets us com-

bine pre which are in parallel, but the uses of pre we need
to merge may not always be in parallel. Figure 7 shows an

example with two uses of pre which cannot be solely solved

by the product rule and sliding: the two halves of the second

output each have a pre on them, but those uses of pre are not
parallel to each other and the product rule therefore cannot

be applied.

We therefore need a way of rearranging expressions such

as 𝑓 ≫ (𝑔 ∗∗∗ pre 𝑗)≫ (pre 𝑖 ∗∗∗ℎ) to correctly group uses

of pre together and merge them with the product rule. To do

this, we define split, which attempts to split an input 𝑓 into

(𝑓𝑙 , 𝑓𝑑 , 𝑓𝑟) where 𝑓 = 𝑓𝑙 ≫ 𝑓𝑑 ≫ 𝑓𝑟 and 𝑓𝑑 is a decoupled

term containing no≫. We define this operation through a

collection of rules, shown in Fig. 8.

Split-Pre dictates that if we have a pre 𝑣 at the end of

the composition, then we already have a trivial split with

𝑓𝑑 = pre 𝑣 . Split-∗∗∗-R specifies that if we have two parallel

paths given by some 𝑔∗∗∗ℎ = (𝑔1 ∗∗∗ℎ1)≫ · · ·≫ (𝑔𝑛 ∗∗∗ℎ𝑛)
and we are able to split the two paths 𝑔 and ℎ, then we can

split the two paths in parallel by aligning the 𝑔𝑑 and ℎ𝑑 we

get from the subordinate calls to split.
In any other case, we have not found a pre nor a 𝑙 ∗∗∗ 𝑟

where we can find a pre in each of 𝑙 and 𝑟 and thus combine

them with CCA’s product rule. Split-NonPre dictates that

in this case, we can skip over this term as it will not lead to

us finding the required pre. This covers arr f and id.
We present these rules in use with a derivation that cor-

rectly splits our earlier example of 𝑓 ≫ (𝑔 ∗∗∗ pre 𝑗) ≫
(pre 𝑖 ∗∗∗ ℎ) in Fig. 9. Running split is easy for a given

𝑓 = 𝑓1 ≫ ... ≫ 𝑓𝑛 : find the rule matching 𝑓 ′ ≫ 𝑓𝑛 ,

or in the case of 𝑓𝑛 = 𝑎 ∗∗∗ 𝑏 try each of the Split-∗∗∗ rules
in turn. We prove that running split always produces a valid
split if it exists in Section 4.

3.2.2 Using split to Find LoopD. The split rule now lets

us find a pre that can be slid into position. Given loop (𝑔≫
second 𝑓), we apply split to 𝑓 to transform it into loop (𝑔≫
second (𝑓𝑙 ≫ pre 𝑣 ≫ 𝑓𝑟)). We can then right slide 𝑓𝑟 to

get LoopD (𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑟 ≫ 𝑔≫ 𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑙) 𝑣 .
This only looks at the right side of the loop however: we

also need to slide anything from the left side over to the right

side so that it is considered by split. This is necessary for

programs in which the pre we are looking for is on the oppo-

site side, such as loop (second (pre 𝑣) ≫ 𝑥). We therefore

left slide as much as we can before applying split.

3.3 LoopM
While the sliding and split rules are enough to transform

most loop f into LoopD 𝑓 ′ 𝑖 , there is one class of counterex-
amples for which this is not enough. In Fig. 10a, we are

unable to slide a pre into position because neither 𝑓 nor 𝑔

can be slid, meaning that we cannot transform the loop into

LoopD. We need to be able to transform this example how-

ever, as it can be executed by getting the outputs from the

pre, then running 𝑔, and finally running 𝑓 .

To transform loop f where 𝑓 is split in two halves by a

pre, we introduce a new restricted form of loop called LoopM .

This is defined as follows alongside an interpreter runLoopM
which maps LoopM 𝑓 𝑖 𝑔 to a corresponding signal function.

data LoopM a b = LoopM (SF (a,c) d) d (SF d (b, c))

runLoopM :: LoopM a b -> SF a b
runLoopM (LoopM f i g) = loop (f >>> pre i >>> g)

Checking whether we can transform loop x into LoopM only

requires application of split. If we can split𝑥 to get (𝑓 , pre 𝑖, 𝑔),
then𝑥 = 𝑓 ≫ pre 𝑖 ≫ 𝑔 and therefore loop 𝑥 = 𝐿𝑜𝑜𝑝𝑀 𝑓 𝑖 𝑔.

This can be applied to both of our examples in Fig. 10 to get

LoopM 𝑓 (𝑖, 𝑗) 𝑔 and LoopM (𝑓 ≫ second ℎ) (𝑥,𝑦) (first 𝑖 ≫
𝑔) respectively.

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Seattle, WA, USA

𝑓 ≫ pre 𝑣
split
===⇒ (𝑓 , pre 𝑣, 𝑖𝑑)

Split-Pre

𝑓
𝑠𝑝𝑙𝑖𝑡
====⇒ (𝑓𝑙 , 𝑓𝑑 , 𝑓𝑟)

𝑓 ≫ 𝑔
𝑠𝑝𝑙𝑖𝑡
====⇒ (𝑓𝑙 , 𝑓𝑑 , 𝑓𝑟 ≫ 𝑔)

Split-NonPre

𝑔1 ≫ · · ·≫ 𝑔𝑛
split
===⇒ (𝑔𝑙 , 𝑔𝑑 , 𝑔𝑟) ℎ1 ≫ · · ·≫ ℎ𝑛

split
===⇒ (ℎ𝑙 , ℎ𝑑 , ℎ𝑟)

𝑓 ≫ (𝑔1 ∗∗∗ ℎ1)≫ · · ·≫ (𝑔𝑛 ∗∗∗ ℎ𝑛)
𝑠𝑝𝑙𝑖𝑡
====⇒ (𝑓 ≫ (𝑔𝑙 ∗∗∗ ℎ𝑙), 𝑔𝑑 ∗∗∗ ℎ𝑑 , 𝑔𝑟 ∗∗∗ ℎ𝑟)

Split-∗∗∗-R

Figure 8. The split rules.

Split-Pre

𝑔≫ pre 𝑖
split
===⇒ (𝑔, pre 𝑖, 𝑖𝑑)

pre 𝑗
split
===⇒ (𝑖𝑑, pre 𝑗, 𝑖𝑑)

Split-Pre

pre 𝑗 ≫ ℎ
split
===⇒ (𝑖𝑑, pre 𝑗, ℎ)

Split-NonPre

𝑓 ≫ (𝑔 ∗∗∗ pre 𝑗)≫ (pre 𝑖 ∗∗∗ ℎ)
split
===⇒ (𝑓 ≫ (𝑔 ∗∗∗ 𝑖𝑑), pre 𝑖 ∗∗∗ pre 𝑗, 𝑖𝑑 ∗∗∗ ℎ)

Split-∗∗∗-R

Figure 9. Derivation of splitting 𝑓 ≫ (𝑔 ∗∗∗ pre 𝑗)≫ (pre 𝑖 ∗∗∗ ℎ)

𝑓 pre (𝑖, 𝑗) 𝑔

(a) loop (𝑓 ≫ pre (𝑖, 𝑗)≫ 𝑔)

𝑓
pre 𝑥

ℎ

𝑖

pre 𝑦
𝑔

(b) loop (𝑓 ≫ (pre 𝑥 ∗∗∗ ℎ) ≫
(𝑖 ∗∗∗ pre 𝑦)≫ 𝑔)

Figure 10. Examples where LoopM is needed.

