CCS 2022: Federated Boosted Decision Trees with Differential Privacy

Samuel Maddock¹, Graham Cormode², Tianhao Wang³, Carsten Maple¹, Somesh Jha⁴

¹ University of Warwick, ² Meta AI, ³ University of Virginia, ⁴ University of Wisconsin-Madison

Our Work

- Gradient Boosted Decision Trees (GBDTs) widely used for Tabular data (i.e, XGBoost, LightGBM, CatBoost)
- Modern ML moving to large-scale federated settings, data is highly distributed, interested in formal privacy guarantees
- Goal: Can we develop accurate, lightweight GBDT methods for the federated setting, under Differential Privacy (DP)?

Motivation:

- "Simple" baseline models that could be used in the federated setting
- Existing private tree-based methods focus on central DP and only on decision trees (DTs) or Random Forest (RFs)
- Existing federated GBDT methods lack DP
 - Focus on replicating GBDT exactly under Homomorphic Encryption (HE) or Secure Multi-party Computation (MPC)

Setting:

- Horizontal Federated Learning (HFL), each client holds some data over all features
- Honest-but-curious clients and central aggregator (server), threat model orthogonal to our framework
- · Assume each client holds a single data item, can be easily extended

General approach for GBDTs

- Compute a set of split candidates i.e thresholds to split on
 - Example: XGBoost computes quantiles of each feature and use these as thresholds
 - Splitting feature j with threshold t, $I = I_L \cup I_R$, $I_L = \{i : x_{ij} \le t\}$, $I_R = \{i : x_{ij} > t\}$
- Build a tree greedily
 - Compute a "split score" for each (feature, split candidate pair), choose the largest

$$SS(I_L, I_R) = \frac{\left(\sum_{i \in I_L} g_i\right)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{\left(\sum_{i \in I_R} g_i\right)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{\left(\sum_{i \in I} g_i\right)^2}{\sum_{i \in I} h_i + \lambda}$$

• If no good splits exist then the node becomes a leaf with a weight which is used for prediction

$$w_l = -\frac{\sum_{i \in I} g_i}{\sum_{i \in I} h_i + \lambda}$$

• Observation: Only depends on aggregated gradients and hessians

Private GBDT Framework: Components

- Break the GBDT algorithm into 3 main components:
 - (C1) Split Method
 - "Choosing the split"
 - (C2) Weight Update Method
 - "Computing the leaf weights"
 - (C3) Split Candidate Method
 - "Computing candidate thresholds"
- All three require querying the data
 - Need to add DP noise
- Two additional components:
 - (Maximum) Feature Interactions
 - Batched Updates

Algorithm 1 General GBDT		
input: Number of trees T, maximum depth d, number of split candidates Q, privacy parameters ϵ , δ		
For each feature $j = 1,, m$ generate Q split candidates 1: $S_j := \{s_1^j,, s_Q^j\}$ (C3)		
2: Initialise the forest $\mathcal{T} \leftarrow \emptyset$		
3: for $t = 1,, T$ do		
For each $(x_i, y_i) \in D$ compute the required gradient 4: information (g_i, h_i) based on $\hat{y}_i^{(t-1)}$ (C2)		
5: Choose a subset of features $F^{(t)} \subseteq \{1,, m\}$ with $ F^{(t)} = k$ for the current tree f_t (A1)		
6: while depth of the current node $\leq d$ do		
7: Choose a feature split candidate pair (j, s_q^j) from $F^{(t)}$ (C1)		
Split the current node with observations I into two child nodes with index sets $I_{\leq} = \{i : x_{ij} \leq s_q^j\}$ and $I_{>} = I \setminus I_{\leq}$		
9: Repeat (6)-(9) recursing separately on the child nodes		
^{10:} For each leaf <i>l</i> calculate a weight $w_l^{(t)}$ from the examples in the leaf according to the chosen update method (C2)		
11: Update predictions $\hat{y}_i^{(t)}$ or batch updates (A2)		
12: Add the tree to the ensemble $\mathcal{T} = \mathcal{T} \cup \{f_t\}$		
13: return the trained forest \mathcal{T}		

Private GBDT Framework: Accounting

- All quantities require aggregated gradients/Hessians
- Consider queries of the form

$$\tilde{q}(I) = \left(\sum_{i \in I} g_i^{(t)}, \sum_{i \in I} h_i^{(t)}\right) + N(0, \sigma^2 I_2)$$

- Just need bounded gradient information
- Setting: express popular GBDT methods under this query why?
 - Can utilise secure-aggregation, easy to federate, utilise RDP
 - Assume honest-but-curious setting with central aggregator
- To guarantee formal privacy
 - Need to count # of queries $\tilde{q}(I)$ made by each component
 - Explore data-intensive methods (high query count) vs dataindependent (no or little query count)

Algorithm 1 General GBDT		
Input: Number of trees <i>T</i> , maximum depth <i>d</i> , number of split candidates <i>Q</i> , privacy parameters ϵ , δ		
For each feature $j = 1,, m$ generate Q split candidates ^{1:} $S_j := \{s_1^j,, s_Q^j\}$ (C3)		
2: Initialise the forest $\mathcal{T} \leftarrow \emptyset$		
3: for $t = 1,, T$ do		
For each $(x_i, y_i) \in D$ compute the required gradient 4: information (g_i, h_i) based on $\hat{y}_i^{(t-1)}$ (C2)		
5: Choose a subset of features $F^{(t)} \subseteq \{1,, m\}$ with $ F^{(t)} = k$ for the current tree f_t (A1)		
6: while depth of the current node $\leq d$ do		
7: Choose a feature split candidate pair (j, s_q^j) from $F^{(t)}$ (C1)		
Split the current node with observations I into two child nodes with index sets $I_{\leq} = \{i : x_{ij} \leq s_q^j\}$ and $I_{>} = I \setminus I_{\leq}$		
9: Repeat (6)-(9) recursing separately on the child nodes		
^{10:} For each leaf <i>l</i> calculate a weight $w_l^{(t)}$ from the examples in the leaf according to the chosen update method (C2)		
11: Update predictions $\hat{y}_i^{(t)}$ or batch updates (A2)		
12: Add the tree to the ensemble $\mathcal{T} = \mathcal{T} \cup \{f_t\}$		
13: return the trained forest \mathcal{T}		

