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Abstract

Making sense of text is still one of the most fascinating and open challenges thanks

and despite the vast amount of information continuously produced by recent tech-

nologies. Along with the growing size of textual data, automatic approaches have

to deal with the wide variety of linguistic features across different domains and

contexts: for example, user reviews might be characterised by colloquial idioms,

slang or contractions; while clinical notes often contain technical jargon, with typical

medical abbreviations and polysemous words whose meaning strictly depend on

the particular context in which they were used.

We propose to address these issues by combining topic modelling principles

and models with distributional word representations. Topic models generate concise

and expressive representations for high volumes of documents by clustering words

into “topics”, which can be interpreted as document decompositions. They are

focused on analysing the global context of words and their co-occurrences within

the whole corpus. Distributional language representations, instead, encode the

word syntactic and semantic properties by leveraging the word local contexts and

can be conveniently pre-trained to facilitate the model training and the simultaneous

encoding of external knowledge. Our work represents one step in bridging the

gap between the recent advances in topic modelling and the increasingly richer

distributional word representations, with the aim of addressing the aforementioned

issues related to different linguistic features within different domains.

In this thesis, we first propose a hierarchical neural model inspired by topic

modelling, which leverages an attention mechanism along with a novel neural cell

for fine-grained detection of sentiments and themes discussed in user reviews. Next,

we present a neural topic model with adversarial training to distinguish topics
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based on their high-level semantics (e.g. opinions or factual descriptions). Then,

we design a probabilistic topic model specialised for the extraction of biomedical

phrases, whose inference process goes beyond the limitations of traditional topic

models by seamlessly combining the word co-occurrences statistics with the in-

formation from word embeddings. Finally, inspired by the usage of entities in

topic modelling [85], we design a novel masking strategy to fine-tune language

models for biomedical question-answering. For each of the above models, we report

experimental assessments supporting their efficacy across a wide variety of tasks

and domains.
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Chapter 1

Introduction

1.1 Motivation

Making sense of text is still one of the most fascinating and open challenges, thanks

to and despite the vast amount of information continuously produced by recent tech-

nologies. The proliferation of sources of digital information — online newspapers,

electronic health records, social networks, user reviews, and so on — has generated

an unprecedented flow of text which inevitably calls for more efficient methods

to analyse this digitised collective knowledge. Questions such as “what product

features are the most appreciated by users?”, “what topics are recently trending

on social networks?”, or “what are the treatments most frequently discussed for a

specific disease?” need to be addressed by exploiting automatic methods due to the

enormous quantity of involved documents.

However, along with the growing size of textual data, automatic approaches

have to deal with the wide variety of linguistic features across different domains and

contexts. For example, user reviews might be characterised by colloquial idioms,

slang, or contractions; while clinical notes often contain technical jargon, multi-

word phrases (i.e. single concepts unfolded across several words), with typical

medical abbreviations and polysemous terms whose meaning strictly depends

on the particular context in which they occur. Most of these words and phrases

are critical in determining the precise meaning within documents, yet they are

domain-specific, they might depend on the particular sentiment expressed (e.g.,

user reviews), or we might lack the necessary statistics to model them due to limited

and costly data (e.g., medical documents). In addition, authors would frequently

mix their opinions with factual descriptions, making it difficult to separate and

process them appropriately.
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For example, we report here two extracts from user reviews: “Our children didn’t

manage to clean their plates! Plenty of food!” and “After one cycle the crockery is still dirty,

it doesn’t clean the plates even at full power.”, with the first one being about a restaurant

and the second one about a dishwasher. Interestingly, the same expression “not

to clean the plates” can be regarded as positive for food, while it bears a negative

polarity for kitchen equipment, demonstrating the importance of jointly considering

both topics and sentiments for better sentiment analysis.

Another prominent example comes from clinical notes, as medical concepts

are often expressed in terms of multi-word phrases. For example, the phrases

“white blood cell” or “blood glucose” would lose their meaning if decomposed as

unigrams, and the word cell and glucose, if considered singularly, might be wrongly

clustered together because of the shared blood term. Moreover, the electronic health

record (EHR) narratives, for instance, are remarkably heterogeneous, ranging from

discharge summaries to history of patients and consultations, resulting in high

dimensional data that need to be processed to extract information.

Distributional Methods and Topic Model

Topic models have established themselves as effective tools to generate concise and

expressive representations of high volumes of documents [16]. They cluster words

into “topics”, which can be interpreted as a document decomposition into a small

set of themes to facilitate the high-level understanding of a corpus, otherwise too

large to read. Analogously, machine reading comprehension (MRC) approaches

allow users to identify information of interest indicating the span of text most likely

associated with a user’s query [6].

The recently developed distributional word and language representations based

on neural models [36, 53, 79] combine well with the more traditional topical rep-

resentations of documents, including topic models [13, 16, 34]. The former are

distributional representations of text, thus they encode the text semantics through

the local word context, typically defined by a small context window. They not only

encode syntactic and semantic properties of words, but they are also highly efficient

and parallelisable, scaling to large corpora. This entails the additional possibility to

pretrain these representations so that we do not need to train models from scratch,

and we can combine knowledge encoded from general-purpose corpora (e.g., Wiki-

pedia) with domain-specific corpora (e.g., PubMed dataset [91]). By contrast, topic

models provide information about the overall themes discussed in documents and

can be leveraged to enhance the distributional models in detecting more precisely

2



the topical context of the analysed text.

In this thesis, we propose and analyse different approaches to enhancing or

combining distributional representations with topic modelling. We explore how

hierarchical neural models for sentiment analysis can be modified to generate

topical representations of text (§3). We propose a novel combination of neural topic

models [84] and adversarial training [55] to distinguish between different types

of topics based on their high-level semantics (§4). We propose a biomedical topic

model using word embedding information to drive the inference of a probabilistic

topic model (§5). Finally, inspired by the usage of entities in topic modelling [85],

we design a novel masking strategy to fine-tune language models for biomedical

question-answering (§6).

1.2 Research Objectives

The primary aim of this thesis is to investigate the combination of topic modelling

principles and models with neural architectures and distributional word representa-

tions for text analysis, along with a systematic evaluation of its efficacy in generating

topics that are accurate syntheses of the main themes in text and effective features

for those downstream tasks where an enhanced degree of topic-awareness would

be beneficial.

Our hypothesis is that topic models and neural architectures are a suitable com-

bination for capturing high-level text semantics, such as the expressed sentiments

or the domain-specific concepts. In particular, we posit that such a combination can

be designed to consider simultaneously the global themes characterising a corpus

and the local meanings of words and sentences in a document, and can be used

to identify and separate topics based on their high-level semantics (e.g., topics

about opinions or topics about facts or descriptions). We also posit that leveraging

the large knowledge implicitly encoded in distributional representations of text

would lead to more precise and expressive topics and features, and would be espe-

cially beneficial for domain-specific documents (e.g., clinical notes). Further, their

combination would be a viable means to seamlessly integrate the vast structured

knowledge available in technical domains by its first codification into distributional

representations, which in turn, could be integrated into topic models. The above

hypotheses inspired the methodologies presented throughout this thesis and can be

summarised in the following research objectives (ROs):

RO 1 Combining global and local context of words. In topic modelling, topics

3



in a corpus emerge from the word co-occurrences in documents (i.e. global

context), thus leveraging whole documents as context to characterise the word

meaning. Conversely, word embeddings encode the syntactic and semantic

properties relying on the immediate surrounding terms occurring in a context

window (i.e. local context). We propose to combine these two approaches to

generate topics with greater consistency to the analysed text (§3, §5) .

RO 2 Generating fine-grained topics. The stylistic features characterising specific

domains, such as user reviews or clinical notes, have a significant impact

on the overall meaning of text. Their analysis requires models with high

resolution, able to detect subtle differences that determine the shift in meaning

across documents. Thus, we plan to perform a fine-grained detection of topics

based on the expressed sentiments (§3), the different facets discussed, e.g.,

objective descriptions or opinions (§4), or the technical concepts characterising

specific domains (§5).

RO 3 Incorporating unstructured knowledge. Word embeddings and language

models implicitly encode a large volume of knowledge thanks to the un-

structured text employed to train them. To leverage all this unstructured

knowledge, we propose to exploit the distributed representations to model

the word sentiment polarity (§3), domain-specific lexicon and concepts (§5).

RO 4 Incorporating structured knowledge. In the medical field, as in other tech-

nical domains, there has been a rich proliferation of resources providing

ready-to-use structured knowledge. We aim at its seamlessly integration by

identifying and encoding pivotal biomedical entities and concepts directly

into topic models (§5) and language models (§6).

RO 5 Evaluation on downstream tasks. Along with the increased quality of topics

in terms of expressiveness and coherence, meaningful semantic represent-

ations should have an observable impact on downstream tasks relying on

those features. Therefore, we want to evaluate the influence of these topics

on downstream tasks evaluating how enhancing and distinguishing polarity-

bearing topics can lead to more accurate sentiment classification (§3, §4) ,

aspect extraction (§3), and how focusing pivotal entities in text can lead to

better question-answering models (§6).
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1.3 Contributions

The work in this thesis addresses the research objectives outlined making the fol-

lowing contributions:

C. 1 We introduce a new neural architecture, in particular, a topic-dependent attention

model (TDAM) (§ 3), to combine the word global and local contexts by means

of a new neural cell employing an auxiliary memory to keep track of the word

occurrences across documents (RO 1), while simultaneously encoding the

word embedding depending on the surrounding words (RO 3). The resulting

embeddings are an accurate encoding of the themes in the corpus (RO 2), able

to discriminate between the difference aspects discussed (RO 5).

C. 2 We design a probabilistic topic model, called Context-aware Pólya urn model

(Context-GPU) (§ 5), to generate topics composed of topical phrases (RO 2)

by combining the local and global context of words/phrases (RO 1, RO 4).

The Context-GPU leverages the Pólya urn model to corroborate the word

global and local contexts, determining the quality of the resulting topics. The

window-based embedding not only improves the capability to detect semantic

relatedness at the phrase level, but it also encodes word co-occurrences from

an external source of knowledge (e.g., Wikipedia or the PubMed corpus)

alleviating the lack of statistics for technical terms (RO 3).

C. 3 We propose a new model, namely a disentangled adversarial neural topic model

(DIATOM) (§ 4), which is able to generate disentangled topics (RO 2) through

the combination of a variational autoencoder and adversarial learning. We

conduct an experimental assessment of the topic quality (RO 5), using more

traditional topic quality scores (such as topic coherence, topic uniqueness, and

perplexity), and devising a novel approach to measure the topic disentangle-

ment based on the particular type (e.g., opinion or plot/neutral).

C. 4 We introduce the MOBO dataset (RO 5), a new collection of movie and book

reviews paired with their plots, with annotated sentences which provide a

research tool for the evaluation of topic types via topic labelling (§ 4).

C. 5 We introduce a biomedical entity-aware masking (BEM) strategy (§ 6) encouraging

masked language models (MLMs) to learn entity-centric knowledge (§ 6.3).

We first identify a set of entities characterising the particular domain (RO 4),

using a biomedical entity recogniser (SciSpacy [126]), and then employing a

subset of those entities to drive the masking strategy while fine-tuning. The
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resulting mechanism implicitly drives the encoding of new relations about

biomedical entities, leveraging the named entity recogniser, and results in

improved accuracy on several biomedical question-answering tasks (RO 5).

1.4 Publications

The work discussed in this dissertation relates primarily to the following articles (in

order of publication):

• Gabriele Pergola, Lin Gui, Yulan He. “A Disentangled Adversarial Neural Topic

Model for Separating Opinions from Plots in User Reviews”. In Proceedings of The

North American Chapter of the Association for Computational Linguistics

(NAACL) conference, 2021.

• Gabriele Pergola, Elena Kochkina, Lin Gui, Maria Liakata, Yulan He. “Boost-

ing Low-Resource Biomedical QA via Entity-Aware Masking Strategies”. In Pro-

ceedings of The the European Chapter of the Association for Computational

Linguistics (EACL) conference, 2021.

• Gabriele Pergola, Lin Gui, Yulan He. “TDAM: a Topic-Dependent Attention

Model for Sentiment Analysis”. Information Processing & Management, 2019.

• Gabriele Pergola, Yulan He, David Lowe. “Topical Phrase Extraction from

Clinical Reports by Incorporating both Local and Global Context”. In Proceedings

of The 2nd AAAI Workshop on Health Intelligence (AAAI18), 2018.

Below follows a list of co-authored publications, not included in this thesis:

• Runcong Zhao, Lin Gui, Gabriele Pergola, Yulan He. “Adversarial Learning

of Poisson Factorisation Model for Gauging Brand Sentiment in User Reviews”. In

Proceedings of The European Chapter of the Association for Computational

Linguistics (EACL) conference, 2021.

• Junru Lu, Gabriele Pergola, Lin Gui, Binyang Li, Yulan He. “CHIME: Cross-

passage Hierarchical Memory Network for Generative Review Question Answering”.

In Proceedings of The 28th International Conference on Computational Lin-

guistics (COLING), 2020.

• Lin Gui, Jia Leng, Gabriele Pergola, Yu Zhou, Ruifeng Xu, Yulan He. “Neural

Topic Model with Reinforcement Learning”. In Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing (EMNLP-IJCNLP),

2019.
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1.5 Thesis Outline

We begin with CHAPTER 2 introducing the relevant background on probabilistic

and neural topic modelling, along with an overview of masked language models.

This chapter provides a brief review of the Latent Dirichlet Allocation (LDA) [16],

pointing out the concepts and notation needed to outline the Gibbs Sampling [57]

and the Pólya Urn Model [109]. In turn, these form the basis for the Context-aware

Pólya urn model (Context-GPU) introduced in CHAPTER 5. Then, there follows an

introduction to the neural variational inference [84], and its adaptation to a basic

neural topic model [155]. The chapter ends with an analysis of neural language

models [36] and the different masking strategies adopted to train them.

CHAPTER 3 introduces a topic-dependent attention model (TDAM). This is a

hierarchical neural architecture inspired by the Hierarchical Attention Model (HAN)

[194]. It is trained in a multi-task learning setting to combine the word global and

local contexts with a modified GRU cell [29], and leverages an auxiliary memory to

keep track of the word occurrences across documents used for the topic extraction.

This chapter is based on the published work of Pergola et al. 2019.

CHAPTER 4 describes a novel topic model combining the adversarial training

[55] with the neural topic model architecture [155] to distinguish between polarised

opinion topics and topics about factual descriptions (e.g., movie and book plots).

In this chapter, we also present the new MOBO dataset, a new collection of movie

and book reviews paired with their plots and with manually annotated sentences,

used to determine the topic type via topic labelling. This chapter is based on the

published work of Pergola et al. 2021.

CHAPTER 5 presents the Context-aware Pólya urn model (Context-GPU), a prob-

abilistic topic model based on the Pólya urn framework [123]. It modifies the

topic inference by employing a weighting schema, where the word weights are

determined simultaneously by the co-occurrence statistics and the word embed-

ding similarity. To highlight the model effectiveness in the biomedical domain, we

analyse clinical notes and generate topics composed of relevant medical phrases,

overcoming the unigram limitation affecting traditional bag-of-words models [16].

The chapter is based on the published work of Pergola et al. 2018.

CHAPTER 6 introduces a biomedical entity-aware masking (BEM) strategy to fine-

tune masked language models [36, 91] by leveraging the pivotal entities character-

ising the target domains. This masking strategy consists of a first step to detect
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biomedical entities in a corpus of interest by using a specialised named entity recog-

niser [126]. Then, these pivotal entities are chosen as tokens to be masked during the

fine-tuning process, driving the model to a realignment of the word representations

based on the medical entities. This results in improved performance on several

biomedical QA tasks [164], traditionally characterised by a scarce availability of

training resources [161]. The chapter is based on the published work of Pergola et

al. 2021.

CHAPTER 7 finally summarises the contributions of each chapter, the limitations

of the current work, and highlights some promising future research directions.
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Chapter 2

Background

Chapter Abstract

In this chapter, we first introduce the background concepts and notation for

probabilistic and neural topic modelling, with regard to the models presented

in Chapter 3, 4 and 5. Then, there follows an overview of the distributional

language representations, such as word embeddings and language models, whose

concepts are particularly relevant for Chapter 3 and 6. Finally, we conclude this

background chapter with an overview of the linguistic features characterising

domain-specific text, of which medical documents are a prominent example

analysed in Chapter 5 and 6.

2.1 Probabilistic Topic Modelling

Probabilistic topic models have established themselves as effective tools to generate

expressive and concise representations of the main themes in text collections [16].

To this aim, they posit that data are generated according to some underlying probab-

ilistic process, which in the case of text entails that documents are assumed to be the

results of an underlying generative process depending on the model variables and

parameters. Once a satisfying model, according to some metric, has been inferred,

its variables encode the latent semantics within the analysed documents and their

relations.

One of the most influential works in topic modelling has been the latent Dirichlet

allocation (LDA) [16], where Blei et al. devised a model in which topics within a

corpus are distributions over words, and in turn, documents are finite mixtures of

9



these topics. LDA has given rise to a wide spectrum of extensions and applications,

both in unsupervised [69] and supervised settings [176].

Most of them are unsupervised learning algorithms designed to automatically

mine meaningful sets of words (i.e. topics) sharing a common semantics, yet several

supervised variants have been proposed to improve the topic expressiveness or

exploit the available meta-information for more label-oriented topical features [116].

All the aforementioned models work under the so-called bag-of-words assump-

tion [16], which implies that neither the order of words in a document nor the order

of documents matter. Despite the counter-intuitiveness of this assumption, LDA

has remarkably succeeded in inferring the semantic structure of texts in several

application scenarios [14]. However, some relevant features of the sentence struc-

tures remain still overlooked and additional details embedded through phrases

might be ignored. This leads to a narrowed quality of topics for documents char-

acterised by limited text and contextual information (e.g. tweets, user posts, etc.)

[190]. Moreover, the bag-of-words assumption frequently entails the adoption of

unigrams rather than n-grams which in turn leads to a sparseness problem due

to the frequency distribution commonly characterising text in “natural language”,

leaving out structural information regarding the compositional semantics of text

[96].

In the literature, it is possible to highlight at least two main strategies that

attempt to tackle such limitations. Firstly, some extensions of LDA were designed

to explicitly take into account the word order [173], or the document order when

relevant (e.g. analyses of historical document sequences) [15]. Secondly, approaches

were developed focusing on the preprocessing of documents. For instance, in

order to overcome the text sparsity arising from a large number of short messages,

documents are aggregated into long pseudo-documents that can be analysed as a

whole [62].

2.1.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [16] is a probabilistic generative model of corpora:

documents are represented as random mixtures over topics, where each latent

topic is a distribution over words. LDA is defined as a Bayesian model, and thus

allows to determine the model’s parameters via Bayesian inference. As a result,

the document-topic distributions θ and the topic-word distributions φ, which are

the main parameters of the model, are treated as random variables. The Bayesian

framework provides a rich and well-defined set of probabilistic techniques to reason
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about distributions over parameters conditioned on data (posterior), and to infer the

likelihood of different parametrisations of the model.

In particular, LDA defines some prior distributions over these parameters,

P(θ|α) and P(φ|η), where the parameters of the prior distributions are called

hyperparameters. The advantage of being able to tune the priors of the model’s

distributions is to bias the parameters in favour of a simpler and more general model,

preventing overfitting and driving a better generalisation to unseen data. Another

advantage is the possibility to guide the parameters towards values influenced

by the human expertise in a domain [71]. A commonly adopted prior in text

modelling, including topic modelling, is the Dirichlet distribution [16, 199], due to its

mathematical and geometrical properties along with its influence on the quality of

the topic inferred [172].

The LDA model can be described through its generative story1 as follows:

1. For k ∈ {1,...,K}:

(a) Draw K topic distributions,

φ(k) ∼ Dirichlet(η)

2. For each document d ∈ {1,...,D}:

(a) Draw the document-topic distribution for d,

θd ∼ Dirichlet(α)

(b) For each word token i ∈ d:

i. Draw the new topic zi,

zi,d ∼ Discrete(θd)

ii. Draw the word value wi from the topic-word distribution,

wi,d ∼ Discrete(φ(zi))

The described process corresponds to the following joint likelihood over the model

random variables:

P(d, z,θ,φ | αη) =
Id

∏
i=1

P (zdi | θd) P (wdi | zdi, φk)
K

∏
k=1

P (φk | η)
D

∏
d=1

P (θd | α)

(2.1)

with zdi being the topic assigned to the word token wi in d. The unobserved variables

to be learned are z, θ and φ, while the only observed data is d.

