CCS 2022: Federated Boosted Decision Trees with Differential Privacy

Samuel Maddock¹, Graham Cormode², Tianhao Wang³, Carsten Maple¹, Somesh Jha⁴

¹ University of Warwick, ² Meta AI, ³ University of Virginia, ⁴ University of Wisconsin-Madison
Our Work

• Gradient Boosted Decision Trees (GBDTs) widely used for Tabular data (i.e, XGBoost, LightGBM, CatBoost)
• Modern ML moving to large-scale federated settings, data is highly distributed, interested in formal privacy guarantees

• **Goal:** Can we develop accurate, lightweight GBDT methods for the federated setting, under Differential Privacy (DP)?

• **Motivation:**
 • “Simple” baseline models that could be used in the federated setting
 • Existing private tree-based methods focus on central DP and only on decision trees (DTs) or Random Forest (RFs)
 • Existing federated GBDT methods lack DP
 • Focus on replicating GBDT exactly under Homomorphic Encryption (HE) or Secure Multi-party Computation (MPC)

• **Setting:**
 • Horizontal Federated Learning (HFL), each client holds some data over all features
 • Honest-but-curious clients and central aggregator (server), threat model orthogonal to our framework
 • Assume each client holds a single data item, can be easily extended
General approach for GBDTs

- Compute a set of split candidates - i.e thresholds to split on
 - **Example:** XGBoost computes quantiles of each feature and use these as thresholds
 - Splitting feature j with threshold t, \(I = I_L \cup I_R, I_L = \{ i : x_{ij} \leq t \}, I_R = \{ i : x_{ij} > t \} \)
- Build a tree greedily
 - Compute a “split score” for each (feature, split candidate pair), choose the largest
 \[
 SS(I_L, I_R) = \frac{(\sum_{i \in I_L} g_i)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{(\sum_{i \in I_R} g_i)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{(\sum_{i \in I} g_i)^2}{\sum_{i \in I} h_i + \lambda}
 \]
 - If no good splits exist then the node becomes a leaf with a weight which is used for prediction
 \[
 w_I = -\frac{\sum_{i \in I} g_i}{\sum_{i \in I} h_i + \lambda}
 \]
- **Observation:** Only depends on aggregated gradients and Hessians
Private GBDT Framework: Components

• Break the GBDT algorithm into 3 main components:
 • (C1) Split Method
 • “Choosing the split”
 • (C2) Weight Update Method
 • “Computing the leaf weights”
 • (C3) Split Candidate Method
 • “Computing candidate thresholds”

• All three require querying the data
 • Need to add DP noise

• Two additional components:
 • (Maximum) Feature Interactions
 • Batched Updates
Private GBDT Framework: Accounting

• All quantities require aggregated gradients/Hessians

• Consider queries of the form

\[\tilde{q}(I) = \left(\sum_{i \in I} g_i^{(t)}, \sum_{i \in I} h_i^{(t)} \right) + N(0, \sigma^2 I_2) \]

 • Just need bounded gradient information

• **Setting:** express popular GBDT methods under this query - why?

 • Can utilise **secure-aggregation**, easy to federate, utilise RDP

 • Assume honest-but-curious setting with central aggregator

• To guarantee formal privacy

 • Need to count # of queries \(\tilde{q}(I) \) made by each component

 • Explore data-intensive methods (high query count) vs data-independent (no or little query count)
C1: Split Methods

- **Histogram-based (Hist):**
 - Compute a (private) histogram over split-candidates and use this to compute required split-scores at each level
 - Can be computed easily with $\tilde{q}(I)$ under secure-agg + DP
 - Queries proportional to num of trees * features * max depth

- **Partially Random (PR):**
 - Pick a random split-candidate for each feature and compute split scores
 - Same queries as Hist but doesn’t require a histogram

- **Totally Random (TR):**
 - Pick a feature, split-candidate pair completely at random
 - Almost fully data-independent, requires only perturbing leaf weights

- **Features**
 - Age
 - Sex
 - Salary
 - ...

C3: Split Candidates

• **Quantiles (non-private):** Standard method used for GBDTs

• **Uniform:** Uniformly divide up features from minimum and maximum

 • Data independent so no privacy-cost

• **Log:** Divide uniformly over the log of a feature (depending on the skew direction)

 • Data independent if you know the skew direction of features
C3: Split Candidates

- **Iterative Hessian (IH)**
 - Mimics XGBoost that form quantile sketches where Hessians are used as weights
 - Form a private Hessian histogram over the current split-candidates
 - **Merge** bins with small total Hessian
 - **Split** bins with large total Hessian (i.e. by taking their midpoint)
 - Refine over a number of rounds, helps deal with skew
 - For most splitting methods this information is already gathered so incurs no cost
 - Only time you pay “extra” is with TR splits
GBDT Framework

