
Graded Monads and Type-Level
Programming for

Dependence Analysis
Finnbar Keating

f.keating@warwick.ac.uk

WPCCS’21

Joint work with Michael B. Gale (michael.gale@tweag.io)
Work presented in the Haskell Symposium 2021

A robot friend

Eirik Refsdal from Trondheim, NORWAY, CC BY 2.0
<https://creativecommons.org/licenses/by/2.0>, via Wikimedia Commons
(https://commons.wikimedia.org/wiki/File:Lego_Mindstorms_Nxt-FLL.jpg)

Distance sensor

Light sensor

Robot screen

Motor

Golf motor

A robot friend

Distance sensor

Light sensor

Robot screen

Motor

Golf motor

void
removeError()

void
writeToMotor()

void
hitIfDark()

void robot() {
removeError();
writeToMotor();
hitIfDark();

}

void robot2() {
writeToMotor();
removeError();
hitIfDark();

}

A robot friend

Distance sensor

Light sensor

Robot screen

Motor

Golf motor

removeError
:: IO ()

writeToMotor
:: IO ()

hitIfDark
:: IO ()

robot :: IO ()
robot = removeError >>
 writeToMotor >>
 hitIfDark

robot2 :: IO ()
robot2 = writeToMotor >>
 removeError >>
 hitIfDark

Performs input/output (like writing to
memory) and returns a success value.

Sequences two IO computations,
ignoring their results.

We resolve data-flow dependencies in two steps

1. Make computation types more specific.

2. Order computations based on their types to prevent dependency violation.

1. Make computation types
more specific.

Working with Memory in Haskell

We have seen IO t used to represent computations that return a value of type t,
after performing some IO. An example of this is reading and writing to memory:

readIORef :: IORef t -> IO t
writeIORef :: IORef t -> t -> IO ()

These can be sequenced using bind:

(>>=) :: IO a -> (a -> IO b) -> IO b

This idea generalises to monads, which are operations that can be sequenced.

Types should encode reads and writes

getScreenVal :: IO Int
getScreenVal =
 readIORef screen

putMotor :: Int -> IO ()
putMotor = writeIORef motor

writeToMotor :: IO ()
writeToMotor =
 getScreenVal >>= putMotor

Should reflect that we read screen.

Should reflect that we wrote to motor.

Should reflect both of the above.

Graded Monads in Haskell [D. Orchard and T. Petricek, 2014]

(>>=) :: IO a -> (a -> IO b) -> IO b

(>>=) :: MIO f a -> (a -> MIO g b) -> MIO (Plus f g) b

Adds type parameter
which describes what
happens within a
computation.

We are able to combine
these parameters with
Plus. (This is a type
family.)

A graded monad for memory operations
We introduce IOCell - memory locations with name s which
contain an element of type t.

readIOCell :: IOCell s t
 -> MIO ‘(‘[IOCell s t], ‘[]) t
writeIOCell :: IOCell s t -> t
 -> MIO ‘(‘[], ‘[IOCell s t]) ()

type Plus '(rs, ws) '(rs', ws') =
 '(Union rs rs', Union ws ws')

Sequencing two computations has the combined reads and writes of both,
since we take the union.

Rewriting our initial example

getScreenVal :: MIO ‘(‘[IOCell “screen” Int], ‘[]) Int
getScreenVal = readIOCell screenCell

putMotor :: Int -> MIO ‘(‘[], ‘[IOCell “motor” Int]) ()
putMotor = writeIOCell motorCell

writeToMotor :: MIO ‘(‘[IOCell “screen” Int]
 , ‘[IOCell “motor” Int]) ()
writeToMotor = getScreenVal >>= putMotor

2. Order computations based on their
types to prevent dependency violation.

We don’t want to worry about manually
ordering our computations
robot :: HList ‘[
 MIO (‘[“dist”], ‘[“screen”]) (),
 MIO (‘[“light”], ‘[“golf”]) (),
 MIO (‘[“screen”], ‘[“motor”]) ()]

robot = removeError :+:
 hitIfDark :+:
 writeToMotor :+: HNil

Using this type
information…

… find a valid ordering for
these that does not violate
any dependencies.

We need to determine the order of computations

We focus on data dependencies [Bernstein 1966] - e.g. writeToLegs has a
dependency on removeError since the latter writes to a cell used by the former.

removeError :: MIO (‘[“dist”], ‘[“screen”]) ()
writeToLegs :: MIO (‘[“screen”], ‘[“motor”]) ()

This is implemented as a type family that checks whether a cell that is written to by
the first computation is read by the second.

Dependency Graphs

removeError

writeToMotor

hitIfDark

“dist”

“light”

“screen”

“motor”

“golf”

removeError ::
 MIO ‘(‘[“dist”], ‘[“screen”]) ()

writeToMotor ::
 MIO ‘(‘[“screen”], ‘[“motor”]) ()

hitIfDark ::
 MIO ‘(‘[“light”], ‘[“golf”]) ()

A valid ordering is
simply a topological
sort of this graph!

Representing a type-level graph

This dependency graph is represented as an adjacency list.

'[
 MIO ‘(‘[“dist”], ‘[“screen”]) () :->

‘[MIO ‘(‘[“screen”], ‘[“motor”]) ()],
 MIO ‘(‘[“screen”], ‘[“motor”]) () :-> ‘[],
 MIO ‘(‘[“light”], ‘[“golf”]) () :-> ‘[]
]

Computations of this
type…

… must be run before
computations of this
type.

So we can write type
families on these
graphs!

With this dependency graph, we can…

● Use a topological sort to find a valid

orderingDistance sensor

Light sensor

Robot screen

Motor

Golf motor

removeError :: MIO
‘(‘[“dist”],
‘[“screen”]) ()

writeToMotor ::
MIO ‘(
‘[“screen”],
‘[“motor”]) ()

hitIfDark :: MIO ‘(‘[“light”],
‘[“golf”]) ()

1

2

3

With this dependency graph, we can…

● Use a topological sort to find a valid

ordering

● Use weak connected components

search to find computations that can

be run in parallel

Distance sensor

Light sensor

Robot screen

Motor

Golf motor

removeError :: MIO
‘(‘[“dist”],
‘[“screen”]) ()

writeToMotor ::
MIO ‘(
‘[“screen”],
‘[“motor”]) ()

hitIfDark :: MIO ‘(‘[“light”],
‘[“golf”]) ()

With this dependency graph, we can…

● Use a topological sort to find a valid

ordering

● Use weak connected components

search to find computations that can

be run in parallel

● Determine which computations to

run if you know which memory cells

have been changed

Distance sensor

Light sensor

Robot screen

Motor

Golf motor

removeError :: MIO
‘(‘[“dist”],
‘[“screen”]) ()

writeToMotor ::
MIO ‘(
‘[“screen”],
‘[“motor”]) ()

hitIfDark :: MIO ‘(‘[“light”],
‘[“golf”]) ()

Conclusions

● We use a graded monad to make the types of computations that mutate state

more precise.

● We then use type families to look for dependencies between those

computations, build a dependency graph and order the computations at

compile time.

● This is all implemented in Haskell and ensures that our computations run in an

order that satisfies their dependencies without ordering effort from the

programmer.

Thank you!