1A generative story is a concise description of how the generative model assumes that its variables
are generated.
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The Bayesian inference process can be formalised by specifying the posterior

distribution:

P(z,θ,φ | d,α,η) =
P(d, z,θ,φ | α,η)

P(d | α,η)
(2.2)

Some approaches have been proposed to learn the specific values (i.e. points of

estimates) which maximise the model posterior (maximum a posteriori - MAP) or

likelihood (maximum likelihood estimation - MLE) [35]. However, we can generally

obtain a better estimate by computing the actual full posterior distribution. To do

so, we notice that given a set of variable assignments, the numerator in Equation

2.2 can be directly evaluated, the denominator is instead intractable due to the

integration over all the possible assignments of θ,φ and z. We can then overcome

the intractability with approximate inference techniques that estimate the full pos-

terior distribution. Two commonly used techniques are the variational methods

[16, 77], and the Markov Chain Monte Carlo (MCMC) methods [57]. Variational

methods involve an optimisation process to find an approximation of the true pos-

terior within a family of distributions analytically tractable, while MCMC methods

determine a sampling process to directly estimate the true posterior. As a result,

the variational methods are generally faster, while the MCMC ones guarantee to

converge asymptotically to the actual posterior values (although we do not know

how long the process would require).

2.1.2 Inference

LDA is a Bayesian model and can rely on the Bayesian inference framework to

infer the model’s parameters. However, as shown, the inference process becomes

non-trivial as the model complexity and structure increases [69]. Thus, we proceed

with a high-level description of the Bayesian inference for probabilistic models and

then provide a brief overview of the methods that can be employed to overcome the

intractability issues discussed in the previous paragraph.

For a model in the Bayesian framework, we can specify a set of unknown

parameters or latent variables z of interest along with the prior distribution p(z)

modelling our knowledge about them before we analyse data. Subsequently, we

can specify a likelihood function p(x|z) to quantify how much of the data x are

related to z, and finally compute the posterior distribution p(z|x) by applying the

Bayes’ rule: p(z|x) = p(z)p(x|z)/p(x). The criterion most commonly used to

guide the probabilistic models through the learning process is the estimation of the

maximum log likelihood. Under this criterion, we try to infer the model’s parameters
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θ that maximise the sum of the log probabilities that the model assigns to the data

(Equation 2.3).

A directed graphical model with parameters θ would represent a joint distribu-

tion pθ(x, z) over both the observed variable x and the latent ones z, analogously to

what is described for LDA in Equation 2.1. The marginal distribution pθ(x) results

are defined as follows:

pθ(x) =
∫

pθ(x, z)dz =
∫

pθ(z)pθ(x|z)dz (2.3)

However, the marginal probability pθ(x) is typically intractable, making the max-

imum likelihood learning difficult: while the likelihood pθ(x|z) expresses the prob-

ability of data given the specified z, the marginal likelihood pθ(x) measures how

probable is x over the entire latent space of z, resulting in a prohibitive and high

dimensional integration, with no analytic solution [154]. Consequently, the pθ(x)

already shown intractable makes the posterior density pθ(z|x) intractable as well,

considering the Bayesian relation: pθ(z|x) = pθ(z)pθ(x|z)/pθ(x). To circumvent

this intractability issue, we need to resort the mentioned methods for inference

approximation, such as variational inference and Markov Chain Monte Carlo (MCMC).

The variational inference casts the Bayesian inference as an optimisation problem

introducing a parametrised posterior approximation qθ(z|x); this is fit to the pos-

terior distribution through the θ parameters, chosen to maximise a lower bound L
on the marginal likelihood:

log p(x) ≥ log p(x)− DKL(qθ(z|x)||p(z|x)) (2.4)

= Eqθ(z|x)[log p(x, z)− log qθ(z|x)] = L. (2.5)

where z are the latent variables of interest, p(z) their prior distribution and x the

observed data. If we keep maximising the bound L with regard to θ, we will

minimise the KL-Divergence term, given that log p(x) is independent of θ.

Alternatively, the Markov Chain Monte Carlo (MCMC) method starts by taking a

random draw z0 from some initial distribution q(z0|x), but rather than optimising

this distribution it applies a stochastic transition operator to z0:

zt ∼ q(zt|zt−1, x). (2.6)

The iterative applications of an appropriately chosen transition operator will result in
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a random variable zT converging in distribution to the exact posterior p(z|x). Using

the MCMC we can approximate the exact posterior arbitrarily well applying the

stochastic transition operator a sufficient number of times. While this makes MCMC

methods asymptotically exact and is one of the significant advantages of using

them, in practice, we do not know in advance how many times to keep iterating

them, with an overall process that could require a rather long time depending on

the application [151].

We proceed introducing an MCMC algorithm, called Gibbs sampling, that forms

the basis for the proposed Context-Generalised Pólya Urn model [109, 123].

2.1.3 Gibbs Sampling

One of the most prominent methods for the inference approximation of the posterior

is the Collapsed Gibbs Sampling (CGS) [49, 57, 58]. The CGS is an MCMC method

increasingly adopted and whose simplicity has led to a wide variety of implementa-

tions and parallel architectures [117, 153]. The core idea behind it is to marginalise

(“collapse”) out the parameters of the topic-word distributionsφ and document-topic

distributions θ, and approximate these distributions through a sampling procedure

of the model’s latent variables z [57].

The Gibbs Sampling process considers in turn each word token wi in a text

collection, and conditioned on the current topic assignments for the other tokens,

estimates the probability of assigning wi to each topic k. A topic is than drawn

and assigned to the current word token i following the conditional distribution:

P(zi = k|z−i, wi, di, ·), where z−i denotes the topic assignments of others word

tokens, “·” all the other known indices w−i, d−i along with the hyperparameters

α and η of the symmetric Dirichlet priors for topics and documents. To compute

the mentioned conditional distribution, CGS maintains two count matrices: nkv,

representing the number of times that a word type v is assigned to a topic k, and

ndk, counting the number of word tokens in a document d assigned to a topic k. As

was shown in Griffiths et al. (2004), these assignments can be ultimately computed

using the nkv and ndk matrices:

P(zi = k|z−i, wi, di, ·) ∝
nkv + η

V
∑

v′=1
nkv + Vη

· ndk + α

Nd +
K
∑

k′=1
K αk′

(2.7)

The Gibbs sampler is first run for a few iterations during which the Markov chain

is typically in a low probability state (burn-in period). After this short period, it

stabilises and starts retrieving the reliable estimates for the parameters θ and φ and
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topic assignments zi. The duration of the CGS process is finally determined by a

fixed number of iterations, set a priori, during which the assigned topic k ∈ {1, ..., K}
to a word token wi is sequentially updated following the aforementioned conditional

probability.

2.1.4 Pólya Urn Model

The LDA inference process is intrinsically biased to promote together words that

frequently occur in a corpus, overlooking less prominent but still correlated words,

a well-known problem in literature [123]. To alleviate this shortcoming and increase

the association strength between rare but still correlated words, a different inference

process was proposed by Mimno et al. (2011) following the so-called Generalised

Pólya Urn (GPU) model, that consists in incorporating a corpus-specific word co-

occurrence metric into the generative process refining the original probabilities of

related words under the same topic.

It is based on the interpretation of LDA as a Pólya urn model [109], a statistical

model describing objects of interest (e.g. words or topics) in terms of coloured balls

and urns. In particular, LDA follows the so-called Simple Pólya urn (SPU) model.

During the main steps of the SPU generative scheme, a coloured ball is randomly

drawn from an urn and is put back along with an additional new ball of the same

colour to induce a self-reinforcement process known as “rich get richer”: as a result,

the probability of seeing a specific coloured ball from an urn increases every time

this ball has been drawn.

Under the Pólya urn perspective, in the LDA generative process we have two

types of urns: the document-topic and the topic-word urns. The document-topic

urns hold balls whose colour corresponds to different topics in a document, while

the coloured balls in the topic-word urns represent different words in a topic. As a

result of our priors, initially, the document-topics urns contain α balls of K different

colours (with K being the number of topics), and similarly, the topic-word urns

contain β balls of V different colours (with V being the vocabulary size). The

generative process proceeds as follows: a ball is extracted from the document-topic

urn dm, and its colour determines the new topic assignment zi for the word wi;

then the ball is put back along with another ball of the same colour. Next, a ball is

extracted from the topic-word urn zi determining a new word ŵ and, as before, the

ball with an additional one of the same colour is put back into the urn. As a result,

both the topic zi and the word ŵ increase their proportion in the document-topic

and topic-word distribution, respectively.
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The LDA generative process in terms of urns and balls can be described as follows:

1. For each document d ∈ {1,...,D}:

(a) For each topic k ∈ {1,...,K}:

i. Add αdk balls of color k to the urnd,

urnd[k] = αdk

2. For each topic k ∈ {1,...,K}:

(a) For each word token i ∈ {1,...,V}:

i. Add βki balls of color wi to the urnk,

urnk[i] = βki

3. For each document d ∈ {1,...,D}:

(a) For each word token i ∈ d:

i. Draw a ball and assign the topic k for the sampled color,

k ∼ urnd, z(d)i = k

urnd[k] = urnd[k]− 1

ii. Draw the word value wi from the topic-word distribution,

wi ∼ urnk

urnk[i] = urnk[i]− 1

iii. Place the ball back in the urn, along with a new ball of the same color,

urnd[k] = urnd[k] + 2

urnk[i] = urnk[i] + 2.

The Pólya urn interpretation allows to easily modify the generative process and

thus adapting the corresponding Gibbs sampling process accordingly. In Chapter

5, we describe in details the Generalised Pólya urn model [123] and the proposed

Context-aware Pólya urn model (Context-GPU), a model leveraging word embeddings

to determine the relevance of words in a topic (i.e. coloured balls), despite their

low occurrences in corpus. As a result, the revised Pólya urn model provides a

smooth mechanism to combine the local and global contexts characterising words

in a corpus, joining the information from probabilistic topic models and word

embeddings.
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Figure 2.1: The Variational Autoencoder architecture.

2.2 Neural Topic Modelling

When designing a new topic model, even a small modification to the original

components would require to re-derive again the variational inference method.

This task could be even more demanding if the model needs to be scalable and

parallelisable to cope with large datasets [17, 69]. Such a limitation has stimulated

the development of neural variational inference approaches [84, 146] which can be

easily adapted to new models given just the specification of the generative process.

One natural and promising application of these neural inference methods has

been topic modelling. Mapping a document to a posterior distribution of latent

topics is a task particularly suitable for neural models since these are universal

function approximators, inherently oriented to generate “well-behaved” mapping,

such that small changes in a document will produce only small changes in topics.

In the following, we first give a brief introduction to the Variational Autoencoder

(VAE), a neural architecture based on the Autoencoding Variational Bayes (AEVB)

[84] inference method. Next, we proceed by analysing a simple neural topic model

based on the variational autoencoder architecture [155]. This would set the needed

background to introduce the Disentangled Adversarial Topic Model (DIATOM) in

Chapter 4.

2.2.1 Variational Autoencoder

Variational Autoencoders (VAEs) marry probabilistic graphical models with neural

models [84].

As a neural model, VAEs directly inherit the architectural design from the

Autoencoders (AEs) [66], to perform dimensionality reduction for unsupervised

representation learning. It consists of two couple, but independently parametrised

models: the encoder and the decoder. The resulting reconstruction mechanism forces

the model to infer compact representations of data encoding the essential inform-
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ation to reconstruct them, and capture the meaningful factors of variations [10].

However, classic autoencoders do not necessarily rely on continuous representations

of data and tend to have limited interpolation capability. Instead, VAEs are designed

to project the input data into a continuous latent space, allowing easy interpolation

and random sampling; consequently, for a given input x, the generative network

is exposed to a range of variations associated with the same input, forcing the

decoder to not just reconstruct the input data but to perform an interpolation in the

continuous space. Although several autoencoder variations have been proposed to

improve their generalisation [147, 170], VAEs have shown consistent generalisation

performance in several applications [56]. In terms of graphical models, the encoder

component pθ(x|z) is a conditional Bayesian network of the form p(z|x), and the

decoder component is a also a Bayesian network of the form p(x|z)p(z). Each of

these conditionals are determined with a complex neural models. E.g. if f is a neural

network, then z|x ∼ f (x, ε), with ε a noise random variable. The resulting learning

procedure is a mix of traditional expectation maximisation, which thanks to the

reparameterisation trick is performed through backpropagation on the neural layers

[84, 146, 150]. A schematic depiction of a standard VAE architecture is depicted in

Figure 2.1.

A latent variable model pθ(x, z) with distributions parametrised by neural

networks is also called a deep latent variable model (DLVM). A major advantage

of DLVM models is that even though the prior or conditional distributions in

the directed model are relatively simple (e.g. conditional Gaussian), the marginal

distribution pθ(x) can approximate complicated underlying distribution with almost

arbitrary dependencies. The Variational Autoencoder [84] can be viewed as a DLMV

model coupling an encoder (or inference network) qφ(z|x) with a decoder (or generative

network) pθ(x|z).

Inference

To address the intractable posterior inference (Equation 2.3), in VAEs we leverage

the parametric inference model qφ(z|x) and optimise the variational parameters φ

so that:

qφ(z|x) ≈ pθ(z|x) (2.8)

This approximation allows us to optimise and derive a lower bound on the marginal

likelihood p(x). In most cases, the encoder is just a single neural model used to

perform posterior inference over all (or large subsets of) the samples in the dataset
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and optimises its neural weights and biases included as variational parameters

φ of the distribution qφ(z|x). This is called amortized variational inference [50],

and it is one of the advantage compared to more traditional variational inference

methods, avoiding a per-sample optimisation loop and leveraging the stochastic

gradient descent (SGD) [19, 183] efficiency.

We can rewrite the Equation 2.3 for the marginal likelihood in terms of VAE

components as follows:

log pθ(x) =

= Eqφ(z|x) [ log pθ(x) ] (2.9)

= Eqφ(z|x)

[
log
[

pθ(x, z)
pθ(z|x)

]]
(2.10)

= Eqφ(z|x)

[
log
[

pθ(x, z)
qφ(z|x)

qφ(z|x)
pθ(z|x)

]]
(2.11)

= Eqφ(z|x)

[
log
[

pθ(x|z)pθ(x)
qφ(z|x)

]]
+ Eqφ(z|x)

[
log
[

qφ(z|x)
pθ(z|x)

]]
(2.12)

= Eqφ(z|x) [ log pθ(x|z)]− Eqφ(z|x)

[
log
[

qφ(z|x)
pθ(z)

]]
+ Eqφ(z|x)

[
log
[

qφ(z|x)
pθ(z|x)

]]
(2.13)

= Eqφ(z|x) [ log pθ(x|z)]− DKL(qφ(z|x) || pθ(z))︸ ︷︷ ︸
= Lθ,φ(x)

(ELBO)

+ DKL(qφ(z|x) || pθ(z|x))︸ ︷︷ ︸
≥ 0

(2.14)

In Equation 2.14, the first term is the objective to be optimised from the VAE, it is

common to several variational methods and generally called variational lower bound

or evidence lower bound (ELBO). The second term is the non-negative Kullback-Leibler

(KL) divergence between qφ(z|x) and the intractable pθ(z|x). Due to the aforemen-

tioned non-negativity, the ELBO is a lower bound on the log-likelihood of the data,

which is the reason why the ELBO is commonly used as an optimisation objective

of VAEs. The two terms composing the ELBO in Equation 2.14 are the conditional

distribution pθ(x|z) of the generative network and the KL divergence between the

approximation qφ(z|x) and the prior p(z). The former can be conveniently compute

using sampling techniques, while the latter has a closed-form solution when ad-

opting Gaussian distributions for the encoder and the prior, resulting in an overall

tractable and differentiable lower bound.

We can rewrite Equation 2.14 by omitting the last term as follows:
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log pθ(x) ≥ Lθ,φ(x) = Eqφ(z|x) [ log pθ(x|z)]− DKL(qφ(z|x) || pθ(z)) (2.15)

From Equation 2.15, we notice that maximising the ELBO with regard to the para-

meters θ and φ will concurrently maximise the marginal likelihood and minimise

the KL divergence between the approximation qφ(z|x) and pθ(z|x), resulting in a

model better fitting the data with an improved qφ(z|x) approximation.

This is the core idea of the variational autoencoder: it maximises the ELBO as

a proxy to maximise the likelihood of data, while simultaneously regularising the

process with a constraint on the form of the approximate posterior through the KL

divergence term.

An efficient approach for optimising the ELBO with regard to θ and φ is using

stochastic gradient descent (SGD). The overall ELBO results from the sum of the

ELBO on the single N samples:

θ∗φ∗ = arg max
θ,φ

N

∑
n=1
L(xn, θ, φ). (2.16)

We can then simply derive unbiased gradients of the ELBO with regard to the

generative model parameters θ as follows:

∇θLθ,φ(x) = ∇θEqφ(z|x) [log pθ(x, z)− log qφ(z | x)] (2.17)

= Eqφ(z|x)
[
∇θ
(
log pθ(x, z)− log qφ(z | x)

)]
(2.18)

' ∇θ
(
log pθ(x, z)− log qφ(z | x)

)
(2.19)

= ∇θ (log pθ(x, z)) (2.20)

with z being, in this particular case, a random sample from qφ(z|x).
Unbiased gradients for the inference network instead are not obvious to derive, since

in this case the distribution qφ(z|x) cannot be easily derived being a function of φ:

∇φLθ,φ(x) = ∇φEqφ(z|x) [log pθ(x, z)− log qφ(z | x)] (2.21)

6= Eqφ(z|x)
[
∇φ

(
log pθ(x, z)− log qφ(z | x)

)]
(2.22)

We cannot compute the gradient, and thus perform the backpropagation algorithm,

for a process including random sampling. An effective workaround consists of

operating a change of variables, known in the literature as reparameterisation trick

[84, 146], which moves the sampling out to an input layer. We examine as an
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Figure 2.2: The Variational Autoencoder architecture highlighting the reparameteriza-
tion trick [84].

example the commonly adopted Gaussian encoder qφ(z|x) = N (z; µ, diag(σ2)),

that uses the neural encoder to determine the set of µ and σ. Before applying the

reparameterization, it is defined as:

(µ, log σ) = NeuralEncoderφ(x) (2.23)

qφ(z|x) = N (z;µ, diag(σ)) = ∏
i
N (zn; µn, σ2

n) (2.24)

with N being the PDF of the univariate Gaussian distribution. Then, applying the

reparameterization:

ε ∼ N (0, I) (2.25)

(µ, log σ) = NeuralEncoderφ(x) (2.26)

z = µ+ σ � ε (2.27)

with � denoting the element-wise product. This leads to a new posterior qφ(z|x)
in terms of εn rather than zn, and therefore differentiable [84]. Figure 2.2 depict

the variational autoencoder architecture with the highlighted reparameterization

mechanism.

2.2.2 A Simple Neural Topic Model

We now introduce a basic neural topic modelling (NTM) architecture, as proposed

in Srivastava et al. (2017), describing how the VAE framework can be adopted

to explicitly infer topics within documents. In the wake of this work, many re-

cent variants have been proposed to incorporate more sophisticated priors [118],

adopting different metrics [125], to allow supervision [22], or using graph-based
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methods [205].

In terms of priors, rather than using a Dirichlet prior as in LDA, in the NTM

we employ a logistic normal prior on θ to facilitate the inference [155]. Then, for a

document d, we draw the latent variable zd from a multivariate normal, transformed

via a softmax function to lie on the simplex.

The generative story is described in the following:

1. For each document d ∈ {1,...,D}:

(a) Draw a document-topic distribution from a logistic normal prior,

(µφ, log σφ) = NeuralEncoderφ(x)

zd ∼ N (µφ, σ2), θd = fφ(zd)

(b) For each word token wi ∈ d:

i. Draw the word value wi from the topic-word distribution,

wi,d ∼ p(w | θi)

(c) Generate labels, if available,

yd ∼ p(y | fy(zd))

where fφ and fy are MLPs, and θd is a K-dimensional latent topic representation

for d. The probability of a word wi,j can be parametrised by a softmax function or

another MLP.

