
This is Driving Me Loopy:
Transforming loop in Arrowized
Functional Reactive Programs

Finnbar Keating

Okay, that title is a lot

This talk is split into three parts!

1. What is Arrowized Functional Reactive Programming (AFRP), and what is loop

within that?

2. Why is it driving me loopy?

3. How do we make it drive me less loopy?

Reactive Programs
A reactive program is one which takes

in inputs at each time step (a time delta)

to produce outputs at the same rate, as

to react to those inputs.

Robot brain
running a
reactive
program

Various
sensor

data

Actuator
outputs

(image reproduced from Visual Sensor Fusion Based Autonomous
Robotic System for Assistive Drinking, Sensors ‘21)

Distance
sensor

Motor (for gripping)

Reactive Programs
A reactive program is one which takes

in inputs at each time step (a time delta)

to produce outputs at the same rate, as

to react to those inputs.

We can represent those programs as a

dataflow diagram to show how the

inputs are used at each time step to

produce the outputs.

isObject

Distance
sensor

Motor (for gripping)

grip
Distance

sensor
readings

Motor
outputs

Is there an object
to grip?

Set the motor
speed based on if

we should be
gripping

Reactive Programs
A reactive program is one which takes

in inputs at each time step (a time delta)

to produce outputs at the same rate, as

to react to those inputs.

We can represent those programs as a

dataflow diagram to show how the

inputs are used at each time step to

produce the outputs.

In robotics, we need these programs to

be realtime (react to inputs without

discernible delay) and fault-tolerant. isObject

Distance
sensor

Motor (for gripping)

grip
Distance

sensor
readings

Motor
outputs

Is there an object
to grip?

Set the motor
speed based on if

we should be
gripping

Arrowized Functional Reactive
Programming (AFRP)

(as seen in Haskell)

AFRP lets us write code to build these diagrams!

isObject grip
Distance

sensor
readings

Motor
outputs

arr isObject >>> arr grip

arr f build a reactive program by
applying f to each input it gets to
produce each output.

>>> composes two reactive
programs.

We can now write simple reactive programs where
the output at a given time step solely depends on the
input at that time step.

What about cyclic programs?

What if we wanted to sum the values of an input over time? You might have a
program like this:

+

delay

The current
input

The previous
output

The total so
far

How do we implement this in AFRP?

What about cyclic programs?

+

delay

loop (arr sum >>> (id *** pre 0))

The delay
operator -
prepends 0 to its
input

Creates a loop in
the graph

Don’t worry about the code though

For the rest of the talk, we are just going to look at the diagrams. Any transformation

we apply to the diagrams can be applied to our code.

So the takeaway about AFRP is that:

● You can make basic reactive programs (arr runs a pure function and pre is the

delay operator)

● You can compose them in series and/or in parallel with >>> and ***

respectively

● You can create cyclic diagrams using loop

Why does loop drive me loopy?

The execution order of every loop differs

It’s not always left to right, and doesn’t always start from the same place…

The plan is to: generate as much of the second output without using the second

input as you can, and then use that as the second input. How?

1 2

3

4 4 1 2

3

* *

Lazy evaluation lets us evaluate loop…

We can define the execution of loop in code as:

eval (loop f) a =
 let (b, c) = eval f (a, c) in b

But the input c relies on the output!

Haskell evaluates this using lazy evaluation, where c

acts as a promise that it will eventually contain the

right value.

a b

c

…but with performance issues

● Since it is working with a value that it does not know yet, it has to allocate an

anonymous function which says “once I get this value, I will be able to produce a

result” at every time step.

● This lazy semantics prevents other compile-time optimisations from being

applied!

Okay, so what’s the aim?

Let’s not use lazy evaluation.

We want to transform all loop which are possible to execute into a form with

known execution order.

How can we make loop drive me less
loopy?

(a whirlwind tour of the tricks we use)

Our target loop
form
We aim to transform all loops to the

form on the right, called LoopD f v.

(This allows any number of looped

values.)

This has trivial execution order so can

be run strictly - run pre v to get the

second output without any input, then

run f.

We therefore need a set of rules to

move pre around the loop to get to

the right position.

Sliding
This rule takes the entire term in front

of the second output and moves it to

the back of the loop, and vice-versa.

These two diagrams are equal since all

of the connections are the same.

The bottom diagram is a LoopD!

=

Multiple Looped
Values
Problem: it’s possible to construct

graphs where there are multiple values

being looped, each with their own pre.

How can we make this into a LoopD?

We need there to be a single pre

somehow.

loop (f >>> (id *** ((g *** pre j) >>> (pre i *** h)))

A nice trick -
product rule
The product rule lets us merge multiple

pre into a single one - these programs

are equivalent.

Our challenge then becomes finding

these pre, merging them together and

then sliding them in the right place.

pre (i,j) = pre i *** pre j

Combining pres
We need to merge the two highlighted

pre, but they currently aren’t directly

in parallel!

We therefore need to move them so

they are in parallel.

loop (f >>> (id *** ((g *** pre j) >>> (pre i *** h)))

Split
We introduce a new rule, split, which

does exactly this.

Split attempts to transform an input

program into f >>> d >>> g, where

d solely consists of pre and ***.

This consists of three rules.

split (pre x >>> i) = id >>> pre x >>> i

split (arr f >>> i) =
let x >>> d >>> g = split i
in (arr f >>> x) >>> d >>> g

split (f *** g) =
let ff >>> fd >>> fg = split f
 gf >>> gd >>> gg = split g
in (ff *** gf) >>> (fd *** gd) >>>

(fg *** gg)

If we find a pre,
we’re done

If we don’t, keep
going

If we have two parallel paths, solve them
individually and align the pre

Let’s see this at
work!
Applying split to part of our program

aligns the pre!

Let’s see this at
work!
Applying split to part of our program

aligns the pre!

This lets us apply product rule from

earlier, then sliding, and then we are

done.

sorry for the bad image editing

Let’s put it all together

We apply each of the rules we have seen in an attempt to transform the loop into a

LoopD.

There is an algorithm for this, but in the interests of time it suffices to think of this as

a brute-force application of rules until we have a LoopD.

Did this actually improve performance?

Yes! Kind of.

We look at the performance of three implementations:

● Transformed CFSF: A non-lazy implementation which uses LoopD in place of

loop
● SFRP: An implementation which compiles our LoopD down to mutable

operations on memory

● SF: A lazy but heavily optimised implementation (the industry standard)

The results
We look at randomly generated

programs of a given size (number of

arr/pre) and number of loops as a

proportion of that given size.

Our performance improves with

increased size of program and

increased loop proportion!

But there is more to be done.

Conclusions

● We looked at what AFRP is and focused on its loop construct, which has

unknown execution order.

● We then presented a program transformation which transforms loop into either

LoopD, which have known execution order.

● We finally took a brief look at some performance results.

● There’s more we’ve done, but didn’t have time to cover:
○ Transformations of nested loop
○ Proofs that this transformation preserves program meaning, and transforms every loop
○ A counterexample that cannot be transformed into a LoopD, so we made a variant called LoopM
○ Discussion of further optimisations

Thank you!

