CCS 2022: Federated Boosted Decision
Trees with Differential Privacy

Samuel Maddock?, Graham CormodeZ, Tianhao Wang3, Carsten Maple'!, Somesh Jha*

T University of Warwick, 2 Meta Al, 3 University of Virginia, 4 University of Wisconsin-Madison

WARWICK

Our Work WARWICK

* Gradient Boosted Decision Trees (GBDTs) widely used for Tabular data (i.e, XGBoost, LightGBM, CatBoost)

» Modern ML moving to large-scale federated settings, data is highly distributed, interested in formal privacy guarantees
* Goal: Can we develop accurate, lightweight GBDT methods for the federated setting, under Differential Privacy (DP)?

* Motivation:

« “Simple” baseline models that could be used in the federated setting

* Existing private tree-based methods focus on central DP and only on decision trees (DTs) or Random Forest (RFs)

* Existing federated GBDT methods lack DP

* Focus on replicating GBDT exactly under Homomorphic Encryption (HE) or Secure Multi-party Computation (MPC)

* Setting:

* Horizontal Federated Learning (HFL), each client holds some data over all features

» Honest-but-curious clients and central aggregator (server), threat model orthogonal to our framework

* Assume each client holds a single data item, can be easily extended

3

General approach for GBDTs

e Compute a set of split candidates - i.e thresholds to split on
» Example: XGBoost computes quantiles of each feature and use these as thresholds
- Splitting feature j with threshold t, I = [; U lg, I = {i : x;; <1}, Ig = {i : x;; > 1}
« Build a tree greedily
» Compute a “split score” for each (feature, split candidate pair), choose the largest
(ZielL g,-)2 + (ZielR gi)2 (Z,-e, gi)2
ZielL hi+ 4 ZieIR hi+ 4 Ziel hi+ 4

SSU,, 1) =

¢ If no good splits exist then the node becomes a leaf with a weight which is used for prediction

z:lelgl
Zelhl+/1

Wl=

* Observation: Only depends on aggregated gradients and hessians

wie

WARWICK

(1
ORO

Private GBDT Framework: Components

* Break the GBDT algorithm into 3 main components:
* (C1) Split Method
* “Choosing the split”
* (C2) Weight Update Method
* “Computing the leaf weights”
* (C3) Split Candidate Method
* “Computing candidate thresholds”
* All three require querying the data
* Need to add DP noise
* Two additional components:
* (Maximum) Feature Interactions

* Batched Updates

Algorithm 1 General GBDT

Input: Number of trees T, maximum depth d, number of split
candidates Q, privacy parameters €, §
For each feature j = 1,..., m generate Q split candidates
Losj= {sj,...,sé} (C3)
2: Initialise the forest 7~ « 0
3 fort=1,..., T do
For each (x;,y;) € D compute the required gradient
information (g;, h;) based on gi(l_l) (C2)

4:

Choose a subset of features F() ¢ {1,...,m} with
|[F()| = k for the current tree f; (A1)
6. while depth of the current node < d do

Choose a feature split candidate pair (j, s;;) from F()

(Cy)
Split the current node with observations I into two
8 child nodes with index sets I< = {i : xjj < sfl} and
L =I\I <
9: Repeat (6)-(9) recursing separately on the child nodes

For each leaf [calculate a weight wl(t) from the examples
in the leaf according to the chosen update method (C2)

11: Update predictions g§') or batch updates (A2)
12: Add the tree to the ensemble 7 = 7 U {f;}
13: return the trained forest 7~

Private GBDT Framework: Accounting

Algorithm 1 General GBDT

* Consider queries of the form Input: Number of trees T, maximum depth d, number of split

candidates Q, privacy parameters €, §

* All quantities require aggregated gradients/Hessians

For each feature j = 1,..., m generate Q split candidates

Q) = (80 L H" +NOoh) 5 e

2: Initialise the forest 7~ « 0

i€l i€l &
3 fort=1,..., T do
. . . : For each (x;,y;) € D compute the required gradient
Just need bounded gradient information . R
» Setting: express popular GBDT methods under this query - why? ; Choose a subset of features F) € {1,...,m} with

|[F()| = k for the current tree f; (A1)

6: while depth of the current node < d do

* Can utilise secure-aggregation, easy to federate, utilise RDP Choose a feature split candidate pair (1) from F(O

(S V)
» Assume honest-but-curious setting with central aggregator Split the current node with observations I into two
8 child nodes with index sets I< = {i : xjj < sé} and
* To guarantee formal privacy L =1\Ig
9: Repeat (6)-(9) recursing separately on the child nodes

« Need to count # of queries (/) made by each component For each leaf | calculate a weight w*) from the examples

in the leaf according to the chosen update method (C2)

» Explore data-intensive methods (high query count) vs data- 1 Update predictions §*) or batch updates (A2)
independent (no or little query count) 122 Add the tree to the ensemble 7" = 7~ U {f;}

13: return the trained forest 7~

C1: Split Methods

* Histogram-based (Hist):

» Compute a (private) histogram over split-candidates and use this to
compute required split-scores at each level

« Can be computed easily with g(/) under secure-agg + DP

* Queries proportional to num of trees * features * max depth

* Partially Random (PR):
* Pick a random split-candidate for each feature and compute split scores

» Same queries as Hist but doesn’t require a histogram

* Totally Random (TR):
* Pick a feature, split-candidate pair completely at random

» Almost fully data-independent, requires only perturbing leaf weights

wie

WARWICK

Age
Sex

Salary

7

C3: Split Candidates

* Quantiles (non-private): Standard
method used for GBDTs

* Uniform: Uniformly divide up features
from minimum and maximum

» Data independent so no privacy-cost

* Log: Divide uniformly over the log of a
feature (depending on the skew direction)