The inference process follows what we previously described for the VAE in-

ference. In particular, each document d is assumed to have a latent representation

zd, which can be interpreted as its membership to each topic, and can be inferred

through the VAE sampling process [84]. We assume a variational approximation

to the posterior qφ(zd,wd,yd)), and aim to minimise the KL divergence with the

true posterior p(zd,wd,yd)), with φ variational parameters of a neural model to be

optimised. Following analogous manipulations to the one described in §2.2.1, we

can derive the ELBO [22, 84]:

log pz(d) = Eqφ(zd|d,yd)

[
D

∑
d

log p(wi,d | zd)

]
+ Eqφ(zd|d,yd) [ log p(yd | zd)]

− DKL(qφ(zd | d,yd) || p(zd)) (2.28)

The normal prior on z takes the form of a network which outputs two vec-

tors, µd = fµ(d,yd) and σ2 = fσ(d,yd), for a resulting approximate posterior
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qφ(zd | d, yd) = N (µφ, σ2).

The resulting neural computations [118, 155] are:

πd = fe([Wxxd;Wyyd; ]) (2.29)

µd =Wµπd + βµ (2.30)

log σ2
d =Wσπd + βσ (2.31)

where xd is the document-term vector with the word wi frequency within the

document d, and fe a multilayer perceptron. The weights and bias matrices and the

fe parameters are part of the variational parameters φ being optimised.

The intractable expectations in Equation 2.28 needs to be approximated, and to

preserve the differentiability with respect to φ, we apply the reparameterization

trick [84]:

ε(s) ∼ N (0, I) (2.32)

z(s)d = µd + σd � ε(s) (2.33)

Thus, substituting the Monte Carlo approximation computed for a single sample of

ε in Equation 2.28:

log pz(d) ≈
D

∑
d

log p(wi,d | z
(s)
d )

+ log p(yd | z
(s)
d ) (2.34)

− DKL(qφ(zd | d,yd) || p(zd)) (2.35)

This approximation can be optimised using stochastic gradient descent with respect

to the model’s parameters specified, with the KL divergence in Equation 2.35 that

can be computed in a closed form.

2.3 Distributed Language Representations

In this section, we briefly review the foundations and current works in modelling

word and language distributed representations. We first analyse some of the most

used word embedding methods, which have led to the development of a flourishing
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line of research on neural architectures for text analysis. Then, we introduce the deep-

contextualised language models, a recently developed family of neural language

models aiming at generating word representations depending entirely on the specific

context surrounding them.

2.3.1 Word Embedding

In word embeddings, a continuous vector is used to encode the word meaning through

the context in which the word is likely to occur; those word vectors yield a low-

dimensional vector space whose dimensions can be interpreted as latent features

describing syntactical or semantic properties. These word embedding methods

are based on the so-called ’distributional hypothesis’ stating that word semantics is

implicit in the word co-occurrences, so that words occurring in similar contexts

would tend to share a similar meaning [45, 61].

Traditional word distributional representations had been devised relying on the

construction of the pointwise mutual information (PMI) matrix [30] and its factorisation

via singular value decomposition (SVD) [34]. PMI approaches build word matrices

computing the pointwise mutual information between a word wi and a set of context

words (i.e. a set of words that frequently appeared within a context window). A

subsequent variant was proposed, called positive-PMI (PPMI) [21], that simply

replaces all the negative values in the PMI matrix with 0. As a result, PPMI was

proven to outperform PMI on detecting word semantic similarities on several tasks

[92]. A low-dimensional approximation of the PPMI matrix can be computed by

applying a truncated singular value decomposition (SVD), yielding a more compact

representation of word correlations. This can be interpreted as a generalisation of

Latent Semantic Analysis (LSA) [34] where the PPMI matrix replaces the original

term-document matrix [92].

Although those studies have proven the capability of encoding syntactic and

semantic properties, the generation of word embeddings was too computationally

expensive for large corpora, hindering their applications and their capability to

encoded rich language statistics for a wide vocabulary. The neural-based methods

were groundbreaking alternatives thanks to their efficiency in modelling text. Word

embeddings, based on neural models, were originally introduced by Bengio et

al. (2003) and Collobart et al. (2008), but were then widely adopted following a

study by Mikolov et al. 2013. In particular, they introduced a novel design, known

as the skip-gram with negative-sampling training method (SGNS): an efficient neural

embedding algorithm to compute word embeddings widely popularised by the
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word2vec software [121, 122]. This method overcomes the heavy computations

required to scale to a higher number of documents by boosting the production of a

vocabulary representation through neural representations [7, 175]; once generated,

the vector representations can be not only inspected to discover word relations

but also fed into new neural models as pretrained embeddings [10], allowing a

smooth and cost-efficient methodology to incorporate knowledge into new models.

Additional analysis showed that word2vec is implicitly factorising a PMI matrix

[53] and that conventional approaches could achieve qualitative results comparable

with word2vec when hyper-parameters are properly tuned [92], even though the

required time complexity still remains prohibitively high. Following word2vec,

several other word embeddings were proposed. One is GloVe [133], combining

the advantage of both matrix factorisation and local context window approaches.

Another one is FastText, proposed by Joulin et al. (2017). Although it achieves

performance comparable with word2vec on semantic tasks, it is able to train word

embeddings more efficiently and with greater generalisation capabilities. It is based

on a hierarchical classifier that treats each word as made of character n-grams,

yielding word vectors arising from the composition of n-gram representations. One

of the advantages of this approach is a greater generalisation to out-of-vocabulary

(OOV) words which, despite having never been seen before by the algorithm, can

be represented leveraging some known prefixes or suffixes used as a clue of the

word meaning.

2.3.2 Contextualized Language Models

The subsequent introduction of the “Transformer” architecture [169] has led to

the development of state-of-the-art contextualized language models (LMs), such as

BERT [36]. These new family of language models [141, 142, 193] is based on the

Transformer architecture, a highly-parallelizable alternative to recurrent encoders

(such as Long Short-Term Memory network [68]), with t introduction of novel

objectives to bootstrap the training process (e.g. masked language model).

Compared to the Recurrent Neural Networks (RNN), the “Transformer” ar-

chitecture relies solely on attention mechanisms, and uses an absolute-position

embedding to mark words and keep track of their positions. It consists of mul-

tiple layers, where each layer contains multiple attention heads (e.g., BERT-Base

has 12 layers with 12 attentions). For an input sequence of N tokens, an attention

head takes as input a sequence of vectors h = [h1, ..., hN ]; then, each vector hn is

transformed via separate linear transformations into query qn, key kn and value vn
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vectors. For all pairs of words, each head computes the attention weights α through

a dot product (normalised with softmax) between the query and key vectors. Finally,

the resulting output on of the attention head is defined as:

O = softmax(
QKT
√

dk
)V (2.36)

with dk being the dimensionality of the key vectors, used as normalising factor to

scale the magnitude of the dot product and to ease the gradient flow. The resulting

attention weights O will regulate to what extent the representation for the current

token is going to be influenced by every other token.

BERT: Bidirectional Encoder Representations from Transformers

BERT is a neural language model, pretrained on large English corpora, such as

the BookCorpus [206] and English Wikipedia with over 3.3 billion tokens, on two

language tasks. One is the masked language modelling task, in which the model tries

to predict the words that have been masked out in an input text. The other task

consists of the next sentence prediction, where the model tries to predict whether a

sentence follows a given sentence, or is instead just a random combination. Once the

model has been pretrained in a semi-supervised manner, it can be further trained (i.e.

fine-tuned) using labelled data; an approach that has led to the current state-of-the-art

results across a wide variety of tasks [46, 91, 105, 159, 186, 196].

During the preprocessing of the data, BERT adds a special token [CLS] at the

beginning of its input and another one, [SEP], to the end. [SEP] can be further used

to separate multiple texts within the same input: this is the case, for example, in the

reading comprehension task, with the input consisting of a question and its related

contest separated by [SEP]. These special tokens do not have just a formatting

purpose but assume a rather relevant role during the training, for example, in the

sentiment analysis tasks, where the [CLS] token is commonly used to perform the

final classification.

Masking Strategies

In the wake of BERT, several new language models have been proposed, adopting

different masking strategies.

As previously mentioned, BERT is a masked language model (MLM) since it

drives the training process following a strategy that randomly replaces a predefined
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proportion of words with a special [MASK] token, which then need to be predicted

based just the remaining context. BERT first chooses 15% of tokens uniformly at

random, and swaps 10% of them into random tokens (resulting in an overall 1.5%

of the initial tokens randomly swapped). This introduces a rather limited amount

of noise with the aim of making the predictions more robust to trivial associations

between the masked tokens and the context. While another 10% of the selected

tokens are kept without modifications, the remaining 80% of them are replaced with

the [MASK] token.

Several alternative strategies have been recently proposed with different impacts

on the final performance. RoBERTa [104] introduced a slightly different training

procedure: it removed the next sentence prediction task and showed that perform-

ance did not decrease, and at times even improved on some downstream tasks. The

authors also introduced a dynamic masking where every time a sequence is fed to

the model a different masking pattern is generated, compared to the static approach

followed in the original BERT implementation, where each sample was masked

once during preprocessing. These adjustments allowed a longer training, employing

much larger corpora: compare to BERT, RoBERTa is trained on the BookCorpus

[206], English Wikipedia, the CommonCrawl News dataset [104], the OpenWebText

[52] and the Stories corpus [163].

In SpanBERT, Joshi et al. (2020) proposed to mask and predict spans rather than

tokens. ERNIE [201] instead is focused on masking phrases and named entities to

improve the structural knowledge encoded. Some of these techniques have been

combined in the T5 model [142], an encoder-decoder transformer-based model

sharing the same model, objective, and training process across multiple NLP tasks,

all reframed as “text-to-text” problems: document summarisation, sentiment classi-

fication, question answering, machine translation and so on. Although like BERT,

T5 uses a denoising approach for the masking strategy, it masks multiple tokens,

somehow similarly to what was proposed in SpanBERT. Along with T5, Raffel et

al. (2020) introduced a novel dataset, named Colossal Clean Crawled Corpus (C4), a

cleaned version of the CommonCrawl dataset [104] of approximately ∼ 700 GB of

text.

An alternative masking strategy is based on the permutation language modelling

(PLM) task, proposed to train the XLNet model [193]. The aim of the permutation

language model is to pretrain the LM without the need to rely on data corruption, i.e.

to use a [MASK] token which though does not appear during the fine-tuning process.

To avoid this discrepancy between the pretraining and fine-tuning phases, it instead

minimises the expected log-likelihood of a sequence with regard to all possible
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permutations of the sequence order. In particular, for an input sentence of N tokens,

there are N! different orders that can be used to optimise the objective. This is

implemented by preserving the original sequence order with the related positional

embedding, while sampling a different factorisation order for each iteration, and

then adjusting the Transformers attention mask to apply such permutations and

perform the relative predictions.

Model Specialization

A wide spectrum of specialised language models has been recently developed

[8, 23, 91, 196] due to the possibility to process a large variety of data to fine-tune

the models towards different domains and tasks.

Among the tasks where contextualized language models has had a remarkable

impact, we have question answering [143], machine reading comprehension [159],

named entity recognition (NER) [46], sentiment analysis [196] and so on. There have

also been a few attempts in combining BERT with neural topic models, leading to

TopicBERT [25]. This aims at reducing the number of attention computations re-

quired by leveraging the topic signal provided from a neural topic model, preserving

document classification performance on-par with BERT with a 40% speed-up in

time requirements. In another work, proposing t-BERT [130], the authors considered

the sentence BERT encoding jointly with its topic distribution, thus improving the

topic-awareness of the model and, in turn, its document classification performance.

In terms of specialized domain, BERT has been adapted to deal with financial

and legal documents [23, 192], with patents [90]], code [158] tweets [128], and several

others [186]. Particular attention has been devoted to the medical domain, where

different corpora and tasks still require different adaptation techniques. BioBERT

[91] is a biomedical language model based on the BERT-Base variant [36], with

additional pretrain on biomedical documents from PubMed and PMC collections,

and uses the same training settings adopted in BERT. SciBERT [8] follows the

BERT’s masking strategy to pretrain the model from scratch using a scientific corpus

composed of papers from Semantic Scholar [4]. Out of the 1.14M papers used, more

than 80% belong to the biomedical domain. They both showed state-of-the-art result

compared to the non-BERT SOTA on several tasks, as Named Entity Recognition,

Question Answering, and Relation Extraction [8, 91]. ClinicalBERT [3], it is also

based on the BERT-Base variant [36], but it is more focused on clinical documents.

In particular, it is pretrained using the clinical notes from the MIMIC-III dataset

[76]. BioMed-RoBERTa [60] is instead based on RoBERTa-Base [104] using a corpus
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of 2.27M articles from the Semantic Scholar dataset [4]. BlueBERT [132], follows

an approach rather similar to the one described in BioBERT, built on top of the

BERT-Base variant, but then pretrained on PubMed abstracts as well as clinical notes

from the MIMIC-III dataset [76].

2.4 Text Processing for Medical Documents

In what follows, we briefly depict some of the main linguistic features characterising

documents of technical domains. Although most of the features we highlight are

tailored for documents in the medical domain, they reflect features shared among

domain-specific text, such as patent, legal and technical documents, and so on. Most

of the faced issues are common among several domains and the devised solutions

can be easily adopted in different contexts. The medical domain is also one of the

most challenging scenarios (i.e. abbreviations, medical jargon, relevant a priori

knowledge, etc.) and thus an optimum benchmark for natural language models.

Although many studies have been conducted in analysing unstructured text

data [16, 36], documents in technical domains are still difficult to be analysed (e.g.

medical reports, patents, legal documents, etc.) [62, 95]. Corpora of these domains

are frequently characterised by technical jargon, abbreviations and multi-word

phrases, i.e. concepts unfolded across several words rather than a single word.

Clinical notes are a prominent example of this family as medical concepts are often

expressed in terms of multi-word phrases. For example, the phrases “white blood cell”

or “blood sugar” would lose their meaning if decomposed as unigrams; the word cell

and sugar might be wrongly put under the same topic because of the shared blood

term.

2.4.1 Challenging Features of Technical Documents

In the following, we summarise some of the challenges characterising the task of

processing unstructured text in technical domains:

Compositional semantics: multi-word phrases are often used in technical docu-

ments to refer to a specific concept. For example, in the medical domain,

phrases like “blood glucose” or “white blood cell” would lose their meaning if

split into word unigrams. However, because of the computational complexity

involved, many models still rely entirely on the bag-of-words assumption by

ignoring the word order.
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Technical jargon: technical documents, such as medical or legal records, contain a

large number of jargon and terms rarely used out of those particular contexts.

This entails a lack of statistics affecting language models that, trained on a

different and possibly more general domain, perform very poorly on these

corpora. In addition, medical reports use a large dictionary of Greek and Latin

words entailing Latin stems and inflexions (e.g. basophilia, Synechococcus

elongatus) that could be addressed taking into account the morphological

structures of words and phrases, and needs to be processed differently when

automatically performing stemming.

Abbreviations: medical documents contain a wide variety of abbreviations, ac-

ronyms and neologism. Those terms not only are domain-specific but often

they can be expanded in more than one concept depending on the context at

hand (e.g. SBP can be expanded both as “spontaneous bacterial peritonitis” or

“systolic blood pressure”). Moreover, many abbreviations are expressed through

punctuation (e.g. “p.o.” which means “by mouth”) that needs to be preserved

when preprocessing data.

Polysemy: the same term can be used to refer to different concepts depending on

the context. Some terms have a different meaning based on the global context

in which they are used; for example, the word “column” can refer to a pillar or

to a spine. Yet even within one specific domain, the same word can completely

change its meaning; for example, the word “inflammation” can have at least

five different meanings depending on the context in which it occurs [140].

Lack of structure: clinical notes, for instance, are free-text where physicians sum-

marised their analyses. However, often they don’t have a fixed structure, and

although some notes are divided into sections, there is no standardisation.

Data availability: some of the current most effective models [23, 90, 91] need an

intensive pretraining to work properly, using a large amount of data to then

be possibly fine-tuned on the domain of interest. However, technical docu-

ments tend to be expensive to produce, requiring highly specialised staff, and

they might contain sensitive data about people, events or institutions; hence,

institutions owing large datasets refrain from releasing their data, and to date,

in the medical domain, there are few publicly available medical text datasets

that are suitable for pretraining models for specific tasks [76, 164, 177, 203].
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Chapter 3

TDAM: a Topic-Dependent
Attention Model

Chapter Abstract

In this chapter, we introduce a topic-dependent attention model (TDAM) for

sentiment classification and topic extraction. TDAM assumes that a global topic

embedding is shared across documents and employs an attention mechanism to

derive local topic embedding for words and sentences. These are subsequently

incorporated in a modified Gated Recurrent Unit (GRU) for sentiment classi-

fication and extraction of topics bearing different sentiment polarities. Those

topics emerge from the words’ local topic embeddings learned by the internal

attention of the GRU cells in the context of a multi-task learning framework.

We first introduce the related literature, then the hierarchical architecture, along

with the new GRU unit. Finally, the experiments conducted on users’ reviews

demonstrate classification performance on a par with state-of-the-art methodolo-

gies in terms of sentiment classification and topic coherence for supervised topic

extraction. In addition, our model is able to extract coherent aspect-sentiment

clusters despite using no aspect-level annotations for training.

3.1 Introduction

In recent years, attention mechanisms in neural networks have been widely used in

various tasks in Natural Language Processing (NLP), including machine translation

[5, 106, 169], image captioning [187], text classification [26, 107, 194, 204] and reading
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Figure 3.1: Attention weights from the Topic-Dependent Attention Model (TDAM)
and Hierarchical Attention Network (HAN) [194]. TDAM highlights and gives more
relevance to both sentiment and topical words.

comprehension [63, 180]. Attention mechanisms are commonly used in models for

processing sequence data that instead of encoding the full input sequence into a

fixed-length vector learn to “attend” to different parts of the input sequence, based

on the task at hand. This is equivalent to giving the model access to its internal

memory which consists of the hidden states of the sequence encoder. Typically soft

attention is used which allows the model to retrieve a weighted combination of all

memory locations.

One advantage of using attention mechanisms is that the learned attention

weights can be visualised to enable an intuitive understanding of what contributes

the most to the model’s decision. For example, in sentiment classification, the

visualisation of word-level attention weights can often give us a clue as to why a

given sentence is classified as positive or negative. Words with higher attention

weights can sometimes be indicative of the overall sentence-level polarity (for

example, see Figure 3.1). This inspires us the development of a model for the

extraction of polarity-bearing topics based on the attention weights learned by a

model.

However, simply using the attention weights learned by the traditional attention

networks such as the Hierarchical Attention Network (HAN) [194] would not give

good results for the extraction of polarity-bearing topics, since in these models the

attention weight of each word is calculated as the similarity between the word’s

hidden state representation with a context vector shared across all the documents.

There is no mechanism to separate words into multiple clusters representing polarity-

bearing topics.

Therefore, we propose a novel Topic-Dependent Attention Model (TDAM)1

in which a global topic embedding (i.e., a matrix with K topic vectors) is shared

1https://github.com/gabrer/topic_dependent_attention_model
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After one cycle the crockery is still dirty, it doesn’t clean the plates even at full power.

Our children didn’t manage to clean their plates!  Plenty of food!
R1

R2

Figure 3.2: An example of topics bearing polarities.

across all the documents in a corpus and captures the global semantics in multiple

topical dimensions. When processing each word in an input sequence, we can

calculate the similarity of the hidden state of the word with each topic vector to

get the attention weight along a certain topical dimension. By doing so, we can

subsequently derive the local topical embedding for the word by the weighted

combination of the global topic embeddings, indicating the varying strength of the

association of the word with different topical dimensions. We use Bidirectional

Gated Recurrent Unit (BiGRU) to model the input word sequence; we modify the

GRU cells to derive a hidden state for the current word which simultaneously takes

into account the current input word, the previous hidden state and local topic

embedding.

Our proposed formulation of topical attention is somewhat related to the con-

sciousness prior proposed in Bengio (2017) in which the conscious state value

corresponds to the content of a thought and can be derived by a form of attention

selecting a “small subset of all the information available” from the hidden states

of the model. Analogously, we first assume the corpus is characterised by a global

topic embedding. Then, we learn how to infer the local topic mixture for each

analysed word/sentence combining hidden states and global topic embedding with

attention.