3.4 Multiple Loops
We can now transform a single loop f into its equivalent

LoopD or LoopM . We now consider programs with multiple

composed loops or nested loops, with the aim of being able

to transform programs consisting of any number of loops.
For composed loops we note that the transformation of

a given loop f relies on nothing except 𝑓 . This means that

we can transform compositions of loops such as loop 𝑓 ≫
loop 𝑔 by transforming each individual loop, giving us e.g.
something of the form LoopD 𝑓 ′ 𝑖 ≫ 𝐿𝑜𝑜𝑝𝑀 𝑔1 𝑗 𝑔2.

Issues arise however when we introduce nested loops such
as loop (loop 𝑓). The inner loop 𝑓 could contain the pre that
is needed for the outer loop to be transformed. An example

of this is presented in Fig. 11, where the pre 𝑖 in the inner

loop is needed by the outer loop. We therefore need a way

to extract such a pre from an inner loop 𝑓 .

In the rest of the section, we look at extracting pre from
nested loops in two cases: one where the inner loop can be

transformed into LoopD, and another when it can be trans-

formed into LoopM .

𝑔
pre 𝑖

pre 𝑗

𝑓

(a) loop (𝑓 ≫ loop (𝑔 ≫
(pre 𝑖 ∗∗∗ pre 𝑗)))

𝑔
pre 𝑗

𝑓

pre 𝑖

(b) loop (𝑓 ≫ loop (𝑔 ≫ (id ∗∗∗
pre 𝑗))≫ second (pre 𝑖))

Figure 11. Example where we need to extract a pre from a

LoopD, and a version with the pre extracted.

3.4.1 Extracting pre from LoopD. When the inner loop
is a LoopD, we need to get the pre out of that inner loop if

we want to use it outside of that loop. We have already seen

this in Fig. 11.

To achieve this, we turn again to the ArrowLoop laws,

which given a loop f provide a way to extract unused pre
from 𝑓 . The two laws we need are stated below.

loop ((𝑥 ∗∗∗ 𝑧)≫ 𝑦) (left tightening)

= 𝑥 ≫ loop (second 𝑧≫ 𝑦)

loop (𝑥 ≫ (𝑦 ∗∗∗ 𝑧)) (right tightening)

= loop (𝑥 ≫ second 𝑧)≫ 𝑦

Right tightening takes a loop with (𝑦 ∗∗∗ 𝑧) as its last term
and moves 𝑦 outside of the loop. This preserves program
meaning as 𝑦 still receives the same inputs and produces

the same outputs; it does not need to be within the loop to
still be connected to the first output of 𝑥 . This is shown in

use in Fig. 11, where we use right tightening to move the

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Finnbar Keating and Michael B. Gale

pre 𝑖 outside of the loop while keeping it connected to the

first output of 𝑔, meaning that we can use it to transform

the outer loop. Left tightening is similar, but works with the

front of the loop instead.

In most cases there is only one direction in which part

of a loop can be tightened. Consider an arbitrary loop ((𝑓1 ∗
∗∗ 𝑓2) ≫ 𝑓3 ≫ (𝑓4 ∗∗∗ 𝑓5)) where any 𝑓𝑖 can be id. If 𝑓3 is
not id, then only 𝑓1 can be moved outside of the loop via left

tightening as 𝑓3 “blocks” 𝑓4 from being moved this way, and

only 𝑓4 can be moved outside of the loop via right tightening

through a similar argument. In these cases, we apply left and

right tightening to move 𝑓1 and 𝑓4 out of the loop once we

have transformed it into LoopD.
In the casewhere 𝑓3 = 𝑖𝑑 , we end upwith loop ((𝑓1∗∗∗𝑓2)≫

(𝑓4 ∗∗∗ 𝑓5)). 𝑓1 and 𝑓4 could be tightened out of the loop in

either direction, but we do not know which way we need to

tighten them to e.g. get the pre needed for an outer loop. The
trick is to consider the more general case of loop (𝑓 ∗∗∗ 𝑔),
in which we only need to run 𝑓 to get the output of the loop:
𝑔 will never be run as its result is never needed. Thus we

avoid having to decide which way to tighten by removing

the loop, 𝑓2 and 𝑓5 to get 𝑓1 ≫ 𝑓4.

We can extract a pre from an inner LoopD by therefore

either applying left and right tightening to move as much

from inside the LoopD out as possible, or remove the LoopD
entirely using loop (𝑓 ∗∗∗𝑔). In either case, this allows pre that
were part of the inner loop to be used when transforming

the outer loop.

3.4.2 Extracting pre from LoopM. When we have an

inner LoopM, things are simpler than for LoopD. The trick is

that LoopM itself is decoupled like pre, as it can produce all of
its outputs without any of its inputs by using its internal pre.
To run a program like loop (𝑓 ≫ second (LoopM 𝑔 (𝑖, 𝑗) ℎ)),
we can first get the output of the inner LoopM by running

its internal pre, then run ℎ to get the second output of the

outer loop, and then finally run 𝑓 and 𝑔.

Since our aim with these restricted forms of loop is to

fix the location of a decoupled part so that we know the

execution order of the loop at compile time, we allow LoopM
to take the place of a pre when transforming our loops. This
is implemented via a minor update to the split operation:

𝑥 ≫ 𝐿𝑜𝑜𝑝𝑀 𝑓 𝑑 𝑔
split
===⇒ (𝑥, 𝐿𝑜𝑜𝑝𝑀 𝑓 𝑑 𝑔, 𝑖𝑑)

Split-LoopM

With this we can now use LoopM wherever we were aiming

for a pre, allowing our earlier example to be expressed as

LoopD 𝑓 (𝐿𝑜𝑜𝑝𝑀 𝑔 (pre (𝑖, 𝑗)) ℎ). Note that the definitions
of LoopD and LoopM have changed slightly since they pre-

viously relied on specifically containing a 𝑝𝑟𝑒 , but can now

contain arbitrary SFs consisting of pre, LoopM and ∗∗∗. The
updated definitions can be seen in the code for Decoupled
in Section 5.1.

3.5 Transformation Algorithm
We now combine the rules we have described for transform-

ing different cases of loops into an algorithm that we can

run. The overall process that we present inspects loops from
innermost to outermost, transforming each one to a LoopD
or LoopM until every loop is transformed. After transform-

ing the program into CCA composition form (Section 3.1.4),

perform the following for each loop from the innermost to

the outermost:

1. Attempt to apply loop (𝑓1 ∗∗∗ 𝑓2) = 𝑓1 (Section 3.4.1) to

remove the loop altogether. In CCA composition form,

this is equivalent to checking whether each term 𝑎𝑖 in

loop (𝑎1 ≫ 𝑎2 ≫ · · ·≫ 𝑎𝑛) consists of 𝑎𝑙𝑖 ∗∗∗ 𝑎𝑟𝑖 .
2. If that does not work, attempt to transform the loop f to

LoopM 𝑓 ′ 𝑑 𝑔′ by using split to find 𝑓 = 𝑓 ′ ≫ 𝑑 ≫ 𝑔′

for decoupled 𝑑 (Section 3.3).

3. If that does not work, attempt to transform the loop f into

LoopD 𝑓 ′ 𝑖 in three stages:

a. Slide left as much as possible, using left fill as needed,

to get a program of the form loop (𝑔 ≫ second 𝑥)
(Section 3.1 and Section 3.2.2).

b. Apply split to 𝑥 to get 𝑓 = 𝑔≫ second (𝑥𝑙 ≫ 𝑥𝑑 ≫
𝑥𝑟). Right slide 𝑥𝑟 to get 𝑥𝑑 in the right position, giv-

ing us LoopD (second 𝑥𝑟 ≫ 𝑔≫ second 𝑥𝑙) 𝑥𝑑 (Sec-

tion 3.2).

c. If this works, apply left and right tightening to extract

any more pre or LoopM that could be used in outer

loop from that LoopD (Section 3.4.1).