C1: Split Methods

• Histogram-based (Hist):

- Compute a (private) histogram over split-candidates and use this to compute required split-scores at each level
- Can be computed easily with $\tilde{q}(I)$ under secure-agg + DP
- Queries proportional to num of trees * features * max depth

• Partially Random (PR):

- Pick a random split-candidate for each feature and compute split scores
- Same queries as Hist but doesn't require a histogram

• Totally Random (TR):

- Pick a feature, split-candidate pair completely at random
- Almost fully data-independent, requires only perturbing leaf weights

C3: Split Candidates

- Quantiles (non-private): Standard method used for GBDTs
- **Uniform:** Uniformly divide up features from minimum and maximum
 - Data independent so no privacy-cost
- Log: Divide uniformly over the log of a feature (depending on the skew direction)
 - Data independent if you know the skew direction of features

C3: Split Candidates

• Iterative Hessian (IH)

- Mimics XGBoost that form quantile sketches where Hessians are used as weights
- Form a private Hessian histogram over the current split-candidates
 - Merge bins with small total Hessian
 - **Split** bins with large total Hessian (i.e by taking their midpoint)
- Refine over a number of rounds, helps deal with skew
- For most splitting methods this information is already gathered so incurs no cost
 - Only time you pay "extra" is with TR splits

WARWICK

WARWICK

GBDT Framework

Component	Methods
(C1) Split Method	 Histogram-based (Hist) (§4.3.1) Partially Random (PR) (§4.3.2) Totally Random (TR) (§4.3.2)
(C2) Weight Update	 Averaging (§4.4.1) Gradient (§4.4.2) Newton (§4.4.3)
(C3) Split Candidate	 Uniform, Log (§4.5.1) Quantiles (non-private) (§4.5.1) Iterative Hessian (IH) (§4.5.2)
(A1) Feature Interactions	• Cyclical <i>k</i> -way (§5.1) • Random <i>k</i> -way (§5.1)
(A2) Batched Updates	 B = 1 (Boosting) (§5.2) B = T (RF-type predictions) (§5.2) B = p · T for some p ∈ (0, 1) (§5.2)

GBDT Framework: Related Work / Baselines

DP-RF [25] DP-EBM [51] FEVERLESS [62] C1: Split Method TR Hist TR C2: Weight Update Gradient Averaging Newton C3: Split Candidate Uniform (DP Hist) **Quantile Sketch** N/A A1: Feature Interactions Cyclical (k = 1)*m*-way *m*-way A2: Batched Updates B = 1B = 1B = T

Table 2: Related works under our framework

- DP-EBM (Nori et al, ICML21): Focus on private and explainable GBDT model
 - Uses TR splits with gradient updates under GDP
 - Each tree only considers a single feature
- FEVERLESS (Wang et al 2022): Originally vertical FL, faithfully translating XGBoost into a DP-FL setting
- DP-RF (Fletcher et al 2015): Central DP method that builds an RF via TR splits
 - DP-RF corresponds to using TR splits, averaging weight update and uniform split candidates

C1 & C2: Split Methods and Weight Updates

- Varying split-methods on Credit 1
 - Histogram, TR, PR
- Conclusions:
 - TR competitive but typically requires large T to get better results than histogram
 - PR helps but still performs worse than TR
 - Newton updates perform well for larger privacy budget ($\varepsilon > 0.5$)
 - For higher privacy ($\varepsilon = 0.1 0.5$) averaging updates (i.e, RFs) sometimes perform better

C3: Split Candidates

- Varying the number of split candidates Q
- Methods: Uniform, Log, Quantiles (non-private), IH
- With skewed features
 - (Our) IH method performs the best
 - As Q increases, uniform splits variably degrade performance
- Without skewed features
 - Split candidate methods often perform similarly
- Conclusion:
 - Refining split-candidates over rounds can help
 - Only a small amount of budget is needed to give good improvements

WARWICK

(c) Varying Q with $T = 100, d = 4, \epsilon = 1$

WARWICK

End-to-End Comparison

• Bottom 3:

- Methods that faithfully replicate the centralised algorithm under DP perform worst
 - DP-GBM, FEVERLESS, DP-RF
- Too high a privacy cost

• Top 3:

- Combining Newton updates, totally random splits, IH split candidates, large batches
- Essentially a private, random XGBoost model
- Conclusions:
 - The best individual components also work the best when combined together
 - Batching is surprisingly effective
 - RDP accounting + GBDT achieves results close to that of non-private baselines

 $\varepsilon = 1, d = 4$

WARWICK

Core message: Faithfully replicating the GBDT algorithm under privacy in the Federated setting is not the ideal solution for high-utility

Can achieve good performance with few rounds of communication by batching random trees

Key Takeaways

- Proposing split candidates over multiple rounds can often lead to better utility
- Boosting doesn't always have a clear advantage over RF in high privacy settings
- **Overall:** Use less data-intensive (or even data-independent) methods in areas where we can afford to lose performance