We describe TDAM and present its application to sentiment classification in

reviews by a hierarchical and multi-task learning architecture. The aim is to evaluate

a review’s polarity by predicting both the rating and the domain category of the

review (e.g. restaurant, service, health, etc.). Often these reviews contain statements

that can be fully specified only by the contextual topic. To illustrate, in Figure 3.2

we show two review extracts, one for a restaurant and another for a dishwasher.

Interestingly, the same expression “not to clean the plates” can be regarded as pos-

itive for food while it bears a negative polarity for kitchen equipment. Thus, it is

important to jointly consider both topic and sentiment shared over words for better

sentiment analysis.

In particular, we make the following contributions:
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• We design a neural architecture and a novel neural unit to analyse users’ re-

views while jointly taking into account topics and sentiments. The hierarchical

architecture makes use of a global topic embedding which encodes the shared

topics among words and sentences; while the neural unit employs a new

internal attention mechanism that leverages the global topic embeddings to

derive a local topic representation for words and sentences.

• We assess the benefit of multi-task learning to induce representations that

are based on documents’ polarities and domains. Our experiments show

that combining the proposed architecture with the modified GRU unit is an

effective approach to exploit the polarity and domain supervision for accurate

sentiment classification and topic extraction.

• As a side task to evaluate the sentence representations encoded by TDAM,

we extract aspect-sentiment clusters using no aspect-level annotations during

the training; then, we evaluate the coherence of those clusters. Experiments

demonstrate that TDAM achieves state-of-the-art performance in extracting

clusters whose sentences share coherent polarities and belong to common

domains.

To evaluate the performance of our model, we conduct experiments on both Yelp

and Amazon review datasets (see §3.4.1). We compare the sentiment classification

performance with state-of-the-art models (§3.5). Then, visualisation of topical

attention weights highlights the advantages of the proposed framework (§3.5.2).

We also evaluate how meaningful are the inferred representations in term of topic

coherence (§3.5.3) and based on their capability to cluster sentences conveying a

shared sentiment about a common aspect (§3.5.4).

3.2 Related Work

Our work is related to three lines of research.

3.2.1 Hierarchical structure for text classification

Many works have recently proposed to incorporate prior knowledge about the

document structure directly into the model architecture to enhance the model’s

discriminative power in sentiment analysis. A hierarchical model incorporating

user and product information was first proposed by Tang et al. (2015) for rating

prediction of reviews. Similarly, Chen et al. (2016) combined user and product
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information in a hierarchical model using attention [5]; here, attention is employed

to generate hidden representations for both products and users. Yang et al. (2016)

used a simple and effective two-level hierarchical architecture to generate document

representations for text classification; words are combined in sentences and in

turn, sentences into documents by two levels of attention. Liu et al.( 2018) further

empowered the structural bias of neural architectures by embedding a differentiable

parsing algorithm. This induces dependency tree structures used as additional

discourse information; an attention mechanism incorporates these structural biases

into the final document representation. Yang et al. (2019) introduced Coattention-

LSTM for aspect-based sentiment analysis which designs a co-attention encoder

alternating and combining the context and target attention vectors of reviews.

3.2.2 Combining topics with sequence modelling

There has been research incorporating topical information into the sequence model-

ling of text or use variational neural inference for supervised topic learning. Dieng et

al. (2017) developed a language model combining the generative story of Latent Di-

richlet Allocation (LDA) [16] with the word representations generated by a recurrent

neural network (RNN). Stab et al. (2018) proposed incorporating topic information

into some gates in Contextual-LSTM, improving generalisation accuracy on argu-

ment mining. Abdi et al. (2019) proposed to directly incorporate word and sentence

level features about contextual polarity, type of sentence and sentiment shifts by en-

coding prior knowledge about part-of-speech (POS) tagging and sentiment lexicons.

Kastrati et al. (2019) enhanced document representations with knowledge from an

external ontology and encoded documents by topic modelling approaches. Jin et

al. (2018) proposed to perform topic matrix factorisation by integrating both LSTM

and LDA, where LSTM can improve the quality of the matrix factorisation by taking

into account the local context of words. Card et al. (2018) proposed a general neural

topic modelling framework that allows incorporating metadata information with a

flexible variational inference algorithm. The metadata information can consist of

labels driving the topic inference and used for the classification task, analogous to

what proposed in a Bayesian framework by Blei et al. (2008) with supervised Latent

Dirichlet Allocation (S-LDA).

3.2.3 Multi-task learning

Several variants of multi-task learning with neural networks have been recently used

for sentiment analysis. Wu et al. (2016) proposed a multi-task learning framework for
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microblog sentiment classification which combines common sentiment knowledge

with user-specific preferences. Liu et al. (2016) employed an external memory to

allow different tasks to share information. Liu et al. (2017) proposed an adversarial

approach to induce orthogonal features for each task. Chen et al. (2018) applied

a different training scheme to the adversarial approach to minimise the distance

between feature distributions across different domains. Zhang et al. (2018) proposed

to use an embedded representation of labels to ease the generation of cross-domain

features. Zheng et al. (2018) proposed to share the same sentence representation

for each task which in turn can select the task-specific information from the shared

representation using an ad-hoc attention mechanism. Wang et al. (2018) applied

multi-task learning for microblog sentiment classification by characterising users

across multiple languages.

3.3 Topic-Dependent Attention Model

We illustrate the architecture of our proposed Topic-Dependent Attention Model

(TDAM) in Figure 3.3, which is a hierarchical and multi-level attention framework

trained with multi-task learning.

Concretely, at the word sequence level (the bottom part of Figure 3.3), we add a

word-level topic attention layer that computes the local topic embedding of each

word based on the global topic embedding and the current hidden state. Such word-

level local topic embedding indicates how strongly each word is associated with

every topic dimension, which is fed into the Bi-GRU cell in the next time step for

the derivation of the hidden state representation of the next word. Bi-GRU is used

to capture the topical contextual information in both the forward and backward

directions. We then have a word attention layer that decides how to combine

the hidden state representations of all the constituent words in order to generate

the sentence representation. At the sentence level, a similar two-level attention

mechanism is used to derive the document representation, which is fed into two

separate softmax layers for predicting the sentiment class and the domain category.

Each of the key components of TDAM is detailed below.

3.3.1 Topic-Dependent Word Encoder

Given a word sequence xi = (xi1, . . . , xiT), where xit ∈ Rd is a word embedding

vector with d dimensions, we use Bi-GRU to encode the word sequence. The

hidden state at each word position, hit, is represented by the concatenation of both
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Figure 3.3: The Topic-Dependent Attention Model (TDAM) architecture.

forward and backward hidden states, hit = [
−→
hit ,
←−
hit ], which captures the contextual

information of the whole sentence centred at xit.

We assume there are K global topic embeddings shared across all documents,

where each topic has a dense and distributed representation, ek ∈ Rn, with k =

{1, ..., K}, which is initialised randomly and will be updated during model learning.

At each word position, we can calculate the word-level topic weight by meas-

uring the distance between the word vector and each global topic vector. We first

project hit using a one-layer MLP and then compute the dot products between the

projected hit and global topic vectors ek, k = {1, ..., K} to generate the weight of local

topic embedding for the corresponding word position2:

uit = tanh(Wwhit) (3.1)

αk
it = softmax(uᵀ

itek) (3.2)

2We drop the bias terms in all the equations for simplicity.
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where Ww ∈ Rn×n and k ∈ {1, ..., K}. The local topic embedding is then:

qit =
K

∑
k=1

αk
it ⊗ ek (3.3)

with qit ∈ Rn, αit ∈ RK. Here, ⊗ denotes the multiplication of a vector by a scalar.

We add the local topic embedding into the GRU cell to rewrite the formulae as

follows:

rt = σ(Wrxt + Urht−1 + Vrqt−1) (3.4)

zt = σ(Wzxt + Uzht−1 + Vzqt−1) (3.5)

ĥt = tanh(Whxt + rt � (Uhht−1 + Vhqt−1)) (3.6)

ht = (1− zt)� ht−1 + zt � ĥt (3.7)

where σ(·) is the sigmoid function, all the W, U and Vs are weight matrices which

are learned in the training process, � denotes the element-wise product. The reset

gate rt controls how much past state information is to be ignored in the current

state update. The update gate zt controls how much information from the previous

hidden state will be kept. The hidden state ht is computed as the interpolation

between the previous state ht−1 and the current candidate state ĥt.

In the above formulation, the hidden state in the current word position not only

depends on the current input and the previous hidden state, but also takes into

account the local topic embedding of the previous word. Since some of those words

may be more informative than others in constituting the overall sentence meaning,

we aggregate these representations with a final attention mechanism:

vit = tanh(Wvhit) (3.8)

βit = softmax(vᵀitvw) (3.9)

si =
t

∑
t=1

βit ⊗ hit (3.10)

where βit is the attention weight for the hidden state hit and si ∈ Rn is the sentence

representation for the ith sentence.

3.3.2 Sentence Encoder

Given each sentence representation si in document d where i = {1, ..., dL} and dL

denotes the document length, we can form the document representation using the
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proposed topical GRU in a similar way. For each sentence i, its context vector is

hi = [
−→
hi ,
←−
hi ], which captures the contextual information of the whole document

centred at si.

We follow an approach analogous to the topic-dependent word encoder and

generate the local topic embedding for ith sentence:

ui = tanh(Wshi) Ws ∈ Rn×n (3.11)

αk
i = softmax(uᵀ

i ek) k ∈ {1, ..., K} (3.12)

qi =
K

∑
k=1

αk
i ⊗ ek qi ∈ Rn (3.13)

where qi is local topic embedding for sentence i. We add the local topic embedding

into the GRU cell as in Eq. 3.4-3.7.

Analogously to the word encoder, those sentences contribute differently to

the overall document meaning; thus, we aggregate these representations with an

attention mechanism similar to the final attention mechanism described in Section

3.3.1.

3.3.3 Multi-Task Learning

Finally, for each document d, we feed its representation md into the task-specific

softmax layers, each one defined as follows:

pd = softmax(Wdmd) Wd ∈ RC×n (3.14)

where C denotes the total number of classes. The training loss is defined as the total

cross-entropy of all documents computed for each task:

Ltask = −
D

∑
d=1

C

∑
c=1

yd,c log pd,c (3.15)

where yd,c is the binary indicator (0 or 1) if class label c is the correct classification for

document d. We compute the overall loss as a weighted sum over the task-specific

losses:

Ltotal =
J

∑
j=1

ωjL(ŷ(j), y(j)) (3.16)

where J is the number of tasks, ωj is the weight for each task, y(j) are the ground-

truth labels in task j and ŷ(j) are the predicted labels in task j.
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Dataset Yelp18 Amazon

Sentiment classes 3 3
Domain categories 5 5
Documents 75,000 75,000
Average #s 9.7 6.7
Average #w 15.9 16.7
Vocabulary ∼ 85× 103 ∼ 100× 103

Tokens ∼ 11.7× 106 ∼ 8.5× 103

Table 3.1: Dataset statistics with #s number of sentences per document and and #w
of words per sentence.

3.3.4 Topic Extraction

Once our model is trained, we can feed the test set and collect the local topic

embedding qit associated to each word (Eq. 3.3), collecting a set of n-dimensional

vectors for each occurrence of words in text. This mechanism can be interpreted

analogously to models generating deep contextualised word representations based

on language model, where each word occurrence has a unique representation based

on the context in which it appears [36, 138].

The local representation qit in our model results from the interaction with the

global topic embeddings, which encode the word co-occurrence patterns charac-

terising the corpus. We posit that these vectors can give us an insight about the

topic and polarity relations among words. Therefore, we first project these rep-

resentations into a two-dimensional space by applying the t-SNE [167]; then, the

resulting word vectors are clustered by applying the K-means algorithm. We create a

fixed number of clusters k, whose value is tuned by maximising the topic coherence

for k ∈ [50, 100, 200]. We use the distance of each word to the centroid of a topic

cluster to rank words within a cluster. Similarly, we cluster sentences based on

the representation resulting from the sentence-level topical attention layer. This

encoding synthesises both the main topic and polarity characterising the sentence.
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3.4 Experimental Setup

3.4.1 Datasets

We gathered two balanced datasets of reviews from the publicly available Yelp Data-

set Challenge dataset in 2018 and the Amazon Review Dataset3 [115], preserving the

meta-information needed for a multi-task learning scenario. Each review is accom-

panied with one of the three ratings, positive, negative or neutral and comes from five

of the most frequent domains4. Those ratings are the human-labelled review scores

regarded as gold standard sentiment labels during the experimentation. For each

pair of domains and ratings, we randomly sample 3,000 reviews, collecting a total

of 75,000 reviews. To make it possible for others to replicate our results, we make

both the dataset and our source code publicly available5. Table 3.1 summarises the

statistics of the datasets.

3.4.2 Baselines

We train our proposed TDAM with multi-task learning to perform sentiment and

domain classification simultaneously. We compare the performance of TDAM with

the following baselines on both sentiment classification and topic extraction:

• BiLSTM [68] or BiGRU [29]: Both models consider a whole document as a

single text sequence. The average of the hidden states is used as features for

classification.

• Hierarchical Attention Network (HAN) [194]: The hierarchical structure of

this attention model learns word and sentence representations through two

additive attention levels.

• Supervised-LDA (S-LDA) [116]: It builds on top of the latent Dirichlet alloc-

ation (LDA) [16] adding a response variable associated with each document

(e.g. review’s rating or category).

• SCHOLAR [22]: A neural framework for topic models with metadata incorpor-

ation without the need of deriving model-specific inference. When metadata

are labels, the model infers topics that are relevant to those labels.

3http://jmcauley.ucsd.edu/data/amazon/
4For Yelp: restaurants, shopping, home services, health & medical and automotive. For Amazon: Pet

supplies, electronics, health personal care, clothes shoes and home and kitchen.
5https://github.com/gabrer/topic_dependent_attention_model
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The baselines, such as BiLSTM, BiGRU and HAN, are additionally trained with

multi-task learning, similar to the setup of our model.

3.4.3 Parameter Settings

For our experiments, we split the dataset into training, development and test set in

the proportion of 80/10/10 and average all the results over 5-fold cross-validation.

We perform tokenisation and sentence splitting with SpaCy6. We do not filter any

words from the dataset during the training phase; although we use the default pre-

processing for models like S-LDA and SCHOLAR. Word embeddings are initialised

with 200-dimensional GloVe vectors [133]. We tune the models’ hyperparamet-

ers on the development set via a grid search over combinations of learning rate

λ ∈ [0.01, 0.1], dropout δ ∈ [0, 0.6] and topic vector’s size γt ∈ [50, 200]. Matrices

are randomly initialised to be semi-orthogonal matrix [152]; all the remaining para-

meters are randomly sampled from a uniform distribution in [−0.1, 0.1]. We adopt

Adam optimiser [83] and use a batch size of 64, sorting documents by length (i.e.

number of sentences) to accelerate training convergence; we also apply batch norm-

alisation as additional regulariser [32].

Once the model is trained, we extract the local topic embedding for each word

occurrence in text as its contextualised word representation. These vectors are then

projected to a lower-dimensional space by means of a multi-core implementation of

a Tree-Based algorithm for accelerating t-SNE7 [166]. Then, we cluster these words

with K-means8.

3.5 Evaluation and results

We report and discuss the experimental results obtained on three evaluation tasks,

sentiment classification topic extraction and sentence cluster extraction.

3.5.1 Sentiment Classification

We train the models under two different settings: a single and a multi-task learning

scenario, where we optimise over the only review polarity or over the combination

of polarity and domain, respectively. For the latter, we denote the results with ‘-Mtl’

in Table 3.2.
6https://spacy.io/
7https://github.com/DmitryUlyanov/Multicore-TSNE
8http://scikit-learn.org/stable/modules/clustering.html
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Methods Yelp 18 Amazon

BiLSTM 74.5± 0.2 72.1± 0.2
BiLSTM - Mtl 74.2± 0.2 71.8± 0.1
BiGRU 75.5± 0.1 72.5± 0.3
BiGRU - Mtl 75.4± 0.2 72.1± 0.3
HAN 83.7± 0.2 78.4± 0.2
HAN - Mtl 83.6± 0.3 78.2± 0.3

S-LDA 70.8± 0.2 64.6± 0.1
SCHOLAR 77.3± 0.2 71.4± 0.2

TDAM 84.2± 0.2 78.9± 0.2
TDAM - Mtl 84.5± 0.3 79.1± 0.2

Table 3.2: Sentiment classification accuracy and standard deviation over the 5-fold
cross validation.

We can observe from the table that BiLSTM and BiGRU perform similarly. With

hierarchical attention mechanisms at both the word level and the sentence level,

HAN boosts the performance by nearly 10% on Yelp and 6% on Amazon compared

to BiLSTM and BiGRU. For the neural topic modelling approaches, SCHOLAR out-

performs traditional S-LDA by a large margin. However, SCHOLAR is still inferior

to HAN. With our proposed topical attentions incorporated into the hierarchical net-

work structure, TDAM further improves on HAN. When considering the sentiment

classification task, the multi-task learning setting does not seem to bring any benefit

to the baseline models, though it slightly improves the performance of TDAM.

This confirms that providing more information is not necessarily beneficial for the

models, and leveraging the topical information available for sentiment analysis

requires tailored architectures, such as TDAM (via the modified GRU unit) or the

contextualised language models [36]. These architectures are intrinsically designed

to process the topical information, as confirmed by the improvement in sentiment

classification and topic coherence (§3.5.3).

3.5.2 Effectiveness of Topical Attention

If we remove the topical attention and substitute our modified GRU with standard

GRU, then the resulting architecture is similar to HAN [194] for a multi-task learning

setting. In this section, we visualise the attention weights learned by HAN and

TDAM to compare their results. Examples are shown in Figure 3.1. In TDAM, topical

words such as dentist or the dentist’s name, Rebecca, are regarded as relevant by the
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Yelp18 Amazon
Topics = 50 100 200 50 100 200

HAN -7.22 -7.05 -7.08 -13.21 -13.15 -13.14
HAN - Mtl -7.04 -6.94 -6.93 -12.72 -12.20 -12.29

S-LDA -6.26 -6.13 -6.15 -9.57 -9.41 -9.28
SCHOLAR -6.24 -6.08 -6.11 -9.52 -9.46 -9.48

SCHOLAR-R -6.19 -6.11 -6.08 -9.34 -9.09 -9.17
TDAM -6.41 -6.12 -6.09 -9.62 -9.50 -9.46

TDAM - Mtl -6.22 -6.05 -5.93 -9.23 -9.12 -9.01

Table 3.3: Topic coherence for different number of topics. The higher the better.

model. Along with them, it focuses on words bearing a strong sentiment, such as

nicest or happy. These weights are compared with the attention weights learned by

the HAN, showing that it primarily focuses sentiment words and overlooks other

topical words, such as dentist.

3.5.3 Topic Coherence Evaluation

Among the baselines, S-LDA and SCHOLAR are topic modelling methods and

therefore they can directly output topics from text. In addition, we can follow the

topic extraction procedure described in Section 3.3.4 to extract topics from HAN

to gain an insight into the learned representations. We thus compare the topic

extraction results of TDAM with these three models. Also, as previously shown in

[22], higher regularisation on SCHOLAR produced better topics. Therefore, we also

report the results using SCHOLAR with higher regularisation, named as SCHOLAR-R.

To evaluate the quality of topics, we use the topic coherence measure9 proposed

in [148] which has been shown to outperform all the other existing topic coherence

measures in matching the human judgement. We can observe from Table 3.3 that

HAN gives the worse topic coherence results, showing that simply extracting top-

ics using the attention weights is not feasible. With the incorporation of domain

category information through multi-task learning, HAN-Mtl gives slightly better

coherence results. Among topic modelling approaches, SCHOLAR-R with higher

regularisation generates more coherence topics compared to SCHOLAR, which out-

performs S-LDA. TDAM gives similar topic coherence results as SCHOLAR-R on

some topic numbers. TDAM-Mtl improves over TDAM and generates the best

coherence results on 2 out of 3 topic settings for both Yelp18 and Amazon, showing

higher coherence scores overall.

9https://github.com/dice-group/Palmetto
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3.5.4 Aspect-Polarity Coherence Evaluation

To assess the effectiveness of our proposed TDAM in extracting polarity-bearing

topics, we use the annotated dataset provided in the SemEval 2016 Task 5 for aspect-

based sentiment analysis10; this provides sentence-level annotations about different

aspects (e.g. FOOD#QUALITY) and polarities (pos, neut, neg) in restaurant and laptop

reviews.