4 Completeness
Wenow prove that our transformationworks on all loopwith-
out dependency cycles while preserving program meaning.

In Section 3, we proved that program meaning is preserved

by each individual operation through existing laws for ar-

rows and CCAs. Since our transformation solely uses these

operations, it preserves program meaning. We now prove

that it is complete for any loop with no dependency cycles.

We first need to formalise what a dependency cycle is, in

order to reason about them. Some output 𝑜 depends on an

input 𝑖 if there is some path through the program from 𝑖 to 𝑜 :

meaning that in order to get 𝑜 , we need to know 𝑖 . Decoupled

functions like pre break this dependency as they are able to

produce an output at a given time step without the input at

that time step; the dependencies we therefore consider are

represented by paths which do not go through a decoupled

signal function. We define this as a direct dependency:

Definition 4.1. A direct dependency exists from input 𝑖 to

output 𝑜 of some signal function 𝑓 if there is a path from 𝑖

to 𝑜 through 𝑓 that does not flow through a pre or LoopM
(equivalently, a decoupled signal function).

A dependency cycle arises if there is a direct dependency

from 𝑖 and 𝑜 and one from 𝑜 to 𝑖 . In loop 𝑓 , dependency cycles

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Seattle, WA, USA

are created via loop 𝑓 ’s backedge from each part of its second

output to each part of its second input. We define a direct

dependency cycle within a loop as follows.

Definition 4.2. A direct dependency cycle within loop f ex-

ists if there is a direct dependency through 𝑓 from a compo-

nent of the second input of 𝑓 to the same component of the

second output of 𝑓 .

Let us build an intuition for how paths, and thus direct de-

pendencies, are built from each of the arrow constructors:

• arr f : Since we know nothing about 𝑓 , we assume that

there is a path from every input to every output, and there-

fore every output of arr 𝑓 directly depends on every input.

We show later that this also holds for LoopD generated by

the transformation.

• pre v: If we have a pre, then there is a path from every input

to every output which trivially goes through a decoupled

signal function, so there is no direct dependency between

pre’s inputs and outputs. The same holds for LoopM.

• 𝑓 ≫ 𝑔: This sequentially composes the paths through 𝑓

and 𝑔: if there is a path through 𝑓 from 𝑖 to𝑚, and a path

through 𝑔 from𝑚 to 𝑜 , then there is a path through 𝑓 ≫ 𝑔

from 𝑖 to 𝑜 .

• 𝑓 ∗∗∗ 𝑔: This composes two paths in parallel that do not

interact. Therefore it will have a pre on every path if 𝑓 and

𝑔 each have a pre on every path between their inputs and

outputs.

We now present some auxiliary lemmas used within our

main proof. We first define three forms that a loop can take

which allow us to perform case analysis in our other proofs:

Lemma 4.3. Any loop 𝑓 can be represented as one of the

following cases:

Case 1 loop (a ∗∗∗ b)
Case 2 loop ((𝑎 ∗∗∗ 𝑏)≫ 𝑐 ≫ (𝑑 ∗∗∗ 𝑒)), where either:

Case 2a 𝑐 = 𝑟1, or

Case 2b 𝑐 = 𝑟1 ≫ 𝑐′ ≫ 𝑟2
where 𝑟𝑖 is arr 𝑥 , pre 𝑣 , LoopD 𝑓 ′ 𝑑 or LoopM 𝑓 ′ 𝑑 𝑔′.

Proof. Express 𝑓 in CCA composition form: 𝑓 = 𝑓1 ≫ 𝑓2 ≫
...≫ 𝑓𝑛 . If every 𝑓𝑖 is 𝑥𝑖 ∗∗∗𝑦𝑖 , then 𝑓 is in the form denoted

by Case 1, with 𝑎 = 𝑥1 ≫ ...≫ 𝑥𝑛 and 𝑏 = 𝑦1 ≫ ...≫ 𝑦𝑛 .

If exactly one 𝑓𝑖 is not 𝑥𝑖 ∗∗∗𝑦𝑖 , then 𝑓 is in the form denoted by

Case 2a, with 𝑎 = 𝑥1 ≫ ... ≫ 𝑥𝑖−1, 𝑏 = 𝑦1 ≫ ... ≫ 𝑦𝑖−1,
𝑐 = 𝑓𝑖 , 𝑑 = 𝑥𝑖+1 ≫ ...≫ 𝑥𝑛 and 𝑒 = 𝑦𝑖+1 ≫ ...≫ 𝑦𝑛 .

Otherwise, denote the first and last non-∗∗∗ terms in 𝑓 as

𝑓𝑖 and 𝑓𝑗 respectively. 𝑓 is of the form in Case 2b, with 𝑎 =

𝑥1 ≫ ...≫ 𝑥𝑖−1, 𝑏 = 𝑦1 ≫ ...≫ 𝑦𝑖−1, 𝑐 = 𝑓𝑖 ≫ ...≫ 𝑓𝑗 ,

𝑑 = 𝑥 𝑗+1 ≫ ...≫ 𝑥𝑛 and 𝑒 = 𝑦 𝑗+1 ≫ ...≫ 𝑦𝑛 . □

We now prove that our split operation (Section 3.2.1) will

transform every 𝑓 with no direct dependencies between its

inputs and outputs into 𝑓𝑙 ≫ 𝑓𝑑 ≫ 𝑓𝑟 where 𝑓𝑑 is decoupled.

We assume that every output of any LoopD within 𝑓 directly

depends on every input of it: this is necessary as it is possible

to construct examples where a LoopD can have a decoupled

signal function “hidden” inside it (discussed in Section 3.4.1).

We show later that our transformation does not generate

LoopD like that.

Lemma 4.4. Given 𝑓 in CCA composition form for which:

1. 𝑓 contains no loop, and
2. For every LoopD within 𝑓 , all of its outputs directly

depend on its inputs,

there are no direct dependencies between inputs and outputs

of 𝑓 if and only if we can apply split to 𝑓 .

Proof. We consider the two directions of the equivalence in

turn. The ⇐= direction is simple: all paths from the inputs

of 𝑓 to the outputs of 𝑓 must go through 𝑓𝑑 by definition

of composition. 𝑓𝑑 is decoupled so every path goes through

a decoupled signal function, and thus there cannot be any

direct dependencies.

We now turn to the =⇒ direction, which we prove by

induction on the size of 𝑓 . We define the size of 𝑓 as follows:

𝑓 ∗∗∗ 𝑔 and 𝑓 ≫ 𝑔 each have size equal to the sum of the

sizes of 𝑓 and 𝑔, and all other terms have a size of 1.

We start with our base case: a program of size 1, meaning

that 𝑓 is one of arr, pre, LoopD or LoopM. We cannot have

a LoopD or arr since there is at least one direct dependency
in 𝑓 , by definition and the second condition of our lemma

respectively. Therefore, it must be pre or LoopM . In either of

these cases, split applies Split-Pre or Split-LoopM and we

are done.

We now prove our lemma for 𝑓 of size 𝑘 + 1, assuming

that it holds for 𝑓 ′ of size 𝑘 and smaller. We consider cases

of 𝑔 in 𝑓 = 𝑓 ′ ≫ 𝑔:

• 𝑔 = arr 𝑥 : All of arr’s outputs directly depend on its inputs.

