
CCS 2022: Federated Boosted Decision
Trees with Differential Privacy
Samuel Maddock1, Graham Cormode2, Tianhao Wang3, Carsten Maple1, Somesh Jha4

10-11-22

1 University of Warwick, 2 Meta AI, 3 University of Virginia, 4 University of Wisconsin-Madison

• Gradient Boosted Decision Trees (GBDTs) widely used for Tabular data (i.e, XGBoost, LightGBM, CatBoost)

• Modern ML moving to large-scale federated settings, data is highly distributed, interested in formal privacy guarantees 

• Goal: Can we develop accurate, lightweight GBDT methods for the federated setting, under Differential Privacy (DP)? 

• Motivation:

• “Simple” baseline models that could be used in the federated setting

• Existing private tree-based methods focus on central DP and only on decision trees (DTs) or Random Forest (RFs)

• Existing federated GBDT methods lack DP

• Focus on replicating GBDT exactly under Homomorphic Encryption (HE) or Secure Multi-party Computation (MPC)

• Setting:

• Horizontal Federated Learning (HFL), each client holds some data over all features

• Honest-but-curious clients and central aggregator (server), threat model orthogonal to our framework

• Assume each client holds a single data item, can be easily extended

Our Work

2

General approach for GBDTs

3

• Compute a set of split candidates - i.e thresholds to split on

• Example: XGBoost computes quan:les of each feature and use these as thresholds

• Spli<ng feature j with threshold t, , ,

• Build a tree greedily

• Compute a “split score” for each (feature, split candidate pair), choose the largest

• If no good splits exist then the node becomes a leaf with a weight which is used for prediction

•Observation: Only depends on aggregated gradients and hessians

I = IL ∪ IR IL = {i : xij ≤ t} IR = {i : xij > t}

SS(IL, IR) =
(∑i∈IL

gi)2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)2

∑i∈IR
hi + λ

−
(∑i∈I gi)2

∑i∈I hi + λ

wl = −
∑i∈I gi

∑i∈I hi + λ

I

IL IR

• Break the GBDT algorithm into 3 main components:

• (C1) Split Method

• “Choosing the split”

• (C2) Weight Update Method

• “Computing the leaf weights”

• (C3) Split Candidate Method

• “Computing candidate thresholds”

• All three require querying the data

• Need to add DP noise

• Two additional components:

• (Maximum) Feature Interactions

• Batched Updates

Private GBDT Framework: Components

4

5

Private GBDT Framework: Accounting

• All quantities require aggregated gradients/Hessians

• Consider queries of the form

• Just need bounded gradient information

• Setting: express popular GBDT methods under this query - why?

• Can utilise secure-aggregation, easy to federate, utilise RDP

• Assume honest-but-curious setting with central aggregator

• To guarantee formal privacy

• Need to count # of queries made by each component

• Explore data-intensive methods (high query count) vs data-
independent (no or little query count)

q̃(I) = (∑
i∈I

g(t)
i , ∑

i∈I

h(t)
i) + N(0,σ2I2)

q̃(I)

• Histogram-based (Hist):

• Compute a (private) histogram over split-candidates and use this to
compute required split-scores at each level

• Can be computed easily with under secure-agg + DP

• Queries proportional to num of trees * features * max depth 

• Partially Random (PR):

• Pick a random split-candidate for each feature and compute split scores

• Same queries as Hist but doesn’t require a histogram 

• Totally Random (TR):

• Pick a feature, split-candidate pair completely at random

• Almost fully data-independent, requires only perturbing leaf weights

q̃(I)

C1: Split Methods

6

Features

Age

Sex

Salary

…

• Quantiles (non-private): Standard
method used for GBDTs 

• Uniform: Uniformly divide up features
from minimum and maximum

• Data independent so no privacy-cost 

• Log: Divide uniformly over the log of a
feature (depending on the skew direction)

• Data independent if you know the
skew direction of features 

C3: Split Candidates

7

Uniform

Log

Quantiles

• Iterative Hessian (IH)

• Mimics XGBoost that form quantile sketches
where Hessians are used as weights

• Form a private Hessian histogram over the
current split-candidates

• Merge bins with small total Hessian

• Split bins with large total Hessian (i.e by
taking their midpoint)

• Refine over a number of rounds, helps deal with
skew

• For most splitting methods this information is
already gathered so incurs no cost

• Only time you pay “extra” is with TR splits

C3: Split Candidates

8

Uniform

IH

Round 1
(uniform)

Round 2
(T=2)

Round 3
(T=3)

Round 4
(T=4)

Quantiles

GBDT Framework

9

• DP-EBM (Nori et al, ICML21): Focus on private and explainable GBDT model

• Uses TR splits with gradient updates under GDP

• Each tree only considers a single feature

• FEVERLESS (Wang et al 2022): Originally vertical FL, faithfully translating XGBoost into a DP-FL setting

• DP-RF (Fletcher et al 2015): Central DP method that builds an RF via TR splits

• DP-RF corresponds to using TR splits, averaging weight update and uniform split candidates

GBDT Framework: Related Work / Baselines

10

• Varying split-methods on Credit 1

• Histogram, TR, PR

• Conclusions:

• TR competitive but typically requires large T to
get better results than histogram

• PR helps but still performs worse than TR

• Newton updates perform well for larger privacy
budget ()

• For higher privacy () averaging
updates (i.e, RFs) sometimes perform better

ε > 0.5

ε = 0.1 − 0.5

C1 & C2: Split Methods and Weight Updates

11

• Varying the number of split candidates Q

• Methods: Uniform, Log, Quantiles (non-private), IH

• With skewed features

• (Our) IH method performs the best

• As Q increases, uniform splits variably degrade performance

• Without skewed features

• Split candidate methods often perform similarly 

• Conclusion:

• Refining split-candidates over rounds can help

• Only a small amount of budget is needed to give good
improvements

C3: Split Candidates

12

• Bottom 3:

• Methods that faithfully replicate the centralised
algorithm under DP perform worst

• DP-GBM, FEVERLESS, DP-RF

• Too high a privacy cost

• Top 3:

• Combining Newton updates, totally random splits,
IH split candidates, large batches

• Essentially a private, random XGBoost model

• Conclusions:

• The best individual components also work the
best when combined together

• Batching is surprisingly effective

• RDP accounting + GBDT achieves results close to
that of non-private baselines

End-to-End Comparison

13

, ε = 1 d = 4

Core message: Faithfully replicating the GBDT algorithm under privacy in the
Federated setting is not the ideal solution for high-utility

• Can achieve good performance with few rounds of communication by
batching random trees

• Proposing split candidates over multiple rounds can often lead to better utility

• Boosting doesn’t always have a clear advantage over RF in high privacy
settings

• Overall: Use less data-intensive (or even data-independent) methods in areas  
where we can afford to lose performance

Key Takeaways

14