We join the training set of restaurant and laptop reviews with the Yelp18 and

Amazon dataset, respectively. With the same approach adopted for topic extraction,

we use the test sets to generate sentence clusters and evaluate their aspect-polarity

coherence, defined as the ratio of sentences sharing a common aspect and sentiment

in a cluster. For the two topic modelling approaches, S-LDA and SCHOLAR, we

generate sentence clusters based on the generative probabilities of sentences condi-

tional on topics. Note that although the SemEval dataset provides the sentence-level

annotations of aspects and polarities, these were NOT used for the training of the

models here. We only use the gold standard annotations of aspects and polarities in

the test set to evaluate the quality of the extracted polarity-bearing topics.

We generate multiple clusters, i.e. (50,100,150), representing polarity-bearing

aspects and report the results in Table 3.4, which shows the ratio of sentence clusters

with more than threshold sentences sharing a common aspect (values in brackets)

or a common aspect-polarity. We can observe that the topic modelling approaches

struggle in generating coherent aspect-polarity clusters with at least 50% of common

aspect-polarities. The two hierarchical models, HAN and TDAM, have significantly

more coherent aspect-polarity clusters compared to S-LDA and SCHOLAR, and both

benefit from multi-task learning. For all the models, results on SemEval-Restaurant

are better than those obtained on SemEval-Laptop. This might be partly attributed to

the abundant restaurant reviews on Yelp18 compared to the laptop-related reviews

on Amazon. Overall, TDAM-Mtl gives the best results.

We also show some example sentence clusters produced by HAN and TDAM

under multi-task learning in Table 3.5. HAN discriminates rather effectively positive

sentences (the majority in the cluster) from negative and neutral ones. However,

despite several sentences sharing the same polarity, their topics/aspects are quite

heterogeneous. TDAM phrases are rather coherent overall, both in terms of topics

and expressed sentiment. Along with their aspects and polarity, it is worth noting

that the average length of the top-10 sentences within the clusters is generally longer

for HAN (9.1 and 14.4 words for the positive and negative clusters, respectively)

10http://alt.qcri.org/semeval2016/task5/

45



and slightly shorter for TDAM (7.8 and 13.5 words for the positive and negative

clusters, respectively). TDAM tends to emphasise the encoding of more concise

sentences and with a clearer dominant aspect (e.g. FOOD#QUALITY); while HAN,

although clustering rather coherent sentences in terms of their shared sentiments,

puts less emphasis on the analysed topic, resulting in a miscellany of aspects.

These results are encouraging. Our TDAM is able to detect coherent aspects

and also polarity-bearing aspects despite using no aspect-level annotations at all.

Considering it is very time consuming to provide aspect-level annotations, TDAM

could be used to bootstrap the training of aspect-based sentiment detectors.

3.6 Summary

We have presented a new topic-dependent attention model for sentiment classific-

ation and topic extraction. The conjunction of the topical recurrent unit and the

multi-task learning framework has been shown to be an effective combination to

generate representations for more accurate sentiment classification, meaningful

topics and for side tasks of polarity-bearing aspects detection.
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Chapter 4

A Disentangled Adversarial
Neural Topic Model

Chapter Abstract

In this chapter, we present a novel disentangled adversarial neural topic model

(DIATOM), combining the NTM architecture with an adversarial training to

disentangle opinion topics from plot and neutral ones. Existing topic models

when applied to user reviews may extract topics associated with writers’ sub-

jective opinions mixed with those related to factual descriptions, such as plot

summaries in movie and book reviews. It is thus desirable to automatically sep-

arate opinion topics from plot/neutral ones for more discriminative features and

better interpretability. Although existing approaches have achieved significant

results in topic extraction, surprisingly, very little work has been done on how

to disentangle these latent topics. In the following, we first describe DIATOM,

outlining the relevant literature. Then, we report an extensive experimental

assessment based on a new collection of movie and book reviews paired with

their plots, namely the MOBO dataset, showing an improved coherence and

variety of topics, a consistent disentanglement rate, and sentiment classification

performance superior to other supervised topic models.

4.1 Introduction

Variational Autoencoders (VAEs) [84] allow to design complex generative models

of data since the inference process of VAE-based approaches has the advantage
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of being independent from the model architecture providing high flexibility in

designing new neural components. In the wake of the renewed interest for VAEs,

traditional probabilistic topic models [16] have been revised giving rise to several

Neural Topic Model (NTM) variants, such as NVDM [118], ProdLDA [155], NTM-R

[40], etc. However, existing topic models when applied to user reviews may extract

topics associated with writers’ subjective opinions mixed with those related to

factual descriptions such as plot summaries of movies and books [97]. Although

these approaches have achieved significant results via the neural inference process,

surprisingly, very little work has been done on how to disentangle the inferred topic

representations.

Disentangled representations can be defined as representations where indi-

vidual latent units are sensitive to variations of a single generative factor, while

being relatively invariant to changes of other factors [10, 64]. Inducing such rep-

resentations has been shown to be significantly beneficial for their generalisation

and interpretability [2, 131]. For example, an image can be view as the result of

several generative factors mutually interacting, as the one or many sources of light,

the material and reflective properties of various surfaces or the shape of the objects

depicted [10]. In the context of topic modelling, documents result from a generative

process over mixtures of latent topics, and therefore, we propose to consider these

latent topics as generative factors to be disentangled to improve their interpretability

and discriminative power. Disentangled topics are topics invariant to the factors

of variation of text, which for instance, in the context of book and movie reviews

could be the author’s opinion (e.g. positive/negative), the salient parts of a plot or

other auxiliary information reported. An illustration of this is shown in Figure 4.1

in which opinion topics are separated from plot topics.

However, models relying solely on sentiment information are easily misled

and not suitable to disentangle opinion from plots, since even plot descriptions

frequently make large use of sentiment expressions [129]. Consider, for example,

the following sentence: “The ring holds a dark power, and it soon begins to exert its

evil influence on Bilbo”, an excerpt from a strong positive Amazon’s review.

Therefore, we propose to distinguish opinion-bearing topics from plot/neutral

ones combining a neural topic model architecture with an adversarial training. In

this study, we present the DIsentangled Adversarial TOpic Model (DIATOM)1,

aiming at disentangling information related to the target labels (i.e. the review

score), from other distinct aspects yet possibly still polarised (e.g. plot descriptions).

We also introduce a new dataset, namely the MOBO dataset1, made up of movie

1Source code and dataset omitted for the anonymous submission.
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Figure 4.1: Disentangled topics extracted by DIATOM from the Amazon reviews for
“The Hobbit”.

and book reviews, paired with their related plots. The reviews come from different

publicly available datasets: IMDB [108], GoodReads [174] and Amazon reviews

[115], and encompass a wide spectrum of domains and styles. We conduct an

extensive experimental assessment of our model. First, we assess the topic quality in

terms of topic coherence and diversity and compare DIATOM with other supervised

topic models on the sentiment classification task; then, we analyse the disentangling

rate of topics to quantitatively assess the degree of separation between actual opinion

and plot/neutral topics.

Our contributions are summarised below:

• We propose a new model, DIATOM, which is able to generate disentangled

topics through the combination of VAE and adversarial learning.

• We introduce the MOBO dataset, a new collection of movie and book reviews

paired with their plots.

• We conduct an experimental assessment of our model, highlighting more

interpretable topics with better topic coherence and diversity scores compared

to other state-of-the-art supervised topic models, and improved discriminative

power on sentiment classification, and a consistent topic-disentanglement rate.

The rest of the chapter is organised as follows. We reviews the related literature

on sentiment-topic models, neural topic models and the studies on disentangled

representations (§4.2). Then, we present the details of our proposed DIATOM model

(§4.3), followed by the experimental setup (§4.4) and results (§4.5). Finally, we

conclude with a summary of the results (§4.6).
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4.2 Related Work

Our work is closely related to three lines of research: sentiment-topic models, neural

topic models and learning disentangled representations.

4.2.1 Sentiment-Topic Models

Probabilistic graphical models for topic extraction have been extensively studied.

Beyond LDA [16]; a wide spectrum of models has extended LDA to more specific

tasks using contextual information [15, 149, 181]. Supervised-LDA (sLDA) [116]

is a general-purpose supervised extension that builds on top of LDA by adding a

response variable associated with each document (e.g. a review’s rating).

A category of extensions particularly relevant for this work is the sentiment-

topic models. Examples include the Joint Sentiment-Topic (JST) model [97, 98] and

Aspect and Sentiment Unification Model (ASUM) [74]. These models are able to

extract informative topics grouped under different sentiment classes. Although

they do not rely on document labels, they require word prior polarity information

to be incorporated into the learning process in order to generate consistent res-

ults. Nevertheless, when provided with document-level class labels, JST can learn

document-topic distributions influenced by the class information. The possibility to

supervise the learning process with document labels and to avoid the necessity of

prior information over words makes it suitable for a fair comparison with the model

proposed in this work. Besides, these models require carefully tailored inference

algorithms, and the standard Gibbs sampling algorithm used can have a high com-

putational cost when fitting large-scale data, with time and memory scaling linearly

with the number of documents, leading researchers to devise more sophisticated

approaches to make it scalable [54].

Compared to DIATOM, the discussed sentiment topic models can only distin-

guish between polarity-bearing topics and neutral ones, remaining strictly aligned to

the provided labels. Instead, along with neutral topics, DIATOM is able to generate

opinion-bearing topics and plot topics that may still be polarised but not carrying

any user’s opinion.

4.2.2 Neural Topic Models

Neural models provide a more generic and extendable alternative to topic modelling,

and therefore, have recently gained increasing interest. Some of them use belief

networks [124], or enforce the Dirichlet prior on the document-topic distribution by
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means of Wasserstein Autoencoders [125]. Others adopt continuous representations

to capture long-term dependencies or preserve word order via sequence-to-sequence

VAE [20, 38, 188, 195] whose time complexity and difficulty of training, however,

have limited their applications.

Neural Variational Document Model (NVDM) [118] is a direct extension of VAE

used for topic detection in text. In NVDM, the prior of latent topics is assumed to

be a Gaussian distribution. This is not ideal since it cannot mimic the simplex in the

latent topic space. To address this problem, LDA-VAE [155] instead used the logistic

normal distribution to approximate the Dirichlet distribution. ProdLDA [155] exten-

ded LDA-VAE by replacing the mixture model of LDA with a product of experts.

SCHOLAR is a neural framework for topic models with metadata incorporation [22].

When metadata are document labels, the model infers topics that are relevant to

those labels. Although some studies have applied the adversarial approach [55] to

topic models setting a Dirichlet prior on the generative network [113, 178], it is still

unexplored how to use this mechanism to disentangle opinion-bearing topics from

plot or neutral topics.

Compared to these neural topic models, DIATOM is the first attempt using an

adversarial mechanism to distinguish between topic types (i.e. opinion and plot

topics), while not only generating topics aligned with the available target labels (i.e.

opinion topics) but seamless incorporating the external signal of plot summaries to

drive the generation of topics about salient parts of plots mentioned by users (i.e.

plot topics) not related to the target classes (i.e. sentiment polarity).

4.2.3 Representation Disentanglement

Despite the lack of general consensus about a unique definition of disentangled

representations [48, 65], it typically refers to representations that are only sensitive

to one single generative factor of data and relatively invariant to other factors of

variation [10]. One proposed definition builds upon the concept of statistical in-

dependence by minimising total correlation [2, 41], while an alternative approach

explored the possibility to measure and track the changes in a single latent dimen-

sion as degree of disentanglement [64]. However, the disentanglement of repres-

entation achieved in DIATOM is instead analogous to the one presented in Thomas

et al. (2017) and Bengio et al. (2017), where they impose additional constraints to

the representations in the latent space that can be controlled exploiting a reinforce-

ment learning mechanism determining the disentangled factors. In DIATOM, we

alternatively make use of an adversarial approach over the available target labels.
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Both Generative Adversarial Networks (GAN) [27, 99, 110, 114] and VAEs

[28, 70, 131] have been successfully employed in disentangling features in computer

vision tasks. Application in text processing has shown promising results [42, 59,

67, 75, 86], yet applications to topic modelling are still limited [182] and to the

best of our knowledge, there is no work in separating opinion-bearing topics from

plot/neutral topics.

4.3 DIATOM architecture

Our proposed DIATOM model is shown in Figure 4.2. Assuming a document x

is associated with a sentiment label ys, and each document can be represented by

latent topics associated with sentiments (zs) and plots2 (za), we aim to learn a model

maximising the joint data-label log-likelihood, log p(x, ys):

log p(x, ys) = log
∫ ∫

p(x, ys, za, zs)dzadzs

≥ Eqφ(za|x),qψ(zs|x,ys)[log pθ(x|za, zs)]

+ Eqφ(za|x),qψ(zs|x,ys)[log pπ(ys|x)]

−KL
(
qφ(za|x)||p(za)

)
−KL

(
qψ(zs|x, ys)||p(zs)

)
(4.1)

Inspired by Miao et al. (2016) and Card et al. (2018), we assume the document-

level topic distribution for plots can be approximated by a multi-layer perceptron

(MLP) taking as input a multivariate Gaussian distribution, and similarly for the

topic distribution for sentiments. The multinomial distribution over words under

a plot topic and an opinion topic can be parametrised by a weight matrixW . The

generative process is shown below.

• For each document d ∈ {1, .., D},

– Draw the latent plot-topics,

φ̂ ∼ N (µφ, Σφ), za = fφ̂(φ̂)

– Draw the latent opinion-topics,

ψ̂ ∼ N (µψ, Σψ), zs = fψ̂(ψ̂)

– For each word n ∈ {1, .., Nd} in document d

2These are the topics not associated with the target sentiments, which can be either plot topics or
neutral topics (not about plots). For notational convenience, we call both plot topics.
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Figure 4.2: The DIATOM Architecture.

* Draw xd,n ∼ p(xd,n|W , za, zs)

– Generate the document-level sentiment label, ys ∼ p(ys| fy(zs))

where fφ̂, fψ̂ and fy are MLPs, za is a K-dimensional latent topic representation of

plots for document d, zs is a S-dimensional latent topic representation of sentiments

for document d. The probability of word xd,n can be parametrised by another

network:

p(xd,n|W , za, zs) ∝ exp
(
md +W · (za ‖ zs)

)
(4.2)

wheremd is the V-dimensional background log-frequency word distribution, and

W ∈ RV×(K+S), while za ‖ zs is the concatenation of the two latent topic vectors.

Plot Inference Network

Following the idea of VAE which computes a variational approximation to an

intractable posterior using MLPs, we define two inference networks fµφ and fΣφ

which takes as input the word counts in documents:

µφ = fµφ(x) Σφ = diag( fΣφ(x)) (4.3)
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The outputs of both networks are vectors in RK. Here, ‘diag’ converts a column

vector to a diagonal matrix. For a document x, q(φ) ' LN (µφ, Σφ). With such a

formulation, we can generate samples from q(φ) by first sampling ε ∼ N (0, I) and

then computing φ̂ = σ(µφ + Σφ
1/2ε).

Sentiment Inference Network

Similarly, to compute a variational approximation to q(ψ), we define two inference

networks fµψ and fΣψ which takes as input the word counts in documents:

µψ = fµψ(x) Σψ = diag( fΣψ(x)) (4.4)

The outputs of both networks are vectors in RS. For a document x, q(ψ) '
LN (µψ, Σψ). We then generate samples from q(ψ) by first sampling ε ∼ N (0, I)

and then computing ψ̂ = σ(µψ + Σψ
1/2ε).

Overall Objective

With the sampled φ̂ and ψ̂, for each document x, we can minimise the reconstruction

loss with a Monte Carlo approximation using L independent samples:

Lx ≈
1
L

L

∑
l=1

Nd

∑
n=1

log pθ(xd,n|φ̂(l), ψ̂(l))

−KL
(
q(za|x) || p(za)

)
−KL

(
q(zs|x, ys) || p(zs)

)
(4.5)

where the first term in the RHS is given by Eq. (4.2). It has been previously shown

in [84], if a standard multivariate normal prior is placed on the latent variables za

and zs, then there is a closed form solution to the KL divergence terms above.

We assume that the latent topics associated with plots, za, are independent of

sentiment classes, and hence, when fed into a sentiment classifier, should generate

a uniform sentiment class distribution (similar to adversarial learning). On the

contrary, the latent topics associated with sentiments, zs, should bear essential

information to discriminate between sentiment classes. Therefore, we define the

following two objectives for sentiment classification; the former being the expected
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KL divergence with the uniform distribution U , and the latter a cross-entropy loss:

Ladv = −Eqφ(za)

[
KL
(
U (0, M) || p(ŷ|za)

)]
(4.6)

Lsent = −Eqψ(zs)

M

∑
c=1

yc log
(

p(ŷc|zs)
)

(4.7)

where M is the total number of sentiment classes, and U (0, M) represents the

uniform sentiment class distribution.

To further disentangle the latent topics associated with plots, za, and latent

topics associated with sentiment, zs, while concurrently minimise the redundancy

in the final topic matrix, we apply an orthogonal regularizer over the decoder matrix

W . Lorth reaches its minimum value when the dot product between different topic

distributions goes close to zero:

Lorth = ||W ·W T − I || (4.8)

Our final objective function is:

L = −αLx + βLadv + γLsent + ηLorth (4.9)

where α, β, γ and η control the relative contribution of various loss functions.

Plot Network

An additional VAE is plugged to the model providing a supplementary signal for

the latent plot topic extraction. This mechanism preserves the plot information

that might contain some sentiment words and thus, be wrongly regard as a user’s

opinion. The inference network is defined analogously to Eq. 4.3, which instead

of taking a review document, takes a plot summary as input. An additional cross-

entropy objective is minimised to drive the latent plot topics (za) which would have

a similar discriminative power as the features (zd) directly derived from the plots

when used for plot classification:
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Statistics IMDB GoodReads Amazon

No. of plots 1,131 150 100
No. of reviews 25,836 83,852 32,375
No. of reviews per plot (avg / max / min) 24 / 30 / 10 954 / 3,000 / 549 464 / 1525 / 272
No. of words per review (avg / max / min) 156 / 1419 / 5 63 / 3506 / 5 61 / 3226 / 5
No. of words per plot (avg / max / min) 624 / 5501 / 93 104 / 233 / 30 198 / 687 / 71
Pos / Neg / Neutral distribution 0.46 / 0.54 / 0 0.33 / 0.50 / 0.17 0.32 / 0.46 / 0.22
Training set 20,317 65,816 25,883
Development set 2,965 9,007 3,275
Test set 2,554 9,029 3,217

No. of annotated sentences 6,000 6,000 6,000

Table 4.1: The MOBO dataset statistics.

Ld = Eqω(zd|d)[pζ(d|zd)]−KL
(
q(zd|d) || p(zd)

)
(4.10)

Lplotza
= −Eqφ(za)

P

∑
p=1

yp log(p
(
ŷp|za)

)
(4.11)

Lplotzd
= −Eqω(zd)

P

∑
p=1

yp log
(

p(ŷp|zd)
)

(4.12)

where R denotes the total number of plots in each dataset. Finally, −Ld and Lplot

are added to the overall loss defined in Eq. 4.9.

4.4 Experimental Setup

We conduct thorough experimental evaluations to assess the quality and disentan-

glement rate of extracted topics. To assess the quality of topics, we compute their

topic coherence [148] coupled with their topic uniqueness. Then, we additionally

look at the discriminative power of the disentangled features on the sentiment

classification task. To fully assess the disentanglement rate of different methods,

we perform topic labelling to compute the sentiment polarity of each topic (if any)

and then measure the overall disentanglement rate (Eq. 4.14). As a result, we

obtain an estimate of the extent to which different models can accurately control

the topic disentanglement rate. We introduce and use a new dataset, named the

MOBO dataset, pairing movie/book plots with their users’ reviews, and including

human-annotated sentences.
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MOBO Dataset

The MOBO dataset is a collection of reviews and plots about MOvie and BOok,

associated with human-annotated sentences: while the pairs of reviews and plots

are used to enhance the generation of plot topics, the human-annotated sentences

provide the necessary ground-truth to automatically evaluate the topics’ polarity.