Therefore, we need 𝑓 ′ to have no direct dependencies: if it
had a direct dependency from 𝑓 ′𝑖 to 𝑓 ′𝑜 , then 𝑓 would have

a direct dependency from 𝑓 ′𝑖 to 𝑓 ′𝑜 to every output of 𝑔,

contradicting the statement of the lemma. Therefore, we

can apply split to 𝑓 ′. This is exactly what Split-NonPre

does. The same applies for id, and LoopD by the second

condition of the lemma.

• 𝑔 = pre 𝑣 or LoopM: 𝑓 matches the form needed by Split-

Pre and Split-LoopM respectively.

• 𝑔 = (𝑥𝑖 ∗∗∗ 𝑦𝑖) ≫ ... ≫ (𝑥𝑘+1 ∗∗∗ 𝑦𝑘+1), where 𝑓 ′ does
not end with 𝑙 ∗∗∗ 𝑟 : This means that 𝑓 ′ = 𝑤 ≫ 𝑧 and 𝑧 is

one of arr, pre, LoopD or LoopM. If 𝑧 is pre or LoopM, we

are done: use Split-NonPre to skip past 𝑔 and then one

of Split-Pre or Split-LoopM.

If 𝑧 is arr or LoopD, then there is a path from every input

of 𝑧 to every output. Consider cases of𝑤 .

First, if𝑤 has no direct dependencies, we can apply split

to it by the induction hypothesis and thus Split-NonPre

can be applied to skip past 𝑔 and 𝑧.

Otherwise, if 𝑤 has a direct dependency from 𝑤𝑖 to 𝑤𝑜 ,

there must be no direct dependencies in 𝑔 for there to be

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Finnbar Keating and Michael B. Gale

no direct dependencies in 𝑓 . This is because if we had a

direct dependency from 𝑔𝑖 to 𝑔𝑜 in 𝑔, we would have a

direct dependency in 𝑓 : from𝑤𝑖 to𝑤𝑜 , then through 𝑧 to

𝑔𝑖 , and finally to 𝑔𝑜 .

This means that each of 𝑥𝑖 ≫ ... ≫ 𝑥𝑘+1 and 𝑦𝑖 ≫
... ≫ 𝑦𝑘+1 have no direct dependencies by definition of

∗∗∗. We can therefore split each of 𝑥 and 𝑦 separately by

the induction hypothesis and thus can apply Split-∗∗∗-R.
Therefore, we have proven the property holds for the base

and inductive cases, so it holds by induction. □

Finally, we now show that the transformation is complete.

Theorem 4.5. Using our transformation, we can transform a
loop f which either has no direct dependency cycles in it or has
𝑓 = 𝑎 ∗∗∗ 𝑏.

Proof. By induction on loop nesting. Consider a loop f which
contains no loop, LoopD or LoopM . By Lemma 4.3, we can

express 𝑓 in one of three forms, which we show can be

transformed in turn.

Case 1. [𝑓 = 𝑎 ∗∗∗ 𝑏.] Apply step 1 of the transformation

to get loop 𝑓 = 𝑎.

Case 2b. [𝑓 = (𝑎 ∗∗∗ 𝑏) ≫ 𝑟1 ≫ 𝑐′ ≫ 𝑟2 ≫ (𝑑 ∗∗∗ 𝑒),
where 𝑟1 and 𝑟2 are arr or pre.] Step 1 does not apply, so we

move onto step 2. If step 2 succeeds in splitting 𝑓 , we finish

with a LoopM .

If we cannot split 𝑓 , then we must have that 𝑟1 and 𝑟2 are

arr . This is because if either is pre, we are done since 𝑓 has a

decoupled signal function 𝑟𝑖 on every path from the inputs of

𝑓 to its outputs, meaning that it has no direct dependencies

and thus can be split according to Lemma 4.4.

We know for the same reason that 𝑐′ has at least one
direct dependency from 𝑐′𝑖 to 𝑐

′
𝑜 , as otherwise we could split

𝑓 : every path in 𝑓 goes through 𝑐′, and if 𝑐′ has no direct

dependencies then every path through 𝑐′ has a decoupled
signal function on it.

It follows that 𝑐 = arr 𝑥 ≫ 𝑐′ ≫ arr 𝑦 has a direct

dependency from all of its inputs to all of its outputs: from

each input of arr 𝑥 to 𝑐′𝑖 , to 𝑐
′
𝑜 , and finally to each output of

arr 𝑦.
Therefore, if we get to step 3 we are working with (𝑎 ∗∗∗

𝑏)≫ 𝑐 ≫ (𝑑 ∗∗∗ 𝑒). We apply step 3a to get (𝑎 ∗∗∗ id)≫
𝑐 ≫ (𝑑 ∗∗∗ (𝑒 ≫ 𝑏)).

We require that it is possible to split 𝑒 ≫ 𝑏 in the absence

of dependency cycles for step 3b to be applicable. Assume

for contradiction that 𝑒 ≫ 𝑏 cannot be split, meaning that

there exists a direct dependency within 𝑒 ≫ 𝑏 from the 𝑗th

input to the 𝑖th output. We then have a dependency cycle

as follows: from the 𝑖th part of the second input of the loop,
through 𝑐 to the 𝑗th input of 𝑒 ≫ 𝑏 to its 𝑖th output and

thus completing the cycle. Therefore, there must be no direct

dependencies in 𝑒 ≫ 𝑏 and thus it can be split by Lemma 4.4.

We therefore get a LoopD of the form LoopD ((𝑎 ∗∗∗𝑏)≫
𝑐 ≫ (𝑑 ∗∗∗ 𝑒)) 𝑦. We apply tightening in step 3c to get

𝑎 ≫ LoopD ((id ∗∗∗ 𝑏) ≫ 𝑐 ≫ (id ∗∗∗ 𝑒)) 𝑧 ≫ 𝑑 . Note

that there is a direct dependency from every input to every

output of this LoopD, as each input only goes through 𝑐 to

get to the output, and we showed earlier that 𝑐 has a direct

dependency from every input to every output.

Case 2a. [𝑓 = (𝑎 ∗∗∗ 𝑏) ≫ 𝑟1 ≫ (𝑑 ∗∗∗ 𝑒), where 𝑟1 is
arr or pre.] Case 2a is proved similarly to Case 2b. Step 1

does not apply, so we move onto step 2. If step 2 succeeds in

splitting 𝑓 , we finish with a LoopM .

If we cannot split 𝑓 , then 𝑟1 must be arr since if it were
pre then 𝑓 would have no direct dependencies as all paths

go through that pre, meaning that 𝑓 in that case can be split

by Lemma 4.4.

We are therefore working with 𝑓 = (𝑎 ∗∗∗ 𝑏)≫ arr 𝑥 ≫
(𝑑∗∗∗𝑒). Apply step 3a of the transformation to get (𝑎∗∗∗id)≫
arr 𝑥 ≫ (𝑑∗∗∗(𝑒 ≫ 𝑏)). We know that every output of arr 𝑥
directly depends on every input, meaning that every input of

𝑒 ≫ 𝑏 directly depends on every part of the second input of

the loop, by the same logic as in Case 2b. We are guaranteed

to be able to apply split in step 3b by the Lemma 4.4.

We end up with a LoopD of the form LoopD ((𝑎 ∗∗∗ 𝑏)≫
arr 𝑥 ≫ (𝑑 ∗∗∗ 𝑒)) 𝑦. We apply tightening in step 3c to

get 𝑎≫ LoopD ((id ∗∗∗ 𝑏) ≫ arr 𝑥 ≫ (id ∗∗∗ 𝑒)) 𝑦 ≫ 𝑑 .

