FLAIM: AIM-based Synthetic Data Generation in the Federated Setting Graham Cormode^{†‡} Samuel Maddock^{†*} Carsten Maple[†]

* Email: s.maddock@warwick.ac.uk University of Warwick, [‡]Meta Al

(Differentially Private) Synthetic Data

Goal: Produce "fake" data with the statistical properties of real data Key reason: Privacy

- Allow general release of data for downstream tasks e.g., training models, analytics
- Many solutions when data is centralised e.g., GANs, LLMs, statistical models
- Methods prone to "memorisation" \Rightarrow often produce verbatim copies of real data
- Prevention via **Differential Privacy (DP)** which adds carefully calibrated noise into training process

"Select-Measure-Generate" Approach

Private *tabular* SDG methods follow **"Select-Measure-Generate"** approach. Given a workload of queries Q, for $t = 1, \ldots, T$:

- 1. Select query $q \in Q$ with worst error (noisily) with utility scores u(q)
- 2. Measure chosen query q under calibrated Gaussian noise
- 3. Generate data and update model to learn (noisy) measured queries

Key Question: How do we federate AIM? = How to federate "Select-Measure-Generate" paradigm?

Distributed setting: All clients participate over a single (or few) rounds. Assume all participants are available.

Federated setting: Client participation is subset of true population (e.g., dropout, availability) and client data exhibits strong heterogeneity (e.g., distribution or label skew).

Our Work: DistAIM

Prior work by **Pereira et al.** consider running MWEM in a **distributed** setting via **Secure Multi-party Computation (MPC)** with 2/3 computing servers where:

- Each client secret-shares workload answers to computing servers
- Computing servers jointly emulate central algorithm under MPC

We apply this framework to AIM \Rightarrow DistAIM, resulting in \downarrow error but \uparrow overhead **Computing Servers**

Our Work: FLAIM

- Alternative: FL analog via lighweight MPC \Rightarrow secure-aggregation + noise • **Select**: Each (available) client performs local "select" steps (under LDP) • Measure: Server uses secure-aggregation and adds noise to measurements • **Generate:** Post-processing by server over noisy measurements (unchanged) Avoids (significant) MPC overhead (secure exponential mechanism), BUT problem:

 $u(q; D_k) \propto \|M_q(D_k) - M_q(\hat{D})\|_1 \implies$ "select" is biased by local heterogeneity

Leads to three distinct approaches:

- NaiveFLAIM no utility score modification
- AugFLAIM (Oracle) access to true heterogeneity $\tau_k(q) := \|M_q(D_k) M_q(D)\|$
- AugFLAIM (Private) private proxy for heterogeneity $ilde{ au}_k(q)$

Evaluation

We measure the Average L1 error over the workload, Negative Log-Likelihood (NLL) and Test AUC of a GBDT trained on generated synthetic data. We federate benchmark tabular datasets to induce heterogeneity in two ways:

- "Cluster": Perform dimensionality reduction (UMAP) on training data and cluster embeddings to form client partitions. Synthetic data model trained on original data. • "Label-skew": Sample labels from Dirichlet(β) where small β results in large
- skew as in prior FL work.

Code available https://github.com/Samuel-Maddock/flaim

- Secure MPC

FLAIM: Communication Trade-off

Dataset	$T(\uparrow)$	Throughput (†)	Err (\downarrow)	NLL (\downarrow)
Adult	$2 \times$	1300× (80 / 0.06)	58%	11%
Magic	$3.2 \times$	1643× (80 / 0.04)	20%	14%
Census	1.5x	64x (29.6 / 0.46)	79%	33%
Intrusion	2.5x	366x (101 / 0.28)	82%	52%
Marketing	2.0x	97x (18 / 0.19)	77%	35%
Credit	1.0x	167x (93 / 0.55)	45%	6%
Covtype	1.25x	10x (7.6 / 0.76)	64%	3%

Compare DistAIM vs. FLAIM at optimal T for best utility while studying through**put** = average client sent & received communication: • If T is small, utility of AugFLAIM >= DistAIM • If T is large, utility of DistAIM >= AugFLAIM • \forall T, overheads of AugFLAIM \leq DistAIM

FLAIM: Utility

Key Tradeoff: Overhead vs. utility. Varying number of global rounds T, $\varepsilon = 1$ on Adult.

AugFLAIM (Private) error matches DistAIM when T is small

As T increases, DistAIM closes gap with central AIM

At large T, AugFLAIM (Private) has large error due to higher perround noise.

FLAIM: Ablation

 \rightarrow $\tau_k(q) + \text{filter} + \text{combine}$ Why does AugFLAIM (Private) perform so well?

> Study penalisation methods with and without heuristics.

> **Findings:** Using heterogeneity to penalise query selections is important in reducing error but estimating 1-way marginals at each round is also key.