Movie and book reviews were collected and paired from 3 public datasets:

the Stanford’s IMDB movie reviews [108], the GoodReads [174] and the Amazon

reviews dataset [115]. Among all the available reviews in the IMDB dataset, we

keep the ones with a corresponding plot in the MPST dataset [80], a corpus of movie

synopses. The GoodReads dataset comes already with books’ reviews paired with

the related plots; while from the Amazon dataset, among all the product reviews, we

keep only the ones related to movies available on the store and whose descriptions

consist of the movie plots3.

With the help of 15 annotators we further labelled more than 18,000 reviews’

sentences (∼ 6000 per corpus), marking the sentence polarity (Positive, Negative),

or whether a sentence describes its corresponding movie/book Plot, or none of the

above (None)4. We ensured that each sentence was labelled by at least two annotators

by assigning overlapping subsets of ∼ 2400 sentences. In case of disagreement,

when no consensus was reached, a final choice was made through a majority vote

involving a third annotator. The final inter-annotator agreement (Cohen’s kappa)

was computed between each pair of annotators sharing a common subset, with a

minimum value of 0.572 and maximum of 0.831, for a resulting average of 0.758 (i.e.,

0.786/0.739/0.748 for the IMDB, GoodReads and Amazon dataset, respectively.)5.

It is worth noting that the difficulties in finding an agreement on the sentence

annotations are, to some extent, reflected by the performance across the different

datasets on the sentiment classification task, as shown in Section §4.5.2. We report

the dataset statistics in Table 4.1.

Baselines

We compare the experimental results with the following baselines:

• sLDA [116]: a supervised extension of LDA adding a response variable associ-

ated with each document.
3The dataset provides a predefined split of the corpus which preserves on train, development and

test sets the same distribution of reviews based on their corresponding plots.
4We use Doccano as framework for collaborative labelling: https://github.com/doccano/
5We publicly release the full set of sentences with and without annotations for future expansion.
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• JST [98]: Joint Sentiment-Topic model built on LDA which is able to extract

polarity-bearing topics.

• NVDM [118]: Neural Variational Document Model, a variational auto-encoder

with an encoder network (i.e. an MLP) mapping the bag-of-words represent-

ations into continuous latent distributions, and a generative network (i.e. a

softmax decoder) reconstructing the document representations.

• GSM [119]: based upon NVDM, the Gaussian Softmax topic model gener-

ating the topic distribution by applying a softmax function on the hidden

representations of documents.

• NTM [40]: Neural Topic Model is a variation of NVDM by plugging the topic

coherence metric directly into the model’s objective.

• ProdLDA [155]: with an architecture similar to NVDM, ProdLDA introduces

a Dirichlet prior in place of Gaussian prior over the latent topic variable.

• Scholar [22]: a neural framework based on variational inference for the gener-

ation of topics incorporating metadata information.

Parameter Setting

We perform tokenisation and sentence splitting with SpaCy6. When available, we

keep the default preprocessing, as it is the case for sLDA and SCHOLAR. Along with

stopwords, we also remove tokens shorter than three characters and those with just

digits or punctuation. We set the vocabulary to the 2,000 most common words as

the best trade-off for each dataset.

The 300-dimensional word vectors are initialised with a pre-trained BERT em-

bedding [36]. Sentence embeddings are generated from the Sentence-BERT using a

pre-trained BERT-large with mean-tokens pooling [144]. We use the predefined split

of the MOBO dataset into training, development and test set in the proportion of

80/10/10 and average all the results over five executions.

Hyperparameters

We tune the models’ hyperparameters on the development set via a random search

over combinations of learning rate λ ∈ [0.001, 0.5], dropout δ ∈ [0.0, 0.6] and topic

vector size γt ∈ [25, 50, 100, 200]. Encoder and decoder are configured following

6https://spacy.io/
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[155]. The hidden representation of documents is set to 100 and sentiment classifier’s

hidden size to 50. Matrices are randomly initialised with the Xavier and sparse

methods [51, 112]. We employ the Adam optimiser [83], set the batch size to 64 and

apply batch normalisation as additional regulariser [32].

Sequential Unfreezing

Instead of simultaneously training all the model components, we unfreeze them

sequentially. We first freeze the sentiment classifier and update only the autoencoder.

At the eth epoch, we unfreeze the sentiment classifier uniquely on the polarised

features to let the classifier training. Finally, at the (e + n)th epoch, we unfreeze

the adversarial mechanism to drive the generation of neutral features fooling the

classifier. We follow an analogous approach with regard to the plot classifier. The

values of e and a are treated as hyperparameters and chosen through the random

search. We found that the sequential unfreezing scheme leads to better topic disen-

tanglement.

4.5 Experimental Results

We report the results in terms of topic coherence/uniqueness, sentiment classifica-

tion and topic disentanglement rate. We also perform ablation studies to gain more

insights into our model.

4.5.1 Topic Coherence and Uniqueness

Traditionally, topic models have been evaluated through the perplexity over held-

out documents [172]. Lower perplexity implied better predictiveness as it aimed

at measuring the model goodness-of-fit over a held-out set. However, it has been

shown that better perplexity does not imply more comprehensible topics [22, 24] .

That is why topic coherence was introduced [87], to evaluate topics regarding their

understandability with a score closely matching human judgements. Normalized

Pointwise Mutual Information (NPMI) is a topic coherence score shown effective in

matching the human judgements [148], and measures the statistical independence of

observing two words in close proximity based on the word co-occurrence statistics.

The NPMI for a list of words w is defined in Eq. 4.13:

NPMI(w) =
1

N(N-1)

N

∑
j=2

j−1

∑
i=1

log
P(wi ,wj)

P(wi)P(wj)

−logP(wi, wj)
(4.13)
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Datasets Models Topic Coherence / Topic Uniqueness
25 50 100 200

IMDB LDA 0.395 / 20.3 0.387 / 30.1 0.383 / 33.9 0.391 / 34.4
sLDA 0.421 / 15.8 0.376 / 18.9 0.291 / 13.5 0.288 / 14.6
JST 0.472 / 22.7 0.526 / 26.8 0.527 / 29.3 0.530 / 31.1

NVDM 0.281 / 15.8 0.284 / 30.2 0.273 / 50.3 0.266 / 54.8
GSM 0.384 / 22.4 0.402 / 21.0 0.410 / 39.7 0.394 / 42.4
NTM 0.423 / 28.8 0.508 / 28.6 0.513 / 24.1 0.523 / 23.5
PRODLDA 0.502 / 31.1 0.543 / 30.8 0.566 / 27.7 0.558 / 29.2
SCHOLAR 0.550 / 28.4 0.616 / 27.0 0.618 / 29.7 0.593 / 31.5

DIATOM 0.544 / 37.1 0.639 / 38.1 0.626 / 36.5 0.615 / 30.7
– w/o Plot Network 0.525 / 30.1 0.603 / 36.7 0.607 / 33.8 0.584 / 30.3

GoodReads LDA 0.441 / 19.6 0.463 / 33.5 0.455 / 41.6 0.462 / 40.3
sLDA 0.432 / 34.4 0.387 / 47.3 0.313 / 25.6 0.315 / 23.8
JST 0.465 / 43.5 0.549 / 46.2 0.560 / 47.6 0.551 / 45.2

NVDM 0.294 / 40.8 0.323 / 30.2 0.287 / 48.3 0.264 / 46.9
GSM 0.411 / 24.8 0.481 / 40.1 0.482 / 38.1 0.473 / 41.4
NTM 0.421 / 23.5 0.523 / 47.6 0.493 / 33.4 0.465 / 38.7
PRODLDA 0.551 / 30.3 0.562 / 41.8 0.564 / 39.8 0.556 / 37.7
SCHOLAR 0.545 / 38.3 0.603 / 42.0 0.681 / 41.2 0.664 / 38.4

DIATOM 0.582 / 54.0 0.634 / 52.9 0.628 / 54.9 0.609 / 48.7
– w/o Plot Network 0.555 / 40.1 0.615 / 49.3 0.607 / 33.8 0.578 / 39.6

Amazon LDA 0.430 / 28.9 0.447 / 47.5 0.438 / 64.8 0.445 / 59.3
sLDA 0.421 / 67.7 0.393 / 62.1 0.323 / 87.5 0.331 / 74.8
JST 0.450 / 73.0 0.558 / 71.2 0.544 / 78.8 0.518 / 70.9

NVDM 0.278 / 42.4 0.310 / 32.5 0.281 / 38.4 0.261 / 49.1
GSM 0.441 / 53.2 0.451 / 60.0 0.433 / 61.7 0.427 / 64.4
NTM 0.493 / 52.8 0.501 / 53.1 0.547 / 55.3 0.508 / 59.3
PRODLDA 0.492 / 63.4 0.543 / 51.4 0.528 / 58.7 0.551 / 62.1
SCHOLAR 0.548 / 60.5 0.587 / 65.1 0.641 / 63.2 0.629 / 68.2

DIATOM 0.563 / 82.0 0.598 / 82.3 0.626 / 80.8 0.636 / 78.5
– w/o Plot Network 0.539 / 30.1 0.584 / 78.3 0.611 / 73.4 0.618 / 74.7

Table 4.2: Topic Coherence and Topic Uniqueness results for 25/50/100/200 topics.
The best result in each column and for each dataset is highlighted in bold.

where P(wi) and P(wi, wj) are calculated based on the word co-occurrences in a

reference dataset, and N is typically set to 10, thus considering the top-10 words

of topics. The aforementioned definition normalises the PMI in [−1, 1], so that for

two words, -1 denotes no co-occurrences while +1 a complete co-occurrence. We

evaluate topic coherence using the CV metric, a slightly refined NPMI score using a

boolean sliding window to determine the words’ context [148].

We additionally monitor the topic uniqueness (TU) to measure word redund-

ancy across topics. Following Nan et al. (2019), we use cnt(l, k) to denote the total

number of times the top word l in topic k appears among the top words across all

topics, then TU(k) = 1
L ∑L

l=1
1

cnt(l,k) . TU is inversely proportional to the number of
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times each word appears in topics; a higher TU score implies that the top words are

rarely repeated and, therefore, more diverse and unique topics.

In Table 4.2, we report the topic coherence and the topic uniqueness values. The

supervised document label information was incorporated into sLDA, JST, SCHOLAR

and DIATOM. Other models are purely unsupervised. We can observe that among

conventional LDA-based models, JST performs significantly better compared to

both LDA and sLDA for different topic settings and across all datasets. Neural

topic models give mixed results. In terms of topic coherence, the trend is SCHOLAR

> PRODLDA > NTM > GSM > NDVM. However, when we examine the topic

uniqueness values, we can see that higher topic coherence values do not necessarily

lead to higher topic uniqueness values. This shows that the topic coherence value

could sometimes be misleading since a high topic coherence could be due to the

redundancy of words across topics. We also notice that models with supervised doc-

ument label information (except sLDA) generally outperform the unsupervised ones.

This shows that the document label information can indeed help to extract more

meaningful topics. When compared our proposed DIATOM with the baselines,

we can observe that it achieves better coherence and topic uniqueness values most

of the time, showing the benefit of separating opinion-bearing topics from plot

topics by adversarial learning. The importance of the plot network is evident from

the results since removing the plot network (“−w/o Plot Network”) leads to the

degraded topic coherence and topic uniqueness measures.

4.5.2 Sentiment Classification

In this section, we compare DIATOM with other supervised topic models for senti-

ment classification. The purpose of this evaluation is to highlight the discriminative

power of the generated representations for the labels of interest while having attract-

ive and unique properties as topic models, rather than confronting them with current

state-of-the-art for text classification. We additionally report some baseline results

using a Support Vector Machine (SVM) which has been widely employed on these

tasks [129] providing an understanding of the relative differences in performance of

different approaches.

Table 4.3 shows the sentiment classification accuracy. In JST, the supervised

document label information is only incorporated as prior to the model, while both

sLDA and SCHOLAR treat the class label of each document as a response variable

and jointly model both documents and their responses. We can observe that the

latter is more effective in incorporating supervised information since both sLDA
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Models IMDB GoodReads Amazon

SVM
+ TFIDF 0.672 ± 0.02 0.711 ± 0.01 0.661 ± 0.02

+ TFIDF + Lexicon 0.683 ± 0.02 0.719 ± 0.02 0.667 ± 0.02

+ LDA 0.615 ± 0.02 0.659 ± 0.02 0.594 ± 0.01

BERT 0.806 ± 0.02 0.783 ± 0.03 0.754 ± 0.02

RoBERTa 0.827 ± 0.02 0.811 ± 0.03 0.759 ± 0.02

XLNet 0.843 ± 0.01 0.824 ± 0.02 0.782 ± 0.02

sLDA 0.637 ± 0.01 0.652 ± 0.01 0.579 ± 0.01

JST 0.639 ± 0.01 0.518 ± 0.01 0.538 ± 0.01

SCHOLAR 0.645 ± 0.02 0.673 ± 0.03 0.613 ± 0.02

DIATOM 0.726 ± 0.03 0.704 ± 0.02 0.686 ± 0.02

– w/o Plot Network 0.734 ± 0.03 0.695 ± 0.03 0.603 ± 0.02

Table 4.3: Sentiment classification accuracy with 50 topics over the test set. Best
performance from pre-trained models are highlighted in italic, all the others in bold.

and SCHOLAR outperform JST in general. But DIATOM gives significantly better

results all over the baselines with the improvement over the best baseline model,

SCHOLAR, by 3-8%. In our models, features used for sentiment classification are

opinion-bearing topics. This shows that separating opinion topics from plot/neutral

topics is beneficial for sentiment classification. We also observe that the contribution

of the plot network to sentiment classification is dataset-dependent. The usage of

the plot network largely boosts the sentiment classification accuracy by over 8% on

the Amazon dataset. But its effect is negligible on the other two datasets.

When compared with traditional sentiment classification models such as SVM,

we found that DIATOM outperforms SVM trained with various features on both

IMDB and Amazon. But it performs slightly worse than SVM trained with TFIDF

features with or without the additional incorporation of sentiment lexicon features.

Nevertheless, DIATOM gives superior performance compared to SVM trained on

LDA topic features in the range of 5-11%, showing the effectiveness of using opinion

topics for sentiment classification.

To provide a thorough assessment of the MOBO dataset on the sentiment

classification task, we also report the results obtained using the recently developed

transformer-based architectures [168]. In particular, we employed three state-of-

the-art language models, i.e., BERT [36], RoBERTa [104], and XLNet [193], which

outperform by a significant margin all the other baselines. However, compared to
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Figure 4.3: Disentangling rate of topic models across different number of topics.

the other architectures, these models are intensively pretrained on large external

corpora and do not provide any topical representations of the documents.

4.5.3 Topic Disentanglement

None of the aforementioned measures can, however, capture how opinion and

plot topics are distributed. To this aim, we use topic labeling to assign a proxy

label (Positive, Negative, Plot, None) to each topic and then measure the topic-

disentanglement rate ρ (Eq. 4.14) as the proportion of opinion-bearing topics with

respect to the overall set of topics, complementary to the proportion of plot/neutral

topics:

ρ =
S

S + K
(4.14)

with S being the number of opinion topics and K the number of plot/neutral topics.

For each topic, we first calculate its embedding by taking the normalised

weighted average of the vectors of its top N words:
#»tz = 1

N ∑N
i=1 αi × # »wi, where αi

is the normalised distribution of word wi in topic z. We then retrieve the top 10

most similar sentences from the human-annotated sentence set measured by the

cosine similarity between the topic embedding and each sentence embedding. The

sentence embedding is computed using the Sentence-BERT encoder [144]. The most

frequent label among the retrieved sentences is adopted as the topic’s label.
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Figure 4.4: Example of t-SNE projection for the Amazon dataset of the topic distri-
bution for different number of topics. Color are assigned according to plot/neutral
and opinion topics.

To highlight the disentanglement capability of DIATOM, in Figure 4.3, we

analyse how the proportion of opinion-bearing topics varies across standard and

sentiment topic models. We notice that despite the signal from the document labels,

sLDA and SCHOLAR tend to produce topics rather balanced in terms of neutral and

opinion-bearing topics. JST has a more skewed distribution towards opinion topics.

DIATOM instead generates an actual proportion of opinion topics approaching the

expected proportion set up by the model, demonstrating the capability to control

the generation of plot and opinion-bearing topics.

In Table 4.4 and Table 4.5, we show a set of topics grouped according to the

disentanglement induced by DIATOM. For each topic, we report an excerpt of the

most similar sentences retrieved. Aside from being overall coherent, we can guess

rather paradigmatic themes as the IMBD-Topic 1 about peace and war between

countries, or more peculiar plots related for instance to “The Hobbit” or “Batman”

as in the Amazon topics. It is worth having a closer look at the IMDB-Topic 2,

which despite the “negative” theme of depression and suicide, the model is able to

correctly gather those words under the same plot topic. The opinion-bearing topics

report a collection of commonly appreciated or critical aspects; some of them are

mainly collections of related adjectives with the same polarity (e.g. IMDB-Topic 1),

while others are made up of mixed terms describing the issues and the associated

experience (e.g. Amazon-Topic 2).

4.5.4 Visualisation

Another way to look at the disentangled topics is through the visualisation of topic

vectors.
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Plot/Neutral Topics

IMDB - Topic 1
Government, Country, Peace, Information, Free, Plane, Theory, Anti, Soldier, Hitler

1. Groundbreaking in the realm of socially relevant drama, it dealt with issues
such as abortion, domestic violence, student protest, child neglect, illiteracy,
slumlords, the anti-war movement, [...].

2. This effort by Charlie ultimately evolves into a major portion of the U.S. for-
eign policy known as the Reagan Doctrine, under which the U.S. expanded
assistance beyond just the [...].

IMDB - Topic 2
Window, Hospital, Apartment, Suicide, Commit, Pitt, Serial, Strange, Killer, Mental

1. Even re-think why two boys/young men would do what they did - commit
mutual suicide via slaughtering their classmates.

2. It’s the patented scene where the killer creeps up behind the victim.

GoodReads - Topic 1
Cure, Plague, Trial, Betray, Thomas, Secret, Dashner, Ball, Betrayal, Wicked

1. Blaming Cinder for her daughter’s illness, Cinder’s stepmother volunteers
her body for plague research, an ”honor” that no one has survived.

2. By age thirteen, she has undergone countless surgeries, transfusions, and
shots so that her older sister, Kate, can somehow fight the leukemia that has
plagued her since childhood.

GoodReads - Topic 2
Teenager, Fault, Illness, Mental, Depression, Maddy, Grief, Bully, Topic, Greg

1. She’s got a lot of mental strength, having been ostracized for most of her
life.

2. She went through a divorce, a crushing depression, another failed love, and
the eradication of everything she ever thought she was supposed to be.

Amazon - Topic 1
Dent, Gotham, City, Gordon, Bruce, Wayne, Harvey, Joker, Criminal, Nolan

1. Being imprisoned Batman has enough time to paint a gigantic flaming bat
on a bridge while people are literally being executed on the hour.

2. Batman gets with Catwoman... after how hard she sold him out?

Amazon - Topic 2
Gandalf, Frodo, Jackson, Tolkien, Dwarf, Fellowship, Peter, Orc, Ring, Hobbit

1. [...] the myriad inhabitants of Middle-earth, the legendary Rings of Power,
and the fellowship of hobbits, elves, dwarfs, and humans–led by the wizard
Gandalf (Ian McKellen) and the brave hobbit Frodo.

2. This is the beginning of a trilogy; soon to be finalized.

Table 4.4: Example of plot/neutral topics extracted by DIATOM and their associated
most similar sentences.
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Opinion-Bearing Topics

IMDB - Topic 1
Badly, Stock, Remove, Poorly, Hype, Ridiculous, Insult, Disaster, Excuse, Lame

1. I can’t imagine how anyone could have read this badly written script and
given it the greenlight.

2. Although there has obviously been a lot of money spent on them the num-
bers are badly staged and poorly photographed.

IMDB - Topic 2
Exceptional, Recommend, Excellent, Craft, Believable , Overlook, Vhs, Solid, Festival,
Amaze

1. Overall, this is a good film and an excellent adaption.
2. It’s great acting, superb cinematography and excellent writing.

GoodReads - Topic 1
Negative, Judge, Note, Pretend, Embarrass, Quality, Extreme, Guilty, Fake, Borrow

1. Can you give something negative stars?
2. And while it must be hard reading negative reviews you need to be able to

deal with this in a graceful way (no one likes a sore loser).