Note that each output of this LoopD directly depends on each

input, as each path only goes through arr 𝑥 .
This concludes the base case. We also note that in every

case where we create a LoopD, all of its outputs depend

on its inputs. This means that we can use Lemma 4.4 in

the inductive step as all LoopD considered will have this

condition hold.

We now turn to the inductive step: proving the trans-

formation works on loop 𝑓 when all loop within 𝑓 without

dependency cycles can be transformed. We first apply our

transformation to the inner loop. Then, the proof above also
proves the inductive case, but with someminormodifications.

We can now have 𝑟𝑖 being LoopD or LoopM . Any LoopD can

be treated identially to arr , as every LoopD created by this

transformation has identical dependencies to an arr . Any
LoopM can be treated identially to pre for the same reason.

Therefore, the inductive step holds, and the proof holds. □

5 Implementation
In this section we describe the Haskell implementation of

our transformation, Severn4. We start with a minimal AFRP

implementation, then implement the transformation on top,

and finally test that the implementation is correct.

4
Available from https://github.com/finnbar/severn/tree/v1.0.0.0 and in the

provided artefact [11].

https://github.com/finnbar/severn/tree/v1.0.0.0

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Seattle, WA, USA

5.1 Signal Descriptors and CCA Composition Form
We represent signals as in Chupin and Nilsson’s SFRP [2]

by using signal descriptors. These are defined by the Desc
GADT, which is then lifted to the kind level via DataKinds.

data Desc x where
V :: a -> Desc a
P :: Desc a -> Desc b -> Desc (a, b)

This allows us to define signals which produce values of some

type, and pairs of signals: P (V Int) (V Int) describes a
pair of signals each containing Ints. Values produced by a

signal with descriptor d are represented by the GADT Val
d, used throughout the implementation.

Our arrow constructors are parameterised by these de-

scriptors. This again mirrors SFRP, but rather than defining

a single GADT with all of the arrow constructors, we enforce

CCA composition form (Section 3.1.4) through the definition

of multiple GADTs:

type CFSF :: Desc s -> Desc s' -> Type
data CFSF x y where
(:>>>:) :: NoLoop a b -> NoLoop b c -> CFSF a c
Single :: NoComp a b -> CFSF a b

data NoComp x y where
LoopD :: CFSF (P a c) (P b d) -> Decoupled d c

-> NoComp a b
Arr :: (Val a -> Val b) -> NoComp a b
Loop :: CFSF (P a c) (P b c) -> NoComp a b
(:***:) :: NoComp a b -> NoComp c d

-> NoComp (P a c) (P b d)
Id :: NoComp (V a) (V a)
Dec :: Decoupled a b -> NoComp a b

data Decoupled x y where
LoopM :: CFSF (P a c) d -> Decoupled d e

-> CFSF e (P b c) -> Decoupled a b
Pre :: Val (V a) -> Decoupled (V a) (V a)
BothDec :: Decoupled a b -> Decoupled a' b'

-> Decoupled (P a a') (P b b')

By having CFSF (read composed form signal function) only
introduce≫, and NoComp introduce the remaining combina-

tors,≫ can only be added at the top level so that programs

must be written in composition form. We also separate out

decoupled terms into their own GADT, allowing us to en-

force through the type system that a term is decoupled as

shown in LoopD.
We provide smart constructors for each of the traditional

arrow combinators that produce an equivalent CFSF using
the laws discussed in Section 3, to avoid programmers having

to directly use the above constructors to write their programs.

This means that a programmer can write a CFSF in Severn

in the same way that they would an SF in Yampa. We also

implement a small optimisation pass which merges consecu-

tive Arr together using the arr 𝑓 ≫ arr 𝑔 = arr (𝑔 · 𝑓) law,
which is also an optimisation applied by Yampa [16].

5.2 The Transformation Algorithm
We now outline our implementation of our transformation

on CFSFs. We focus on transformLoop, which transforms

a given Loop using the steps outlined in Section 3.5; the

transformation itself traverses the input CFSF by calling

transformLoop on each Loop from innermost to outermost.

Each of the three cases outlined in our transformation are

defined as a CFSF a b -> Maybe (CFSF a b) function, since
a given case is not applicable to every CFSF. transformLoop
is therefore defined as trying out each case using the alter-

native operator <|>.
The implementation of each case utilises the rules de-

fined in Section 3, which are each implemented as Haskell

functions. As an example, we present a slightly simplified

implementation of leftSlide below:

data LoopBox a b where
LB :: CFSF (P a c) (P b c) -> LoopBox a b

leftSlide :: LoopBox a b -> Maybe (LoopBox a b)
leftSlide (LB cfsf) =

case headTail cfsf of
Left _ -> Nothing -- Cannot slide if no :>>>:.
Right (HT s ss) -> case s of
s1 :***: s2 -> Just $ LB $ (Single s1 *** id)

>>> ss >>> (id *** Single s2)
_ -> Nothing -- Cannot slide non-:***: term.

Weapply a few tricks herewhich are common throughout the

implementation. We use auxiliary GADTs when we cannot

determine the exact type of the output from the type of

the input CFSF: here we require LoopBox since we cannot

guarantee that sliding will lead to the same type c. We can

also use this to guarantee that some part of the output is

decoupled, which we do in our implementation of split.
Since CFSF allows arbitrary bracketing of≫, we cannot

use pattern matching to get the first or last element of a given

composition. We therefore provide headTail x to do this,

which returns Left x if there are no≫, or the head and tail

of the chain of≫ otherwise. The rest of the implementation

follows from the definition of the rule: use our auxiliary

functions to match the form of the rule, and if we can, return

the result of applying it.

5.3 Running CFSFs
Once the transformation has been applied, we are left with

a CFSF containing no Loop. Severn provides

runCFSF :: CFSF a b -> a -> (b, CFSF a b)

to run these transformed CFSF, taking an input value and

producing the output at that time step along with the next

CFSF to run. Since any CFSF applied to runCFSF no longer

contains Loop, we define it strictly and thus avoid all of the

overheads of lazy evaluation. The decoupled parts of LoopD
and LoopM are run with

runDec :: Decoupled a b
-> (Val b, Val a -> Decoupled a b)

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Finnbar Keating and Michael B. Gale

Bench Definition Speedup

noloop arrs = arr 𝑓 ≫ ...≫ arr 𝑓 1.65x

LoopD LoopD arrs (pre v) 1.53x

LoopM LoopM arrs (pre v) arrs 1.66x

Nested LoopD arrs (LoopM arrs (pre v) arrs) 1.10x

Figure 12. Speedup compared to Yampa.

which produces the output without using any input, and the

program to run at the next time step once it gets an input.

Thus running LoopD f d consists of getting the output from
d, running f and then using d’s input to get the next CFSF.

5.4 Testing via Arbitrary Program Generation
As well as our proof that the transformation is correct (Sec-

tion 4), we also test arbitrary Severn programs without de-

pendency cycles against their Yampa equivalents to make

sure that the implementation is correct. We build test pro-

grams with a pair of mutually recursive generators using the

Hedgehog library
5
which generate a Yampa SF and its equiv-

alent Severn CFSF. One test generates decoupled programs,

and one generates non-decoupled programs.

Programs are generated inductively: start with the small-

est decoupled program pre v and the smallest non-decoupled

program arr f, and then build larger programs by combin-

ing them. We use rules similar to those used by Sculthorpe

and Nilsson [27] for their arrow combinator types indexed

by decoupledness, with rules such as 𝑓 ≫ 𝑔 being decou-

pled if one of 𝑓 or 𝑔 is. To generate a program of a given size

and decoupledness, we generate two smaller programs and

combine them using one of those rules.