 Data independent if you know the
skew direction of features

Quantiles

Uniform

Log

wie

WARWICK

C3: Split Candidates W

WARWICK

* Iterative Hessian (IH)

* Mimics XGBoost that form quantile sketches
where Hessians are used as weights

* Form a private Hessian histogram over the 4 i i :
current split-candidates
* Merge bins with small total Hessian
 Split bins with large total Hessian (i.e by Round 1 | Round 2 Round 3 Round 4
taking their midpoint) (uniform) (T=2) (T=3) (T=4)

* Refine over a number of rounds, helps deal with
skew

* For most splitting methods this information is
already gathered so incurs no cost

Uniform Quantiles

* Only time you pay “extra” is with TR splits

GBDT Framework

Component Methods
(C1) Split Method « Histogram-based (Hist) (§4.3.1)
« Partially Random (PR) (§4.3.2)
« Totally Random (TR) (§4.3.2)
(C2) Weight Update « Averaging (§4.4.1)
« Gradient (§4.4.2)
» Newton (§4.4.3)
(C3) Split Candidate + Uniform, Log (§4.5.1)

« Quantiles (non-private) (§4.5.1)
« Iterative Hessian (IH) (§4.5.2)

(A1) Feature Interactions

« Cyclical k-way (§5.1)
« Random k-way (§5.1)

(A2) Batched Updates

« B =1 (Boosting) (§5.2)
« B =T (RF-type predictions) (§5.2)
«B=p-Tforsomep € (0,1) (§5.2)

WARWICK

10

wie

GBDT Framework: Related Work / Baselines WARWICK

Table 2: Related works under our framework

DP-EBM [51] FEVERLESS [62] DP-RF [25]

C1: Split Method TR Hist TR
C2: Weight Update Gradient Newton Averaging
C3: Split Candidate Uniform (DP Hist) Quantile Sketch N/A

Al: Feature Interactions Cyclical (k = 1) m-way m-way
A2: Batched Updates B=1 B=1 B=T

* DP-EBM (Nori et al, ICML21): Focus on private and explainable GBDT model

» Uses TR splits with gradient updates under GDP

 Each tree only considers a single feature
* FEVERLESS (Wang et al 2022): Originally vertical FL, faithfully translating XGBoost into a DP-FL setting
* DP-RF (Fletcher et al 2015): Central DP method that builds an RF via TR splits

» DP-RF corresponds to using TR splits, averaging weight update and uniform split candidates

11

C1 & C2: Split Methods and Weight Updates W

WARWICK

°
®
S

* Varying split-methods on Credit 1

e
93
o

* Hi TR, PR

Istogram, TR, Spit Methos

—— DP-TR Newton

DP-PR Newton

—— DP-Hist Newton

Type

—— Test
--- Train

Test AUC
o
9
S

o
=)
&

* Conclusions:

e
=)
=)

* TR competitive but typically requires large T to =
get better results than histogram i
(a) Varying T withd =4,e =1

* PR helps but still performs worse than TR

* Newton updates perform well for larger privacy o
budget (¢ > 0.5) o
E . , imulgd}itl}“;dl\lewwn

DP-PR Newton
—— DP-Hist Newton
Type
— Test

* For higher privacy (¢ = 0.1 — 0.5) averaging g
updates (i.e, RFs) sometimes perform better

0.60 ---- Train

0.2 0.4 0.6 0.8 1.0
Privacy Budget (¢)

(c) Varying e

12

wie

C3: Split Candidates WARWICK

« Varying the number of split candidates Q 0.84 -, 7/, ————
* Methods: Uniform, Log, Quantiles (non-private), IH Ry
: 0.80 - #F—
« With skewed features S \
<0.78 e e 1
%) \o
* (Our) IH method performs the best © 0
» As Q increases, uniform splits variably degrade performance 0.74 T E:;form
e til
« Without skewed features Lt . i
0.70
* Split candidate methods often perform similarly 0 20 40 60 80 100 120
Number of Split Candidates (Q)
« Conclusion: (c) Varying Q with T =100,d =4,e =1

* Refining split-candidates over rounds can help

* Only a small amount of budget is needed to give good
improvements

End-to-End Comparison

* Bottom 3:

» Methods that faithfully replicate the centralised
algorithm under DP perform worst

* DP-GBM, FEVERLESS, DP-RF
* Too high a privacy cost
* Top 3:

* Combining Newton updates, totally random splits,
IH split candidates, large batches

* Essentially a private, random XGBoost model

* Conclusions:

» The best individual components also work the
best when combined together

» Batching is surprisingly effective

* RDP accounting + GBDT achieves results close to
that of non-private baselines

Test AUC
o o o
o)) 9
=) o o

e
o
o

e
o
=)

100 200
Number of Trees (T)

13

WARWICK

0.87

o
©
o

=
=~
~
SS
S~
-~
—_
~
~
SSas
~
S~

Test AUC

ot
@
a

0.83

0.82

300 100 200

Number of Trees (T)

e=1,d=4

300

DP-EBM

DP-EBM Newton
DP-GBM

DP-RF

DP-TR Batch Newton
IH EBM (p=0.25)
DP-TR Batch Newton
IH EBM (p=1)

DP-TR Newton IH
DP-TR Newton IH EBM
FEVERLESS (uniform)

XGBoost (Non-
private)

14

v

Key Takeaways WARWICK

Core message: Faithfully replicating the GBDT algorithm under privacy in the
Federated setting is not the ideal solution for high-utility

Can achieve good performance with few rounds of communication by
batching random trees

Proposing split candidates over multiple rounds can often lead to better utility

Boosting doesn’t always have a clear advantage over RF in high privacy
settings

Overall: Use less data-intensive (or even data-independent) methods in areas
where we can afford to lose performance