GoodReads - Topic 2
Teen, Nice, Normally, Little, Genre, Amuse, Theme, Enjoyment, Blow, Reread

1. What would have made the book a lot more fun to read was more meatier
characters in the other girls.

2. But I feel like that was part of the fun of it.

Amazon - Topic 1
Expectation, Quality, Definitely, Great, Good, Worth, Graphic, Predictable, Compare,
Decent

1. Action is good.
2. Rachel Weisz was “mostly” good.

Amazon - Topic 2
Price, Shame, Service , Normally, Purchase, Connection, Greed, Stream, Watch, Frustrate

1. This experience leaves me skeptical of the Amazon Prime video service.
2. Look closely before purchasing.

Table 4.5: Example of opinion topics extracted by DIATOM and their associated most
similar sentences.
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Datasets Models Accuracy TC / TU

IMDB DIATOM 0.726 ± 0.03 0.639 / 38.1
– w/o orth reg. 0.723 ± 0.01 0.582 / 27.5
– w/o sent. class. 0.491 ± 0.03 0.601 / 35.4
– w/o both 0.478 ± 0.03 0.544 / 25.4
– w/o Plot Net 0.734 ± 0.03 0.603 / 36.7

GoodReads DIATOM 0.704 ± 0.02 0.634 / 52.9
– w/o orth. reg. 0.681 ± 0.02 0.612 / 41.1
– w/o sent. class. 0.446 ± 0.02 0.638 / 47.6
– w/o both 0.410 ± 0.02 0.552 / 39.6
– w/o Plot Net 0.695 ± 0.03 0.615 / 49.3

Amazon DIATOM 0.686 ± 0.02 0.598 / 82.3
– w/o orth reg. 0.682 ± 0.01 0.605 / 55.3
– w/o sent. class. 0.601 ± 0.03 0.573 / 76.9
– w/o both 0.548 ± 0.03 0.567 / 52.1
– w/o Plot Net 0.603 ± 0.02 0.584 / 78.3

Table 4.6: Ablation study over DIATOM by removing the orthogonal regularisation,
the sentiment classifier or just the auxiliary Plot Network.

As an example, we plot in Figure 4.4 the 2-dimensional representation of the

topic distributions projected by t-SNE for the Amazon dataset. Different colours

represent different types of topics generated by DIATOM, namely plot/neutral in

blue and opinion in red. We notice how consistently across a different number of

topics, plot/neutral topics tend to cluster together, with the boundary close to some

polarised topics likely to share common features, as shown in Figure 4.1 in which

the plot topic and the negative topic share a common word ‘Dwarf ’.

4.5.5 Ablation Study

We report in Table 4.6 the results of the ablation study on DIATOM. We observe

that removing the orthogonal regularisation has a limited effect on sentiment clas-

sification, but causes a fluctuation on topic coherence and a clear drop in topic

uniqueness. A significant classification performance drop is observed by removing

the sentiment classifier, which essentially reduces DIATOM to an unsupervised

model. Removing both the orthogonal regularisation and the sentiment classifier

shows a major negative impact on both accuracy and the topic’s quality.

Finally, we assess the influence of the plot network (§4.3), and while we do not

notice any consistent impact across the datasets in terms of sentiment classification,

69



the quality of topics has a notable drop in terms of coherence and diversity.

4.6 Summary

We have described DIATOM, a new neural topic model to generate disentangled

topics through the combination of VAE and adversarial learning.

We reported the results of our experimental study based on the novel MOBO

dataset highlighting the benefit of such an approach leading to topics with higher

interpretability in terms of both topic coherence and topic uniqueness and more

discriminative power reflected in better sentiment classification results compared to

other supervised topic models.

Finally, we further discussed the model capability to consistently disentangle

opinion-bearing topics from plot/neutral ones measuring the introduced disen-

tangling rate.
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Chapter 5

Topical Phrase Extraction from
Clinical Reports

Chapter Abstract

Making sense of words often requires to simultaneously examine the surround-

ing context of a term as well as the global themes characterising the overall

corpus. Several topic models have already exploited word embeddings to lever-

age the word local context, however, this has been weakly combined with the

global context during the topic inference. In this chapter, we introduce Context-

GPU, a topic model for topical phrase extraction, which by means of the Pólya

urn model corroborates the word embedding information with the global context

detected by the Latent Semantic Analysis. To highlight the effectiveness of this

combined inference, the model was assessed in analysing clinical reports, a chal-

lenging scenario characterised by technical jargon and limited word statistics.

Experimental results have shown it outperforms the state-of-the-art methods in

terms of both topic coherence and computational cost.

5.1 Introduction

Topic models have been extensively used to generate synthetic representations of

the main themes characterising a large document collection. Documents are tra-

ditionally represented under the bag-of-words assumption, a simple but effective

representation that ignores the word orders, but in spite of this has shown remark-

able results [16]. However, this assumption has commonly led to the extraction of
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unigram topics, relying on the word co-occurrence patterns across documents. This

has notably narrowed the topic expressiveness as many domain-specific documents

might include concepts that are unfolded in multiple words rather than in a single

term, and the shared semantic of these words is solely based on their global context.

Clinical reports are a prominent example of this family as medical concepts are often

expressed in terms of multi-word phrases. For example, the phrases “white blood cell”

or “blood sugar” would lose their meaning if decomposed as unigrams; in addition,

the word cell and sugar might be wrongly put under the same topic because of the

shared blood term.

Recently, word embeddings have gained an increasing interest thanks to their

capability to leverage the word’s local context, with an improved efficiency in rep-

resenting words as continuous vectors of a low-dimensional space [36, 79, 120]. The

resulting embeddings have been proved to encode numerous syntactic and semantic

relations (e.g., similarities or analogies) based on the local context of words [92],

and therefore, several works tried to combine topic models with word embedding

[25, 94, 127, 130]. This generally resulted in an increased expressiveness of the

discovered topics due to the word properties geometrically encoded in the word

embeddings. However, the resulting models commonly entail a high computational

cost, and the coherence of the generated topics is still negatively affected by the

inherent limitations affecting these word embeddings, such as the topic shifting

issue [145]. Indeed, words that share similar context windows might potentially

be treated as directly co-related into the embedding space, with a misleading word

similarity in case of antonyms (e.g. tall and short) or co-hyponyms (e.g. schizophrenia

and alzheimer). In turn, this would lead the topic models to clustering words that

are not strictly related despite sharing a common context or domain.

The computational cost required to combine word embeddings and topic mod-

els can be reduced by adopting the Generalised Pólya urn model [109]. Although the

Latent Dirichlet Allocation (LDA) [16] already used the Simple Pólya urn model, its

generalised version proposed in Mimno et al. (2011) allows incorporating word

relatedness directly into the inference process, using the corpus statistics. We posit

that a simple but effective extension of the Generalised Pólya urn model would consist

of evaluating, instead, the word relatedness based on the word embedding scores.

Concurrently, the coherence of the generated topics can be improved by mitigating

the impact of the topic shifting issue by jointly considering the global and local

context of a word, so that if two terms appear in similar context windows but do not

share similar global contexts (i.e. corpus themes), they probably convey different

topics.
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We propose a Context-aware Pólya urn model (Context-GPU) to generate

topics by extracting topical phrases combining the local and global context of

words/phrases1. We first detect the medical phrases in clinical reports by means

of an off-the-shelf medical concept extraction tool; hence, the phrases extracted are

thus reliable and clinically relevant. Then, we use a modified Generalised Pólya urn

model, which promotes words/phrases under the same topic if they are close neigh-

bours in the window-based embedding (local context) as well as in the corpus-based

embedding (global context) space. The window-based embedding improves the

capability to detect semantic relatedness at the phrase level; also, it encodes word

co-occurrences from an external source of knowledge (e.g. Wikipedia) alleviating the

lack of statistics for technical terms. Simultaneously, the corpus-based embedding

provides information about the global context, inducing coherent topics closer to the

particular themes discussed. To the best of our knowledge, this is the first time local

and global contexts are combined for topical phrases extraction. Our experimental

results have shown the effectiveness of this approach outperforming the previous

methods in terms of quality of topics, topic coherence and efficiency.

We proceed to describe the related work (§5.2). We then give a background of

the Pólya urn model (§5.3) before presenting the proposed approach (§5.4). Finally,

we discuss our experimental results with a thorough comparison with with the

state-of-the-art approaches for topical phrase extraction (§5.5).

5.2 Related work

Our work is related to three lines of research, phrase embedding learning, topic

modelling incorporating word embeddings and using latent topics for language

model learning.

5.2.1 Phrase Embedding Learning

Distributional semantic models (i.e. word embeddings) have recently been applied

successfully in many NLP tasks [92]. Neural network based approaches have be-

come more efficient, allowing their use in multiple scenarios, thanks to the skip-gram

with negative-sampling training method (SGNS), [120, 121]. It was widely popular-

ised via word2vec, a software to create word embeddings. Recently, a new word

embedding method has been proposed, called FastText [79], which treats each word

as made of character n-grams. Vector representations are then computed from

1https://github.com/gabrer/context gpu/
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the sum of their n-gram representations. More traditional vector representations

are based on a dimensionality reduction obtained by applying the Singular Value

Decomposition (SVD) to the weighted document-term matrix of the corpus; Latent

Semantic Analysis (LSA) [34] is a prominent method following this approach.

Phase embeddings can be simply taken as the average of their constituent word

embeddings. If treating each phrase as a single term, its representation can also

be learned from data directly using word representation learning methods such

as LSA, SGNS or FastText. There have also been compositional semantic models

that aim to build distributional representations of a phrase from its constituent

word representations using Convolutional Neural Networks (CNNs) [89], based

on features that capture phrase structure and context [198] or using convolutional

tensor decomposition [72].

5.2.2 Topic Modelling Incorporating Word Embeddings

To exploit the information encoded into word embeddings, several models have

been proposed combining topic models and word embedding representations. Gaus-

sian LDA [33], for instance, use pre-trained word embeddings learned from large

corpora (e.g., Wikipedia) to model topics as Gaussian distributions over the vector

representations, defining topics as random samples from a multivariate Gaussian

distribution whose mean is the topic embedding.

Nguyen et al. (2015) proposed to use the word embeddings pre-trained from

a large external corpus as latent word features to define categorical distributions

over words, which is called a latent feature component. The original topic-to-word

Dirichlet multinomial component in LDA which generates the words from topics is

then replaced by a two-component mixture of the original Dirichlet multinomial

component and a latent feature component. But model learning is difficult because

of the coupling between the two components.

An alternative approach is TopicVec [94] which replaces the multinomial topic-

word distribution with a probability function, it computes a focus word from a

topic and word neighbours within the embedding; in TopicVec this link function

is in addition combined with a context word embeddings along with the topic

embedding and the focus word embedding.

Li et al. (2016) measured the word relatedness based on pre-trained word

embeddings and used it to modify the Gibbs sampling inference in a generalised

Pólya urn model; overall, this strategy significantly reduces the computational

cost compared to the aforementioned approaches. However, it is not only entirely
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focused on the short-text analysis (i.e. one document, one topic), but it does not

exploit any global context to mitigate the effects of the topic shifting issues induced

by word embeddings. Moreover, it did not explore the benefit of using a n-gram

word embedding, such as FastText, against the word-oriented embeddings.

5.2.3 Using Latent Topics for Language Model Learning

While the aforementioned approaches incorporate word embeddings into the topic

model generation, there have also been attempts to make use of latent topics to

improve language models. Dieng et al. (2017) proposed TopicRNN in which the

global semantics come from latent topics as in typical topic modelling, but local

semantics is defined by the language model constructed using Recurrent Neural

Networks (RNNs). The separation of global vs local semantics is achieved using

a binary decision model for stop words. Topic vectors here are also sampled from

a Gaussian distribution with zero mean and unit variance and are refined during

language model learning. In a similar vein, Lau et al. (2017) proposed a topic-driven

neural language model that also incorporates document context in the form of latent

topics into a language model implemented using Long Short-Term Memory (LSTM)

networks. They essentially treated the language and topic models as subtasks in a

multi-task learning setting, and trained them jointly using categorical cross-entropy

loss.

5.3 Pólya Urn Models

In this section, we give a background of both simple and generalised Pólya urn

Models. We describe how they can be used for topic extraction, before presenting in

the next section our proposed approach that extends them to exploit word contexts.

As shown in Mimno et al. (2011), the simple LDA model might not be able to

fully capture the already available statistics of word co-occurrences in a corpus.

Detecting semantic similarity between words is challenging due to the power-law

characterisation of natural language, i.e., words sharing a common semantic might

rarely co-occur together and hence being overlooked. A more effective model called

Generalised Pólya urn model was proposed in Mimno et al. (2011), by extending the

Simple Pólya urn model used in LDA where the topic-word component is updated

in order to strengthen the associations between related words under the same topic.

75



5.3.1 Simple Pólya Urn Model

The generative process of LDA can be interpreted by means of Pólya urn model

[109], a statistical model describing objects of interest (e.g. words or topics) in terms

of coloured balls and urns.

In the context of topic models, balls can be considered as words and urns as

topics; in particular, LDA follows the so-called Simple Pólya urn (SPU) model. In

the main step of this process, a coloured ball is randomly drawn from an urn and

is put back along with an additional new ball of the same colour; this induces a

self-reinforcement process known as ”rich get richer”, since the probability of seeing

a specific coloured ball from an urn increases every time this ball has been drawn.

Likewise, LDA follows the SPU model by employing two kinds of urns: topic-

document and word-topic urns. The topic-document urns hold balls whose colour

corresponds to different topics in a document, while the balls in the word-topic urns

represent different words in a topic. The generative process proceeds as follows: a

ball is extracted from the topic-document urn dm, and its colour determines the new

topic assignment ẑ, then the ball is put back along with another ball of the same

colour. Next, a ball is extracted from the word-topic urn ẑ determining a new word

ŵ and, as before, the ball with an additional one of the same colour is put back into

the urn. As a result, both the topic ẑ and the word ŵ increase their proportion in the

topic-document and word-topic distribution, respectively.

5.3.2 Generalised Pólya Urn Model

The described process is intrinsically biased to promote together words that fre-

quently occur in a corpus, overlooking less prominent but correlated words. To

alleviate this shortcoming and increase the association strength between rare but

still related words, a Generalised Pólya Urn (GPU) model was proposed by Mimno

et al. (2011). It incorporates a corpus-specific word co-occurrence metric into the

generative process affecting the probabilities of related words under the same topic.

Unlike the aforementioned simple version, in a generalised Pólya urn model

when a ball of colour ŵ has been drawn, Avw additional balls of several colours v =

{1, ..., W} are placed into the urn. This process increases, not only the probability of

the observed word ŵ, but also the probability of its related words, and is commonly

referred as promotion of the coloured balls [43]. Specifically, the LDA inference

process now relies on a modified Gibbs sampling algorithm which simultaneously

increases the probability of a word and its correlated terms at each iteration. Word

relatedness is computed by weighting word co-occurrences using the standard
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Inverse-Document Frequency (IDF) weighting strategy λv = log(D/D(v)), where

D is the number of documents and D(v) is the number of documents where the

word v occurs at least once; this weight has the beneficial property of being higher

for rare words increasing their prominence.

However, the effectiveness of this approach strongly depends on how accur-

ately word correlations are identified. Although the GPU framework proposed by

Mimno et al. (2011) has improved the average quality of mined topics, it still relies

exclusively on the global context of words (i.e. word co-occurrences in the corpus)

and might completely overlook the sentence-specific meaning of a word conveyed

by the word’s local context.

This drastically narrows the model’s capability to deal with multiple senses

of words. For example, looking at the sentences “White blood cell count is low.”

and “This raises the blood sugar back to its normal level.”, current models might put

under the same topic words like “cell” and “sugar”, which are rather unlikely to

appear coupled in a sentence. Moreover, similar issues can be experienced analysing

documents characterised by technical jargon, which occur few times in corpus (i.e.

poor statistics) and might exhibit a peculiar meaning for every phrase (i.e. multiple

meanings).

5.4 Context-Aware Pólya Urn (Context-GPU) Model

In this section, we propose a modified Gibbs sampling algorithm to conduct a

context-driven inference to cope with the described limitations. It exploits a word

representation based on general sources of knowledge providing rich word statistics

and takes into account simultaneously the local and global context of words to

disambiguate irrelevant terms.

Our hypothesis is that the Generalised Pólya Urn model can be modified and en-

hanced to provide a framework combing the local and global context of words. Local

context is determined by a word embedding based on context window and trained

on a large source of general knowledge (e.g., Wikipedia). Rather, the global context

relies on the word representations obtained considering the term co-occurrences

within a corpus. As a result, both local and global context can be incorporated into

a context-aware Pólya urn model called Context-GPU, a generative model which is

able to capture the semantics of a word at both the sentence and document level,

mitigating the effects of the topic shifting issue on the generated topics.

Before presenting our proposed Context-GPU, we first describe how we extract

medical phrases from clinical documents.
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5.4.1 Medical Phrase Extraction

Medical terms in clinical documents are often expressed in multi-word phrases,

for example, “arterial blood gas” and “heart transplant”. These phrases are not se-

mantically decomposable, as once split into unigrams, they would lose their original

semantic meanings.

We use an open-source clinical annotation tool MedTagger2 which extracts and

annotates concepts from clinical reports by leveraging knowledge bases, machine

learning and syntactic parsing. The output of MedTagger provides detailed inform-

ation about the medical concept detected, such as attributes, uncertainty, semantic

group (i.e. Diagnosis, Test and Treatment), and so on. Also, it has achieved the

state-of-the-art performance in terms of F-Measure (0.84) at the i2b2 NLP challenge

on the concept mention task [100].

Clinical reports are also characterised by many occurrences of medical abbre-

viations to favour brevity due to a large amount of information that needs to be

synthesised in a short time and limited space. Detection of medical concepts through

MedTagger is not only much more reliable than other general-purpose techniques

for phrase extraction, but also allows to effectively detect and preserve the medical

abbreviations. Once medical phrases are detected, they are represented by com-

pound words where constituent words are joined together by an underscore. E.g.

words that compose the phrase “short of breath” are substituted by the compound

word “short of breath”, “saphenous vein graft” by “saphenous vein graft”, and so on.

However, treating phrases as compound words leads to more severe data

sparsity since phrases sharing common lower-order n-grams, such as “right coronary

artery” and “left coronary artery” would be considered as two totally different terms.

Also, preserving both the multiple words and the compound phrase is not a solution,

as the phrases are naturally less frequent than individual words and would be

ranked with lower probabilities.

To this end, once multiple words are substituted by a compound word, in the

Context-GPU we adopt the FastText embedding [79], a word embedding oriented

by design to deal with sub-grams composing words. Thus, it naturally fits the need

to detect the similarity between a phrase and its constituent words. For example, in

our trained FastText embeddings the word saphenous vein graft has neighbours such

as saph, aphe, but also vein and graft. Therefore, we combine FastText with the Pólya

urn model to increase the probability to see under the same topic the words vein or

graft once we come across the phrase saphenous vein graft, and vice versa.

2http://ohnlp.org/index.php/MedTagger
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5.4.2 Local Context

Some commonly used embedding have been the SVD [92] and SGNS (i.e. word2vec)

[120], and only recently FastText [79], and they all provide vectors encoding both

syntactic and semantic information about a word at its local context window in a

large corpus.

Two characteristic features of these embeddings are here exploited. The first

is that words are represented by a vector trained with regard to the local contexts

where the words are likely to appear. Therefore, it can be used to reinforce ties

among words sharing common uses in phrases (e.g. alzheimer and schizophrenia).

The second feature is that word embeddings are commonly trained on a large

external source of data (e.g. Wikipedia), hence they can mitigate the low statistics of

infrequent technical jargon or rare words in a corpus.

Words are considered related based on the geometric proximity of their vector

representations. We propose two strategies to extract related words: a threshold

and a Top-N approach. In the threshold approach, words are considered relevant

when their respective cosine distances with the target word are lower than a pre-

defined threshold. Alternatively, the Top-N approach extracts a fixed number N

of the closest words regardless of their actual distances. In the former approach,

the number of neighbours is not fixed for different words, while in the latter, the

number is fixed but also unrelated words could be added to the neighbour set.

5.4.3 Global Context

Although topics extracted by combining word embedding and Pólya urn model

are more consistent with the occurrence pattern of words in sentences, word em-

beddings have some well-known shortcomings related to antonyms (e.g. tall and

short) or co-hyponyms (e.g. schizophrenia and alzheimer). Indeed, these are words

that might share similar context windows and then be potentially treated as directly

correlated into the embedding space. To avoid any semantic shift resulting from

word ambiguities, we balance the local context information with the corpus-specific

context computed by applying the Latent Semantic Analysis (LSA) [34].