These arbitrary decoupled and non-decoupled programs

are then used to build loops for testing. We use the same

techniques as in Case 2b of Theorem 4.5 for building generic

loops without dependency cycles: start with loop ((𝑎∗∗∗𝑏)≫
𝑐 ≫ (𝑑 ∗∗∗𝑒)), generating LoopM by generating a decoupled

𝑐 and generating LoopD by generating a decoupled 𝑒 ≫ 𝑏.

We are able to test that if we have an SF and its equiv-

alent CFSF, both programs produce the same results after

transforming the CFSF using our transformation. Our imple-

mentation passes the tests for programs of arbitrary size.

6 Performance
To show the impact of our work on performance, we have

two sets of benchmarks: on fixed networks to identify the

improvements for specifics constructs, and on randomised

networks. We use the Criterion library
6
to benchmark each

program 100,000 times.

We first benchmarked four programs in order to test in-

dividual uses of loop. Fig. 12 shows the benchmarks, their

5https://hackage.haskell.org/package/hedgehog
6https://hackage.haskell.org/package/criterion

50 100 150 200 250 300

2

4

6

8

Size

T
i
m
e
(
s
)

Y
a
m
p
a

S
e
v
e
r
n

0x

2x

4x

6x

S
p
e
e
d
u
p
o
f
S
e
v
e
r
n
r
e
l
a
t
i
v
e
t
o
Y
a
m
p
a

Figure 13. Time taken by Yampa and Severn on

loop (arr 𝑓 ≫ pre 𝑣 ≫ · · · ≫ arr 𝑓 ≫ pre 𝑣) for dif-
ferent numbers of primitives.

definitions and average speedups compared to Yampa. Sev-

ern gives a speedup of between 1.5x and 1.7x for the first

three benchmarks. The nested program gave a lower speedup

of 1.1x, which we expect is due to the CFSF being allocated

by Severn being larger in that case.

We also varied the number of arr in arrs, in order to test

whether the speedup varied based on the amount of work

done within the loop, but found no clear change. We expect

this is due to the optimisations implemented by Yampa and

in our optimisation pass (Section 5.1): the composition law

allows composed arr to be merged into existing arr, so that

the enlarged program is effectively the same but with larger

pure functions to execute.

To avoid the effects of these optimisations we constructed

a benchmark based on LoopM with pres and arrs interleaved.
By doing this, the composition law could not be applied. The

results for this are shown in Fig. 13. We achieved speedups of

between 1x and 2x for programs with 150 or fewer primitives,

but performance improved significantly with 200 primitives.

For our randomised tests, we take a similar approach as

was done for SFRP [2]. We varied two parameters: the size of

the generated program, and the number of loops within that

program as a proportion of the size. We do not include the

time it takes our transformation to run. We found that our

speedups were always greater than 1x, and averaged 2.5x
7
.

Since we achieve speedups in all benchmarks, we conclude

that our transformation provides an effective improvement

for loops in AFRP. Further improvements may possible in the

future by using IORefs to allocate pres rather than returning

an entirely new CFSF, by using stream fusion [3], or with

the Pipes library
8
to get more performance out of runCFSF.

7
The full results can be found alongside the artefact [11].

8https://hackage.haskell.org/package/pipes

https://hackage.haskell.org/package/hedgehog
https://hackage.haskell.org/package/criterion
https://hackage.haskell.org/package/pipes

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Seattle, WA, USA

7 Limitations and Future Work
While our transformation works on a large subset of Yampa

programs, we make a few assumptions that may not hold

for all AFRP programs. We discuss the consequences here

and how our work could be extended in future work.

7.1 Effects and Monadic Signal Functions (MSFs)
We require that our arrows satisfy the laws needed for CCAs

in order to apply the distributive law, which underpins most

of operations we have defined. We also assume that there are

no side-effects in the sliding law. These two points mean that

our transformation is not applicable to effectful programs in

general: it changes the execution order so that that a program

can be run strictly, which may not be the same execution

order as before. In the following example, lazy semantics

will run 𝑓 first since pre 𝑥 produces its input immediately:

loop (𝑔≫ first (pre 𝑥 ≫ 𝑓)≫ 𝑖 ≫ second (pre 𝑣))
However, our transformation will turn this into a LoopD
which, when run strictly, runs 𝑔 first. This does not pose an

issue in Yampa as pre is the only “effectful” operation, and

its effects are entirely local to itself. However, it is easy to

add effects into such a system: Perez et al. embed monads

into AFRP with Monadic Signal Functions (MSFs) [20]. Mod-

ifying our transformation to preserve execution order, and

therefore support MSFs, is future work.

It is important to note however that the reordering does

not change the meaning of programs when our effects are

commutative: we eventually run every part of the program.

Piponi [23] shows a number of monads whose effects are

commutative, meaning their computations can be reordered

without issues. MSFs built with these commutative monads,

such as Reader andWriter with a commutativemonoid, could

therefore be safely transformed by our technique.

7.2 arr is a Black Box
We know nothing about 𝑓 within arr 𝑓 and must assume

that all outputs of 𝑓 depend on all of its inputs. However,

arr is the only constructor we have for routing data and it

permits programmers to write routing functions like swap =

arr (_(𝑥,𝑦).(𝑦, 𝑥)) where that assumption is not required.

Dealing with this would introduce complex dependencies

between the inputs and outputs of an arr, but would al-

low additional ways to transform programs: for example,

first (pre x)≫ swap = swap≫ second (pre x). This poses
a particular problem when working with proc notation [19],

which introduces many additional arr during desugaring.
If we differentiated between arr for applying pure func-

tions and arr for routing, we could modify our transfor-

mation to take these into account. Joseph’s generalised ar-
rows [10] introduces a variety of additional combinators such

as ga_assoc and ga_swap with which routing can be imple-

mented without using arr explicitly. SFRP [2] uses routers
for arbitrary rearrangements of inputs into outputs.

7.3 Switching and Choice
Members of the ArrowChoice class allow for conditional

execution of arrows. The key operator is f +++ g, which
runs f if given a Left value and g otherwise. Since f +++ g
depends on its input to decide which of f and g to run, we

can never decouple it. It can therefore be treated in the same

way as arr and thus should be easy to add.

Switching is harder to add: switch f c uses a continuation
c to change the arrow being run (f) to a different one at

runtime. This means that switch can change the structure

of a program in a way that is unknown at compile-time. SFRP

implements switching by running its transformation again

once a switch occurs, but this can slow down the program

temporarily as the entire transformation procedure is rerun.

Winograd-Cort and Hudak transform some uses of switch
into +++, which avoids these issues for them [29].

7.4 Well-typed loop
We proved that our transformation only fails if we are unable

to run a program anyway (Section 4). Therefore, if our trans-

formation succeeds, a loop is well-formed. A type system

which guarantees that a loop contains no dependency cycles

would be helpful to avoid running the transformation on a

loop with dependency cycles. This also avoids the issue of a

switch f c generating a loop that cannot be transformed,

thus generating a runtime error.

A type system for checking for no dependency cycles in

loop could build on some of the existing work by Sculthorpe

and Nilsson [27] who label the decoupledness of signal func-

tions at the type level, and Bahr [1] who introduces a modal

type system that detects space leaks.

