# FLAIM: AIM-based Synthetic Data Generation in the Federated Setting

Samuel Maddock<sup>1</sup>, Graham Cormode<sup>1 2</sup>, Carsten Maple<sup>1</sup>

<sup>1</sup>University of Warwick, <sup>2</sup>Meta AI



# Synthetic Data Generation (SDG)

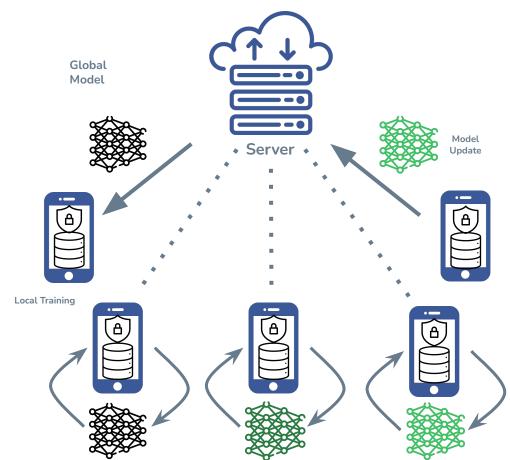
- **Goal:** Produce "fake" data with the properties of real data
- Synthetic data attractive for many reasons
  - Key reason: Privacy
  - Allow general release for downstream tasks e.g., training models, analytics
- Lots of solutions when data is centralised in one place
  GANs, LLMs, Statistical models, etc.
- Methods prone to "memorisation"
  - Can produce verbatim copies of real data
  - Prevention via **Differential Privacy (DP)**



# Federated Learning (FL)

#### • Federated Setting

- Millions of clients, holding local data
- Wish to participate in model training
- Perform local work and send to server
- "Realistic" scenario for large organisations
- Synthetic data not well studied in FL
  - Generic image/language generation (e.g. GANs)
- Our focus: Federated Synthetic Tabular Data





# **Differential Privacy (DP)**

- Parameterized by ( ${m arepsilon}$  ,  ${m \delta}$  ):
  - $\circ~arepsilon$  Privacy budget, larger implies less privacy (noise)
  - $\circ~\delta~$  Small probability of failure, set "cryptographically" small
- To guarantee  $DP \rightarrow add$  noise into training process
- Smaller the privacy budget = more noise needed
- Has many useful properties
  - Post-processing
  - Composition



# Differentially Private Synthetic Data Generators (DP-SDG)

- Define workload of queries **Q**
- Goal: Produce synthetic data with accurate answers over workload Q
- **Example:** Marginal Query e.g., "How many rows have Sex="M" and Employed=True?"
- Want to learn: Model producing synthetic data with low error over **Q**
- Data can still be used for any number of downstream tasks
  - e.g., training ML models
  - No guarantees outside defined workload Q



## **DP-SDG:** "Select-Measure-Generate"

- Private tabular SDG methods follow "Select-Measure-Generate"
- For t = 1, ... ,T
  - 1. Select: query  $q \in Q$  with highest error (privately)
    - a. Exponential mechanism with utility scores u(q)
  - 2. Measure: Measure chosen marginal q under calibrated noise
    - a. Gaussian mechanism
  - 3. Generate: Update model to learn noisy marginal



### Adaptive Iterative Mechanism (AIM) McKenna et al. (VLDB 24)

- Follows "Select-Measure-Generate" paradigm
  - $\circ$  ("Generate") uses Private-PGM  $\rightarrow$  Markov Random Field (MRF)
- Modifications to improve utility:
  - Augmented utility scores "Select" step performed in smarter way
  - Budget annealing Rounds (T) do not need to be set in advance
  - **zCDP accounting** Add less noise for same privacy guarantees
- Translating AIM to the federated setting is the core focus of our work



# Federated DP-SDG

- Key Question: How do we federate AIM?
  - = how to federate "Select-Measure-Generate" paradigm

#### • Distributed setting

- All clients participate over a single (or few) rounds
- Typically assume all participants are available

#### • Federated setting

- Client participation is subset of true population (e.g., dropout, availability)
- Client data exhibits strong heterogeneity (e.g., distribution skew)



## Prior Work: Pereira et al. 2022

#### • Distributed setting

- Secure Multi-party Computation (MPC)
- 2/3-party settings, all clients available
- All clients secret-share workload answers to computing server(s)
- Servers work to emulate central algorithm
  - Distributed **Select** + **Measure** steps

#### • Drawbacks

- Focus on MWEM poor data representation
- "Fully-MPC" solution has overheads





## **Our Work:** Distributed AIM

- Pereira et al., 2022 distribute MWEM using MPC
- Our Work: DistAIM
  - Plug AIM into their framework replacing MWEM
  - Gain utility boost due to AIM over prior work
- **Problem:** not designed with FL in mind inherits issues of Pereira et al.
  - 1. Assumes all clients available to secret-share answers
  - 2. Overhead for clients sharing all workload answers
  - 3. Overhead for server due to MPC operations for exponential mechanism



## **Our Work:** Naive FLAIM

- DistAIM obtains good utility but w/ overheads not compatible with typical FL
- Can we design an analog to traditional FL training?
  - Offload work to clients (make local steps)
  - Client(s) distill work into update => server aggregates and updates global model

#### • FLAIM

- **"Select":** have each (available) client perform a number of local steps
  - Under LDP
- "Measure": server performs under lightweight cryptography i.e., secure-aggregation
  - Distributed DP
- **"Generate":** update graphical model => post-processing
- Avoids (heavy) MPC  $\rightarrow$  secure exponential mechanism



## **Our Work:** AugFLAIM (Non-private)

• **Problem:** clients w/ strong heterogeneity more likely to choose skewed marginals

$$u(q; D_k) \propto ||M_q(D_k) - M_q(\hat{D}^{(t)})||_1$$

- **Solution:** correct local skew by penalising q with strong heterogeneity
- How to define heterogeneity? Deviation of clients marginal from global

$$\tau_k(q) := ||M_q(D_k) - M_q(D)||_1$$

• **Problem:** M<sub>a</sub>(D) is exactly what we are trying to learn (privately) via AIM !



