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• Gradient Boosted Decision Trees (GBDTs) widely used for Tabular data (i.e, XGBoost, LightGBM, CatBoost)


• Modern ML moving to large-scale federated settings, data is highly distributed, interested in formal privacy guarantees 

• Goal: Can we develop accurate, lightweight GBDT methods for the federated setting, under Differential Privacy (DP)? 

• Motivation: 

• “Simple” baseline models that could be used in the federated setting


• Existing private tree-based methods focus on central DP and only on decision trees (DTs) or Random Forest (RFs)


• Existing federated GBDT methods lack DP


• Focus on replicating GBDT exactly under Homomorphic Encryption (HE) or Secure Multi-party Computation (MPC)


• Setting: 

• Horizontal Federated Learning (HFL), each client holds some data over all features


• Honest-but-curious clients and central aggregator (server), threat model orthogonal to our framework


• Assume each client holds a single data item, can be easily extended 

Our Work
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General approach for GBDTs
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• Compute a set of split candidates - i.e thresholds to split on 

• Example: XGBoost computes quan:les of each feature and use these as thresholds 

• Spli<ng feature j with threshold t, , ,  

• Build a tree greedily 

• Compute a “split score” for each (feature, split candidate pair), choose the largest 

                                      

 

• If no good splits exist then the node becomes a leaf with a weight which is used for prediction 

                                                           

•Observation: Only depends on aggregated gradients and hessians 

I = IL ∪ IR IL = {i : xij ≤ t} IR = {i : xij > t}
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• Break the GBDT algorithm into 3 main components:


• (C1) Split Method


• “Choosing the split”


• (C2) Weight Update Method


• “Computing the leaf weights”


• (C3) Split Candidate Method


• “Computing candidate thresholds”


• All three require querying the data  


• Need to add DP noise


• Two additional components:


• (Maximum) Feature Interactions


• Batched Updates

Private GBDT Framework: Components
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Private GBDT Framework: Accounting

• All quantities require aggregated gradients/Hessians


• Consider queries of the form


  


• Just need bounded gradient information


• Setting: express popular GBDT methods under this query - why?


• Can utilise secure-aggregation, easy to federate, utilise RDP


• Assume honest-but-curious setting with central aggregator


• To guarantee formal privacy


• Need to count # of queries  made by each component


• Explore data-intensive methods (high query count) vs data-
independent (no or little query count)

q̃(I ) = (∑
i∈I

g(t)
i , ∑
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h(t)
i ) + N(0,σ2I2)
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• Histogram-based (Hist): 


• Compute a (private) histogram over split-candidates and use this to 
compute required split-scores at each level


• Can be computed easily with  under secure-agg + DP


• Queries proportional to num of trees * features * max depth 

• Partially Random (PR): 


• Pick a random split-candidate for each feature and compute split scores


• Same queries as Hist but doesn’t require a histogram 

• Totally Random (TR): 


• Pick a feature, split-candidate pair completely at random


• Almost fully data-independent, requires only perturbing leaf weights

q̃(I )

C1: Split Methods
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• Quantiles (non-private): Standard 
method used for GBDTs 

• Uniform: Uniformly divide up features 
from minimum and maximum


• Data independent so no privacy-cost 

• Log: Divide uniformly over the log of a 
feature (depending on the skew direction) 


• Data independent if you know the 
skew direction of features 

C3: Split Candidates
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• Iterative Hessian (IH) 

• Mimics XGBoost that form quantile sketches 
where Hessians are used as weights


• Form a private Hessian histogram over the 
current split-candidates


• Merge bins with small total Hessian


• Split bins with large total Hessian (i.e by 
taking their midpoint)


• Refine over a number of rounds, helps deal with 
skew


• For most splitting methods this information is 
already gathered so incurs no cost


• Only time you pay “extra” is with TR splits

C3: Split Candidates
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GBDT Framework
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• DP-EBM (Nori et al, ICML21): Focus on private and explainable GBDT model


• Uses TR splits with gradient updates under GDP


• Each tree only considers a single feature


• FEVERLESS (Wang et al 2022): Originally vertical FL, faithfully translating XGBoost into a DP-FL setting


• DP-RF (Fletcher et al 2015): Central DP method that builds an RF via TR splits


• DP-RF corresponds to using TR splits, averaging weight update and uniform split candidates

GBDT Framework: Related Work / Baselines
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• Varying split-methods on Credit 1


• Histogram, TR, PR


• Conclusions:  

• TR competitive but typically requires large T to 
get better results than histogram


• PR helps but still performs worse than TR


• Newton updates perform well for larger privacy 
budget ( )


• For higher privacy ( ) averaging 
updates (i.e, RFs) sometimes perform better

ε > 0.5

ε = 0.1 − 0.5

C1 & C2: Split Methods and Weight Updates
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• Varying the number of split candidates Q


• Methods: Uniform, Log, Quantiles (non-private), IH


• With skewed features


• (Our) IH method performs the best


• As Q increases, uniform splits variably degrade performance


• Without skewed features 


• Split candidate methods often perform similarly 

• Conclusion: 


• Refining split-candidates over rounds can help


• Only a small amount of budget is needed to give good 
improvements

C3: Split Candidates
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• Bottom 3: 

• Methods that faithfully replicate the centralised 
algorithm under DP perform worst 


• DP-GBM, FEVERLESS, DP-RF 

• Too high a privacy cost


• Top 3:  

• Combining Newton updates, totally random splits, 
IH split candidates, large batches


• Essentially a private, random XGBoost model


• Conclusions: 

• The best individual components also work the 
best when combined together


• Batching is surprisingly effective


• RDP accounting + GBDT achieves results close to 
that of non-private baselines

End-to-End Comparison
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, ε = 1 d = 4



Core message:  Faithfully replicating the GBDT algorithm under privacy in the 
Federated setting is not the ideal solution for high-utility 

• Can achieve good performance with few rounds of communication by 
batching random trees


• Proposing split candidates over multiple rounds can often lead to better utility 


• Boosting doesn’t always have a clear advantage over RF in high privacy 
settings 


• Overall: Use less data-intensive (or even data-independent) methods in areas  
where we can afford to lose performance

Key Takeaways
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