8 Related Work
FRP Applications. FRP sees significant use in a variety

of domains where performance is important. It has been

used in many embedded settings: the Juniper language for

Arduino microcontrollers [7], the Hailstorm language for

IoT [25] and the Emfrp language for embedded systems [26]

are three examples which use a variant of FRP designed for

restricted memory use, but could move to AFRP if it became

performant enough. The original introduction to AFRP [8]

discussed robots as its basis, which also tend to consist of

programs run on embedded systems.

There has also been some research into making FRP safer

in these contexts. Perez and Goodloe [22] incorporate fault

tolerance into FRP, which could also be useful in domains

like robotics. Copilot [21] allows users to write runtime veri-

fication systems in the style of FRP.

AFRP Optimisation. Beyond CCAs (Section 2.1), Scal-

able FRP (SFRP) [2] is another optimisation which transforms

AFRP programs into IO operations on mutable memory cells

to reduce the cost of routing data between signal functions.

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Finnbar Keating and Michael B. Gale

Notably, SFRP does not currently support the loop 𝑓 combi-

nator at all since it needs to know the order in which the

component signal functions of 𝑓 are executed to order its IO

operations. Our transformation would allow the loop combi-

nator to be added.

Other projects have taken a similar approach to SFRP:

Ultrametric FRP [12] implements FRP as an imperatively

updated dataflow graph, and Patai’s work on higher-order

streams [18] translates FRP to an IO stepper action which

runs with each new sample.

A common optimisation in the FRP world that may be

applicable to AFRP is deciding whether a value needs to be

computed at a given time step. Elliott [4] discusses how val-

ues that only sometimes change should only be recomputed

when new values are pushed, but also that the results of FRP

code should only be recomputed when they are pulled by

whatever is utilising its results. Sculthorpe and Nilsson [28]

define some temporal logic properties of FRP networks that

could also be used to reason about change and thus whether

a value needs recomputing.

All of the above optimisations could be combined with

our work, and would likely produce improved speedups com-

pared to those we presented in Section 6.

Synchronous Programming. Much of the work we have

discussed aims to bring FRP’s efficiency and safety closer to

that of synchronous dataflow languages such as Lustre [6]

which also permit writing reactive programs. While less

expressive than FRP, they are simpler to efficiently imple-

ment [13]. They deal with dataflow cycles (loop in AFRP)

via a syntactic check for a delay operator present in every

cycle, which is similar to what we have done here. Digital

circuits are similar: Ghica et al. [5] introduce a theory for

rewriting dataflow categories with a delay operator, which

is then used to talk about digital circuits that could also be

applied to AFRP.

9 Conclusions
We showed that loops in AFRP without dependency cycles

can be transformed into more restrictive LoopD and LoopM
forms which can be evaluated strictly, thus avoiding the over-

heads of lazy evaluation. This offers performance benefits

and allows for easier compilation of bespoke AFRP-style

languages in the future since such a language will no longer

need lazy evaluation.

We proved that our transformation preserves program

meaning, both theoretically using the Arrow and ArrowLoop

laws, but also practically through a Haskell implementation

whose tests ensure that programs before and after transfor-

mation behave equivalently. We also provided a proof that

this transformation works on every loop expressible in our

subset of AFRP that does not contain a dependency cycle.

While our implementation is a subset of Yampa, we believe

it is large enough to support most useful programs. We also

laid out how we could extend our transformation to be able

to support even more programs in future. Finally, our bench-

mark shows that our implementation, Severn, provided a

modest speedup for a variety of AFRP programs, and outlined

potential further improvements through implementation of

Yampa’s optimisations.

Data Availability Statement
The implementation of Severn which is tested in Section 5.4

and benchmarked in Section 6 is available as an artefact on

the ACM Digital Library [11]. It is also available on GitHub
9
.

The full data from our benchmarks in Section 6 is also pro-

vided within the artefact.

Acknowledgments
We would like to thank the anonymous reviewers for their

comments, including for a previous version of this paper

submitted to ICFP. We also thank Alex Dixon for proofread-

ing and providing helpful comments on an earlier version of

this manuscript. The first author is funded via EPSRC grant

#2436228.

References
[1] Patrick Bahr. 2022. Modal FRP for all: Functional reactive programming

without space leaks in Haskell. J. Funct. Program. 32 (2022), e15. https:
//doi.org/10.1017/S0956796822000132

[2] Guerric Chupin and Henrik Nilsson. 2019. Functional Reactive Pro-

gramming, restated. In Proceedings of the 21st International Symposium
on Principles and Practice of Programming Languages, PPDP 2019, Porto,
Portugal, October 7-9, 2019, Ekaterina Komendantskaya (Ed.). ACM,

New York, NY, USA, 7:1–7:14. https://doi.org/10.1145/3354166.3354172
[3] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream

fusion: from lists to streams to nothing at all. In Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Programming,
ICFP 2007, Freiburg, Germany, October 1-3, 2007, Ralf Hinze and Nor-

man Ramsey (Eds.). ACM, 315–326. https://doi.org/10.1145/1291151.
1291199

[4] Conal M. Elliott. 2009. Push-pull functional reactive programming. In

Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell
2009, Edinburgh, Scotland, UK, 3 September 2009, Stephanie Weirich

(Ed.). ACM, New York, NY, USA, 25–36. https://doi.org/10.1145/
1596638.1596643

[5] Dan R. Ghica, Achim Jung, and Aliaume Lopez. 2017. Diagrammatic

Semantics for Digital Circuits. In 26th EACSL Annual Conference on
Computer Science Logic (CSL 2017) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 82), Valentin Goranko and Mads Dam (Eds.).

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-

many, 24:1–24:16. https://doi.org/10.4230/LIPIcs.CSL.2017.24
[6] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.

1991. The synchronous data flow programming language LUSTRE.

Proc. IEEE 79, 9 (1991), 1305–1320. https://doi.org/10.1109/5.97300
[7] Caleb Helbling and Samuel Z. Guyer. 2016. Juniper: a functional

reactive programming language for the Arduino. In Proceedings of
the 4th International Workshop on Functional Art, Music, Modelling,
and Design, FARM@ICFP 2016, Nara, Japan, September 24, 2016, David
Janin and Michael Sperber (Eds.). ACM, New York, NY, USA, 8–16.

https://doi.org/10.1145/2975980.2975982

9https://github.com/finnbar/severn/tree/v1.0.0.0

https://doi.org/10.1017/S0956796822000132
https://doi.org/10.1017/S0956796822000132
https://doi.org/10.1145/3354166.3354172
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/2975980.2975982
https://github.com/finnbar/severn/tree/v1.0.0.0

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Seattle, WA, USA

[8] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.

2002. Arrows, Robots, and Functional Reactive Programming. In Ad-
vanced Functional Programming, 4th International School, AFP 2002,
Oxford, UK, August 19-24, 2002, Revised Lectures (Lecture Notes in
Computer Science, Vol. 2638), Johan Jeuring and Simon L. Peyton

Jones (Eds.). Springer, Heidelberg, Berlin, Germany, 159–187. https:
//doi.org/10.1007/978-3-540-44833-4_6

[9] John Hughes. 2000. Generalising monads to arrows. Sci. Comput.
Program. 37, 1-3 (2000), 67–111. https://doi.org/10.1016/S0167-6423(99)
00023-4

[10] Adam Megacz Joseph. 2014. Generalized arrows. Ph. D. Dissertation.
UC Berkeley.

[11] Finnbar Keating and Michael B. Gale. 2023. Severn implementation as

in This Is Driving Me Loopy: Efficient Loops in Arrowized Functional

Reactive Programs. Artefact hosted on ACM Digital Library. https:
//doi.org/10.1145/3580403

[12] Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric

Semantics of Reactive Programs. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada. IEEE Computer Society, Toronto, ON,

Canada, 257–266. https://doi.org/10.1109/LICS.2011.38
[13] Edward Ashford Lee and David G. Messerschmitt. 1987. Static Schedul-

ing of Synchronous Data Flow Programs for Digital Signal Processing.