<table>
<thead>
<tr>
<th>Component</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C1) Split Method</td>
<td>• Histogram-based (Hist) (§4.3.1)</td>
</tr>
<tr>
<td></td>
<td>• Partially Random (PR) (§4.3.2)</td>
</tr>
<tr>
<td></td>
<td>• Totally Random (TR) (§4.3.2)</td>
</tr>
<tr>
<td>(C2) Weight Update</td>
<td>• Averaging (§4.4.1)</td>
</tr>
<tr>
<td></td>
<td>• Gradient (§4.4.2)</td>
</tr>
<tr>
<td></td>
<td>• Newton (§4.4.3)</td>
</tr>
<tr>
<td>(C3) Split Candidate</td>
<td>• Uniform, Log (§4.5.1)</td>
</tr>
<tr>
<td></td>
<td>• Quantiles (non-private) (§4.5.1)</td>
</tr>
<tr>
<td></td>
<td>• Iterative Hessian (IH) (§4.5.2)</td>
</tr>
<tr>
<td>(A1) Feature Interactions</td>
<td>• Cyclical k-way (§5.1)</td>
</tr>
<tr>
<td></td>
<td>• Random k-way (§5.1)</td>
</tr>
<tr>
<td>(A2) Batched Updates</td>
<td>• $B = 1$ (Boosting) (§5.2)</td>
</tr>
<tr>
<td></td>
<td>• $B = T$ (RF-type predictions) (§5.2)</td>
</tr>
<tr>
<td></td>
<td>• $B = p \cdot T$ for some $p \in (0, 1)$ (§5.2)</td>
</tr>
</tbody>
</table>
• **DP-EBM (Nori et al, ICML21):** Focus on private and explainable GBDT model
 - Uses TR splits with gradient updates under GDP
 - Each tree only considers a single feature

• **FEVERLESS (Wang et al 2022):** Originally vertical FL, faithfully translating XGBoost into a DP-FL setting

• **DP-RF (Fletcher et al 2015):** Central DP method that builds an RF via TR splits
 - DP-RF corresponds to using TR splits, averaging weight update and uniform split candidates

Table 2: Related works under our framework

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1: Split Method</td>
<td>TR</td>
<td>Hist</td>
<td>TR</td>
</tr>
<tr>
<td>C2: Weight Update</td>
<td>Gradient</td>
<td>Newton</td>
<td>Averaging</td>
</tr>
<tr>
<td>C3: Split Candidate</td>
<td>Uniform (DP Hist)</td>
<td>Quantile Sketch</td>
<td>N/A</td>
</tr>
<tr>
<td>A1: Feature Interactions</td>
<td>Cyclical ($k = 1$)</td>
<td>m-way</td>
<td>m-way</td>
</tr>
<tr>
<td>A2: Batched Updates</td>
<td>$B = 1$</td>
<td>$B = 1$</td>
<td>$B = T$</td>
</tr>
</tbody>
</table>
C1 & C2: Split Methods and Weight Updates

• Varying split-methods on Credit 1
 • Histogram, TR, PR

• Conclusions:
 • TR competitive but typically requires large T to get better results than histogram
 • PR helps but still performs worse than TR
 • Newton updates perform well for larger privacy budget ($\varepsilon > 0.5$)
 • For higher privacy ($\varepsilon = 0.1 - 0.5$) averaging updates (i.e, RFs) sometimes perform better
C3: Split Candidates

- Varying the number of split candidates Q
- **Methods:** Uniform, Log, Quantiles (non-private), IH
- With skewed features
 - (Our) IH method performs the best
 - As Q increases, uniform splits variably degrade performance
- Without skewed features
 - Split candidate methods often perform similarly

Conclusion:
- Refining split-candidates over rounds can help
- Only a small amount of budget is needed to give good improvements

(e) Varying Q with $T = 100, d = 4, \epsilon = 1$
End-to-End Comparison

- **Bottom 3:**
 - Methods that faithfully replicate the centralised algorithm under DP perform worst
 - DP-GBM, FEVERLESS, DP-RF
 - Too high a privacy cost
- **Top 3:**
 - Combining Newton updates, totally random splits, IH split candidates, large batches
 - Essentially a private, random XGBoost model
- **Conclusions:**
 - The best individual components also work the best when combined together
 - Batching is surprisingly effective
 - RDP accounting + GBDT achieves results close to that of non-private baselines
Key Takeaways

Core message: Faithfully replicating the GBDT algorithm under privacy in the Federated setting is not the ideal solution for high-utility

- Can achieve good performance with few rounds of communication by batching random trees
- Proposing split candidates over multiple rounds can often lead to better utility
- Boosting doesn’t always have a clear advantage over RF in high privacy settings
- **Overall:** Use less data-intensive (or even data-independent) methods in areas where we can afford to lose performance