## **Our Work:** AugFLAIM (Private)

- **Problem:** Can't ever learn "true" heterogeneity of clients local marginals
- **Private Proxy:** have clients submit 1-way marginals every round
  - Pay privacy cost in the number of features
  - Obtain subsequently more accurate 1-way answers

$$\tilde{\tau}_k(q) := \frac{1}{|q|} \sum_{j \in q} \|M_{\{j\}}(D_k) - \tilde{M}_{\{j\}}(D)\|_1$$



## Methods

#### 1. Naive FLAIM

- Translation of AIM to FL with no modifications
- "SecAgg + noise"

#### 2. AugFLAIM (Oracle)

- Assumes knowledge of heterogeneity skew
- Modify select step for local clients taking this into account

#### 3. AugFLAIM (Private)

- Private proxy of heterogeneity
- Estimates all 1-way marginals and query from "select" step at each round



## **Experiment:** Comparison with Baselines

- Popular deep learning alternative
  OP-CTGAN
- FLAIM baselines
  - NaiveBayes 1-way marginals only
  - **FLAIM (Random)** random decisions
  - NaiveFLAIM no modification to utility score
- Our proposal: AugFLAIM (Private)
- Table shows NLL compared to test set

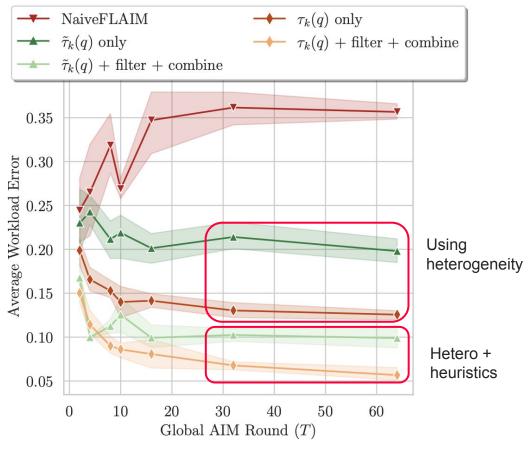
Table 1: Comparison of FLAIM approaches against baselines for negative log-likelihood (NLL),  $\varepsilon = 5$ . Smaller NLL is better.

| Method / Dataset   | Adult | Credit | Covtype |
|--------------------|-------|--------|---------|
| Fed DP-CTGAN       | 37.1  | 83.8   | 62.7    |
| FedNaiveBayes      | 25.33 | 18.02  | 44.9    |
| FLAIM (Random)     | 83.9  | 47.7   | 58.4    |
| NaiveFLAIM         | 29.4  | 18     | 45.4    |
| AugFLAIM (Private) | 20.87 | 16.2   | 41.6    |
| DP-CTGAN           | 28.6  | 27.6   | 45.9    |
| AIM                | 19.2  | 15.57  | 40.92   |



## **Experiment:** Ablation

- Why does AugFLAIM (Private) perform so well?
- NaiveFLAIM
  - No utility score modification
- AugFLAIM (Oracle)
  - Access to true heterogeneity
- AugFLAIM (Private)
  - Private proxy for heterogeneity



(b) Credit



## **Experiment:** Overheads

- If T is small
  - Utility of AugFLAIM >= DistAIM
- If T is large
  - DistAIM favorable performance
- **Bandwidth** = Average client sent & received
- On Adult, DistAIM requires
  - 2x more rounds
  - 1300x increase in bandwidth
  - $\circ$  to reduce workload error by ~<sup>1</sup>/<sub>2</sub>



Table 2: Overhead of DistAIM vs. FLAIM at optimal T

|          | $T(\uparrow)$ | Bandwidth (†) | $\operatorname{Err}(\downarrow)$ | NLL $(\downarrow)$ |
|----------|---------------|---------------|----------------------------------|--------------------|
| Adult    | $2 \times$    | 1300×         | $0.58 \times$                    | 0.1×               |
| Magic    | $3.2 \times$  | $1643 \times$ | $0.19 \times$                    | 0.15 	imes         |
| Mushroom | $7 \times$    | 7.5	imes      | 0.79x                            | 0.4 	imes          |
| Nursery  | $20 \times$   | 3.4 	imes     | $0.89 \times$                    | 0.17 	imes         |

## Conclusion

- FLAIM provides a way to
  - obtain comparable utility to DistAIM in practical FL
  - whilst reducing client overheads via lightweight MPC

#### • Limitations

- Example-level DP
- Inherits limitations of "select-measure-generate"
  - Continuous features
  - Specifying a workload Q
  - High-dimensional datasets

#### Poster Number 91 Today, 6:30pm



arXiv:2310.03447