IEEE Trans. Computers 36, 1 (1987), 24–35. https://doi.org/10.1109/TC.
1987.5009446

[14] Hai Liu. 2011. The Theory and Practice of Causal Commutative Arrows.
Ph. D. Dissertation. Yale University, USA. Advisor(s) Hudak, Paul.

AAI3467550.

[15] Hai Liu, Eric Cheng, and Paul Hudak. 2009. Causal commutative

arrows and their optimization. In Proceeding of the 14th ACM SIG-
PLAN international conference on Functional programming, ICFP 2009,
Edinburgh, Scotland, UK, August 31 - September 2, 2009, Graham Hut-

ton and Andrew P. Tolmach (Eds.). ACM, New York, NY, USA, 35–46.

https://doi.org/10.1145/1596550.1596559
[16] Henrik Nilsson. 2005. Dynamic optimization for functional reactive

programming using generalized algebraic data types. In Proceedings
of the 10th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2005, Tallinn, Estonia, September 26-28, 2005, Olivier
Danvy and Benjamin C. Pierce (Eds.). ACM, New York, NY, USA, 54–65.

https://doi.org/10.1145/1086365.1086374
[17] Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional

reactive programming, continued. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell, Haskell 2002, Pittsburgh, Pennsylvania,
USA, October 3, 2002, Manuel M. T. Chakravarty (Ed.). ACM, New York,

NY, USA, 51–64. https://doi.org/10.1145/581690.581695
[18] Gergely Patai. 2010. Efficient and Compositional Higher-Order

Streams. In Functional and Constraint Logic Programming - 19th In-
ternational Workshop, WFLP 2010, Madrid, Spain, January 17, 2010.
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 6559),
Julio Mariño (Ed.). Springer, Heidelberg, Berlin, Germany, 137–154.

https://doi.org/10.1007/978-3-642-20775-4_8
[19] Ross Paterson. 2001. A New Notation for Arrows. In Proceedings

of the Sixth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001,
Benjamin C. Pierce (Ed.). ACM, New York, NY, USA, 229–240. https:
//doi.org/10.1145/507635.507664

[20] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional

reactive programming, refactored. In Proceedings of the 9th Interna-
tional Symposium on Haskell, Haskell 2016, Nara, Japan, September
22-23, 2016, Geoffrey Mainland (Ed.). ACM, New York, NY, USA, 33–44.

https://doi.org/10.1145/2976002.2976010
[21] Ivan Perez, Frank Dedden, and Alwyn Goodloe. 2020. Copilot 3. Tech-

nical Report. NASA.

[22] Ivan Perez and Alwyn Goodloe. 2020. Fault-tolerant functional reactive

programming (extended version). J. Funct. Program. 30 (2020), e12.

https://doi.org/10.1017/S0956796820000118
[23] Dan P. Piponi. 2009. Commutative Monads, Diagrams and Knots.

In Proceedings of the 14th ACM SIGPLAN International Conference on
Functional Programming (Edinburgh, Scotland) (ICFP ’09). Association
for Computing Machinery, New York, NY, USA, 231–232. https://doi.
org/10.1145/1596550.1596553

[24] Amir Pnueli. 1986. Applications of Temporal Logic to the Specification

and Verification of Reactive Systems: A Survey of Current Trends. In

Current Trends in Concurrency, Overviews and Tutorials, J. W. de Bakker,

Willem P. de Roever, and Grzegorz Rozenberg (Eds.). Lecture Notes

in Computer Science, Vol. 224. Springer, Heidelberg, Berlin, Germany,

510–584. https://doi.org/10.1007/BFb0027047
[25] Abhiroop Sarkar and Mary Sheeran. 2020. Hailstorm: A Statically-

Typed, Purely Functional Language for IoT Applications. In PPDP ’20:
22nd International Symposium on Principles and Practice of Declarative
Programming, Bologna, Italy, 9-10 September, 2020. ACM, New York,

NY, USA, 12:1–12:16. https://doi.org/10.1145/3414080.3414092
[26] Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: a functional

reactive programming language for small-scale embedded systems. In

Companion Proceedings of the 15th International Conference on Modu-
larity, Málaga, Spain, March 14 - 18, 2016, Lidia Fuentes, Don S. Batory,

and Krzysztof Czarnecki (Eds.). ACM, New York, NY, USA, 36–44.

https://doi.org/10.1145/2892664.2892670
[27] Neil Sculthorpe and Henrik Nilsson. 2009. Safe functional reactive

programming through dependent types. In Proceeding of the 14th ACM
SIGPLAN international conference on Functional programming, ICFP
2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009, Graham
Hutton and Andrew P. Tolmach (Eds.). ACM, New York, NY, USA,

23–34. https://doi.org/10.1145/1596550.1596558
[28] Neil Sculthorpe and Henrik Nilsson. 2010. Keeping calm in the face

of change - Towards optimisation of FRP by reasoning about change.

High. Order Symb. Comput. 23, 2 (2010), 227–271. https://doi.org/10.
1007/s10990-011-9068-x

[29] Daniel Winograd-Cort and Paul Hudak. 2014. Settable and Non-

Interfering Signal Functions for FRP: How a First-Order Switch is

More than Enough. In Proceedings of the 19th ACM SIGPLAN Interna-
tional Conference on Functional Programming (Gothenburg, Sweden)

(ICFP ’14). Association for Computing Machinery, New York, NY, USA,

213–225. https://doi.org/10.1145/2628136.2628140
[30] Jeremy Yallop and Hai Liu. 2016. Causal commutative arrows revisited.

In Proceedings of the 9th International Symposium on Haskell, Haskell
2016, Nara, Japan, September 22-23, 2016, Geoffrey Mainland (Ed.).

ACM, 21–32. https://doi.org/10.1145/2976002.2976019

Received 2023-06-01; accepted 2023-07-04

https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/3580403
https://doi.org/10.1145/3580403
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1145/1596550.1596559
https://doi.org/10.1145/1086365.1086374
https://doi.org/10.1145/581690.581695
https://doi.org/10.1007/978-3-642-20775-4_8
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/2976002.2976010
https://doi.org/10.1017/S0956796820000118
https://doi.org/10.1145/1596550.1596553
https://doi.org/10.1145/1596550.1596553
https://doi.org/10.1007/BFb0027047
https://doi.org/10.1145/3414080.3414092
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1145/1596550.1596558
https://doi.org/10.1007/s10990-011-9068-x
https://doi.org/10.1007/s10990-011-9068-x
https://doi.org/10.1145/2628136.2628140
https://doi.org/10.1145/2976002.2976019

	Abstract
	1 Introduction
	2 Yampa and Arrow Laws
	2.1 Commutative Causal Arrows (CCAs)

	3 Transforming loop Into Strict Variants
	3.1 Sliding
	3.2 Combining Smaller pre into Larger Ones
	3.3 LoopM
	3.4 Multiple Loops
	3.5 Transformation Algorithm

	4 Completeness
	5 Implementation
	5.1 Signal Descriptors and CCA Composition Form
	5.2 The Transformation Algorithm
	5.3 Running CFSFs
	5.4 Testing via Arbitrary Program Generation

	6 Performance
	7 Limitations and Future Work
	7.1 Effects and Monadic Signal Functions (MSFs)
	7.2 arr is a Black Box
	7.3 Switching and Choice
	7.4 Well-typed loop

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