In particular, we use LSA to learn latent topics from data by performing Singular

Value Decomposition (SVD) on the V × D term-document count matrix where V

is the vocabulary size and D is the number of documents. SVD factorises such a

matrix into the product of three matrices, W, Σ, and Cᵀ . In W ∈ RV×m, each row

represents a word and each column represents a dimension in a latent space that

is orthogonal to each other. Σ is a diagonal m× m matrix that contains singular
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values along the diagonal indicating how important each latent dimension is. In

Cᵀ ∈ Rm×D, each row represents one of the latent dimensions and each column

represents a document. If taking the top k latent dimensions in W, we will have a

reduced matrix Wk ∈ RV×k where each word is essentially represented by a dense

k-dimensional vector. Hence, using LSA, we will be able to generate another set of

word embeddings based on global context. For each word, we can then retrieve its

related words using the threshold or Top-N approaches mentioned above.

One may argue that topic models such as LDA already captures the global

context information by compressing the original document into a lower-dimensional

bag-of-topics representation. It is worth noting that LSA learns latent topics by

performing SVD on the term-document count matrix, and as a result, the topics are

assumed to be orthogonal. LDA uses generative probabilistic models to generate

latent topics that are represented as word distributions, and it uses Dirichlet priors

for both the document-topic and topic-word distributions. In LDA, topics are

allowed to be non-orthogonal. So although both LSA and LDA try to capture the

global context, the topic results would be somewhat different. It has been pointed

out previously that in some scenarios LSA outperforms LDA providing better

quality topics [13]. As will be shown in our experiments, additionally incorporating

the global context derived by LSA into the context-aware Polya Urn model gives

better performance.

Words are likely to express a common topic, not only when sharing a common

local context window (i.e. FastText similarity), but also a global context (i.e. LSA

similarity) depending on the analysed documents. Therefore, we first extract the

word neighbours from the embeddings based on both the local and the global

contexts. Then, we preserve only those terms in the intersection of the two sets,

therefore improving the probability that words in a topic are related via both their

local and global contexts.

5.4.4 Topic Inference

Given the set of documentsD and the topic assignmentsZ , the conditional posterior

probability of a word w in a topic z follows the standard generalised Pólya urn model

[123]:

P(w|z,W ,Z , β, A) =
∑v Nv|z Avw + β

Nz + |V|β
(5.1)

where A is a promotion matrix that expresses whether two words are related to each

other, i.e. if one should influence the expectation to draw the other one.
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Algorithm 1 Training procedure of the Context-aware Pólya urn model.

Input: Corpus C, K topics, α, β, thresholds τ and σ
Output: Posterior topic-word distribution

1: /* Medical phrase extraction */

2: Cp ← MedTagger.PhraseDetection(C);
3:
4: /* Local and global neighbors */

5: for v ∈ W do
6: Pv ←WindowEmbedding.Neighbors(v);
7: Qv ← CorpusEmbedding.Neighbors(v);
8: end for
9:

10: /* Promotion matrix */

11: Av,w ← ComputePromotionMatrix(Pv,Qv)
12:
13: /* Generalised Pólya Urn sampling */

14: for d ∈ D do
15: for wn ∈ wd do
16: Nzi |di

← Nzi |di
− 1

17: for all v do
18: Nv|zi

← Nv|zi
− Avwi

19: end for
20: end for
21: sample zi ∝ (Nz|di

+ αz)
Nwi |z+β

∑z′ Nwi |z′
+β

22: for wn ∈ wd do
23: Nzi |di

← Nzi |di
+ 1

24: for all v do
25: Nv|zi

← Nv|zi
+ Avwi

26: end for
27: end for
28: end for

81



-6

-5

-4

-3

-2

-1

50 60 70 80 90 100

To
p

ic
 c

o
h

er
en

ce

Number of topics

LDA Gen.PolyaUrn  Context-GPU TopicVec TPM

Figure 5.1: Context-GPU: topic coherence scores vs. number of topics.

The promotion matrix is critical for the overall algorithm performance, as it

concisely expresses the available information about word relatedness. We propose

to set the values of A by computing the word relatedness as a result of the P
neighbours provided by the local context embeddings and the Q neighbours from

the global context embeddings. For a word v, another word w is promoted if it is

v’s neighbour both at the local level (i.e., based on its local context embedding) and

the global level (i.e., based on its global context embedding), as expressed in Eq.

5.2. Thus, only if both words are correlated in both the local and global context

embedding space, their corresponding cell value in A is updated to increase their

probabilities to be drawn under the same topic. In the particular case in which

A correspond to the identity matrix, the model collapses into the Simple Pólya

urn model, providing the posterior probability of a word w under a topic z for the

standard LDA.

The training procedure of our proposed context-aware Pólya urn model is

shown in Algorithm 1. The Gibbs sampling inference can be more complex and

expensive due to the non-exchangeability property of words in the generalised Pólya

urn model (i.e. under the same topic, the joint probability of words is not invariant

to permutation). Therefore, we follow the same approach adopted in Mimno et

al. (2011), considering each word as it was the last one during the inference process,

ignoring the effect for subsequent words and their topic assignments.

Av,w =

1 if w ∈ (Pv ∩Qv)

0 otherwise
(5.2)
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5.5 Experiments

We assess the effectiveness of our proposed Context-GPU using the data released as

part of the i2b2 Natural Language Processing Challenges for Clinical Records [165]. The

corpus consists of 1,243 de-identified discharge summaries, characterised by medical

jargon, which describes medications, dosages, modes (e.g. oral, intravenous, etc.),

frequencies, reasons for the treatment, and so on. Hence, we adopted this dataset to

assess the model efficacy to deal with multi-phrase concepts and domain-specific

jargon.

Clinical reports are pre-processed by removing the common English stop words

as well as the clinical-related stop words (e.g. ”Dr.”, ”medical problem”, ”discharge”,

etc.). We filter out the most frequent ten words and the words occurring less than

five times. We use the MedTagger software to detect medical phrases and represent

them as bag-of-phrases within the documents. We do not perform stemming. As

a result, in the “bag-of-words” setting the vocabulary size is 7,883, while in the

“bag-of-phrases” setting it further increases to 9,932.

Word embeddings are trained on a snapshot of Wikipedia 2015, combined with

the i2b2 dataset. We use the hyperwords library3 [92] to train the 300-dimensional

SVD and SGNS embeddings, configured with the default parameters. Likewise,

we train the 300-dimensional FastText embedding using the library provided by

Facebook Research4, with n-gram sizes set between 2 and 6. The LSA representation

adopted as local context is computed on the i2b2 dataset; we use the S-space library5

to compute the final 300-dimensional representation of words and documents.

We train Context-GPU and set θ and σ to 0.7 and 0.8, respectively, based on a

grid search of values in [0.5, 0.6, 0.7, 0.8, 0.9], using 5-fold cross validation. We set the

maximum number of Gibbs sampling iterations to 1500. We compare Context-GPU

with the following baselines:

• LDA. We use the LDA implementation in MALLET6 with the default settings

and perform hyperparameter optimisation every 200 iterations.

• Generalised Pólya urn (GPU) model [123]. We implemented this algorithm by

modifying the LDA implementation in the MALLET library.

• TopicVec [94]. We use the available implementation7 with the default config-

3https://bitbucket.org/omerlevy/hyperwords
4https://github.com/facebookresearch/fastText
5https://github.com/fozziethebeat/S-Space
6http://mallet.cs.umass.edu
7https://github.com/askerlee/topicvec
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Figure 5.2: Context-GPU with different word/phrase embedding learning methods
vs. number of topics.

uration, increasing the maximum iteration number.

• TPM [62]. We implemented the Topical Phrase Model which extracts medical

topics using both MedTagger and a hierarchy of Pitman-Yor processes. It

outperformed other topical phrase extraction models.

5.5.1 Topic coherence

We assess the generated topics by evaluating their topic coherence. We adopt the

topic coherence measure proposed in Mimno et al. (2011), which relies on the co-

occurrence statistics collected from the analysed corpus; this allows us to directly

measure the coherence of topics with topical phrases (e.g. short of breath).

In our evaluations, we compute the topic coherence on the top 10 words/phrases

using the implementation provided in the Palmetto library8 [148]. In Figure 5.1, we

report the topic coherence computed by averaging the coherence scores resulting for

each topic. A peak of coherence is obtained around 60/70 topics for every model,

suggesting a potentially suitable number of topics to discriminate the documents.

GPU with only local context incorporated outperforms LDA, but its performance

is worse compared to TopicVec or TPM. Context-GPU gives superior results over

all the baseline models, in particular around 60 and 70 topics. This shows that

incorporating the global context is essential to achieve a better topic coherence than

only considering the local context. Also, our proposed Context-GPU only involves

simple modifications to the GPU. Still, it appears to be more effective than more

complex approaches for incorporating word embeddings in topics models (such

as TopicVec) or assuming a generative process for documents following the HPYP

process (such as TPM).

8https://github.com/dice-group/Palmetto
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Figure 5.3: Context-GPU: execution time vs. number of topics.

To extract and represent topical phrases from text, we have explored two differ-

ent methods that learn word/phrase representations: one that infers them directly

from the data using the SVD; the second one, training an embedding over the com-

bination of Wikipedia with clinical reports, using SGNS or FastText. In Figure 5.2,

we compare these word/phrase embedding methods over our Context-GPU. We can

observe that SVD and SGNS perform similarly in most cases and SVD even slightly

outperforms SGNS when the topic number is set to 80 or 90. FastText outperforms

the other two word/phrase embedding learning methods especially when the topic

number is lower than 80. This shows that FastText built on character n-grams is

more effective in capturing phase sub-structures.

Finally, we compare in Figure 5.3 the execution time required to train the

models, excluding the constant time needed by each model to load the embeddings.

We did not plot the training time for TPM as it required significantly more time

(over 12 hours) compared to all the other models, showing that modelling the

phrase generation using HPYP is very expensive. TopicVec is computationally more

demanding than the others, while both GPU and Context-GPU have no noticeable

differences, requiring three-fold the training time of LDA. Overall, Context-GPU

appears to be more effective compared to TopicVec and TPM.

5.5.2 Topic Qualitative Assessment

We report in Table 5.1 some of the topics generated in a 70-topics run. We discuss

only the topics of TopicVec and Context-GPU since TopicVec gives coherence scores

on par with TPM but requiring significantly less training time. Topics mined with

LDA are used as a baseline and are mainly composed of unigrams. This is probably

due to the sparseness of the phrases, which tend to naturally occur less frequently

than single words, and LDA does not have any compensation strategy to highlight

rare yet still relevant words. TopicVec inference instead learns both word and
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topic embeddings simultaneously. It allows the model to take into account the local

context of words, which in turn, alleviates the lack of global statistics for a term. Both

the topics of TopicVec and Context-GPU make large use of topical phrases. However,

in several topics of Context-GPU, we can distinguish a gradual definition of the

analysed themes, which reflect better semantic coherence. For example, in Topic 4,

it can be observed a gradual topic refinement under Context-GPU from the general

purpose terms, such as felt or insufficiency, to more characterising words/phrases

such as shortness of breath, atrial fibrillation. In addition, we can observe under the

same topic both symptoms and medications, such as dilated cardiomyopathy and

Plavix 75 mg. This qualitative analysis bring further insights on the expressiveness of

topics extracted by the Context-GPU, compared to LDA and TopicVec, due to their

internal coherence and the enhanced expressiveness of the adopted words/phrases.

It is worth noting, that even though the topic coherence commonly adopted to

evaluate the quality of topics [123, 148] provides a reliable measure of the express-

iveness and meaningfulness of the generated topics, it currently lacks any control of

the medical consistence of the concepts reported within the generated topics, what

could be referred as medical topic coherence. A future research direction could be

focused on this human and automatic evaluation, and the possible approaches to

increase this medical topic coherence rather than just the general-purpose one.

5.6 Summary

We have described a novel approach that effectively combines the local and global

context of words and phrases. It first detects reliable medical phrases, and then gen-

erates topics using our proposed Context-aware Pólya urn model, a statistical model

combining the word semantics encoded by the context-based and corpus-based

embeddings. In particular, we have employed the LSA and FastText embeddings.

The former encoded the topical information with regard to the corpus themes; the

latter allowed a fine-grained detection of the word semantics depending on the local

context in which they occurred. An experimental comparison with the state-of-the-

art methods has shown an improved coherence of final topics and a significantly

decreased computational cost.
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LDA

Topic 1 Topic 2 Topic 3 Topic 4
chemotherapy fever stroke congestive heart failure
dilantin urinalysis carotid diuresis
oncology culture weakness ejection fraction
xrt bacteria speech approximately
oncologist white blood cell stenosis felt
cycle polys confusion orthopnea
breast cancer infection head ct digoxin
left breast band neurology dyspnea
seizure fluid morning weight
cancer white mass insufficiency

TopicVec

Topic 1 Topic 2 Topic 3 Topic 4
carotid diuresis dyspnea on exertion congestive heart failure
coronary artery torsemide ejection fraction fibrillation
magnesium cardiomyopathy pulmonary ejection fraction
saphenous vein graft shortness of breath atrial fibrillation insufficiency
potassium chloride torsemide 100 mg diuresed calcium
coronary artery bypass grafting spironolactone 25 mg congestive heart failure intubation
mitral insufficiency diuretic ischemia thyroid
mitral regurgitation aldactone diabetes mellitus vascular congestion
potassium pleural effusion propafenone tricuspid regurgitation
substernal pulmonary edema volume overloaded right knee

Contex-GPU

Topic 1 Topic 2 Topic 3 Topic 4
pregnancy mitral regurgitation coronary artery disease congestive heart failure
ultrasound digoxin cardiac transplant pulmonary edema
postpartum hemorrhage pleural effusion cardiomyopathy orthopnea
endometrial biopsy orthopnea right coronary artery nonischemic
total abdominal hysterectomy dilated cardiomyopathy pravachol 20 mg diastolic dysfunction
postpartum plavix 75 mg paroxysmal atrial fibrillation cardiomyopathy
vomiting shortness of breath cyclosporine heart failure
salpingo oophorectomy dyspnea on exertion herpes zoster shortness of breath
physical examination tachyarrhythmia fenofibrate tricor cardiac catheterization
fibroid pulmonary edema right coronary artery atrial fibrillation

Table 5.1: Topics generated by LDA, TopicVec, and Context-GPU in a 70-topics run.
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Chapter 6

Boosting Low-Resource
Biomedical QA via Entity-Aware
Masking Strategies

Chapter Abstract

In this chapter, we present an approach to incorporate biomedical external

knowledge into pre-trained language models by a fine-tuning process focused on

pivotal entities, characterizing the domain at hand. This approach is inspired

by the word of Krasnashchok et al. 2018, showing how promoting entities

in Latent Dirichlet Allocation leads to better and more interpretable topics.

Analogously, in this work, we propose a masking strategy to learn and realign

the language model representations around the promoted biomedical entities.

This is a first step, paving the way to future works for seamless integration of

topic representations and language models [25, 130].

6.1 Introduction

Biomedical question-answering (QA) aims to provide users with succinct answers

given their queries by analyzing large-scale scientific literature. It enables clinicians,

public health officials and end-users to quickly access the rapid flow of specialized

knowledge continuously produced. This has led the research community’s effort

towards developing specialized models and tools for biomedical QA and assessing

their performance on benchmark datasets such as BioASQ [164], or the CovidQA
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collection [161], the first manually curated dataset about COVID-19 related issues.

Producing such data is time-consuming and requires involving domain experts,

making it an expensive process. As a result, high-quality biomedical QA datasets are

a scarce resource. One recently released CovidQA collection [161], the first manually

curated dataset about COVID-19 related issues, provides only 127 question-answer

pairs. Even one of the largest available biomedical QA datasets, BioASQ, only

contains a few thousand questions.

There have been attempts to fine-tune pre-trained large-scale language models

for general-purpose QA tasks [104, 142, 143] and then use them directly for biomed-

ical QA. This is due to their domain adaption ability (i.e. transfer learning) which

made it possible to leverage the broad knowledge already encoded in them [139].

Furthermore, there has also been increasing interest in developing domain-specific

language models, such as BioBERT [91] or RoBERTa-Biomed [60], leveraging the

vast medical literature available. While achieving state-of-the-art results on the QA

task, these models come with a high computational cost: BioBERT needs ten days

on eight GPUs to train [91], making it prohibitive for researchers with no access to

massive computing resources, delaying the applications to novel emerging domains.

An alternative approach to incorporating external knowledge into pre-trained

language models is to drive the LM to focus on pivotal entities characterizing

the domain at hand during the fine-tuning stage. Similar ideas were explored in

works by Zhang et al. [201], Sun et al. [157], which proposed the ERNIE model.

However, their adaptation strategy was designed to generally improve the LM

representations rather than adapting it to a particular domain, requiring additional

objective functions and memory. In this work, we aim to enrich existing general-

purpose LM models (e.g. BERT [36]) with the knowledge related to key medical

concepts. In addition, we want domain-specific LMs (e.g. BioBERT) to re-encode the

already acquired information around the medical entities of interest for a particular

topic or theme (e.g. literature relating to COVID-19).

Therefore, to facilitate further domain adaptation, we propose a simple yet

unexplored approach based on a novel masking strategy to fine-tune an LM. Our

approach introduces a biomedical entity-aware masking (BEM) strategy encouraging

masked language models (MLMs) to learn entity-centric knowledge (§6.3). We first

identify a set of entities characterizing the domain at hand using a domain-specific

entity recognizer (SciSpacy [126]), and then employ a subset of those entities to drive

the masking strategy while fine-tuning. The resulting BEM strategy is applicable

to a vast variety of MLMs and does not require additional memory or components

in the neural architectures. Experimental results show performance on a par with
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the state-of-the-art models for biomedical QA tasks (§6.5) on several biomedical QA

datasets, with an improved perplexity scores over the domain-specific documents

(§6.3). A further qualitative assessment provides an insight into how QA pairs

benefit from the proposed approach.

6.2 Related Work

Our work is mainly related to two lines of research on masking strategies for

language models and model specialization to particular domains and tasks.

6.2.1 Masking Strategies

In the wake of BERT [36], several new language models have been proposed, adopt-

ing different masking strategies.

Several alternative strategies have been recently proposed with different impacts

on the final performance. In RoBERTa [104], even though the words are chosen with

the same criterion used in BERT, the authors introduced a dynamic masking where

every time a sequence is fed into the model a difference masking pattern is generated,

compared to the static approach followed in the original BERT implementation,

where each sample was masked once during preprocessing. They also introduced

a slightly different training procedure: they removed the next sentence prediction

task and showed that performance does not decrease, and at times even improved

on some downstream tasks.

In SpanBERT, Joshi et al. (2020) proposed to mask and predict spans rather than

tokens. ERNIE [201] instead is focused on masking phrases and named entities to

improve the structural knowledge encoded. Although their adaptation strategy was

designed to generally improve the LM representations rather than adapting it to a

particular domain, it requires additional objective functions and memory.

A rather different strategy is based on the permutation language modeling (PLM)

task, proposed to train the XLNet model [193]. The aim of the permutation language

model is to pre-train the LM without the need to rely on data corruption, i.e. to use

a [MASK] token which though does not appear during the fine-tuning process. To

avoid this discrepancy between the pre-training and fine-tuning phases, it instead

minimizes the expected log-likelihood of a sequence with regard to all possible

permutations of the sequence order.

90



6.2.2 Model Specialization

A wide spectrum of specialized language models has been recently developed

[8, 23, 91, 196] due to the possibility to process a vast variety of data to fine-tune the

models towards different domains and tasks. Among the tasks where contextual-

ized language models has had a remarkable impact, we have question answering

[143], machine reading comprehension [159], named entity recognition (NER) [46],

sentiment analysis [196] and so on. Some of these techniques have been combined in

the T5 model [142], an encoder-decoder transformer-based model sharing the same

model, objective and training process across multiple NLP tasks, all reframed as

“text-to-text” problems: document summarization, sentiment classification, question

answering, machine translation and so on. Although like BERT, T5 uses a denoising

approach for the masking strategy, it masks whole spans rather than single tokens.

Particular attention has been devoted to the medical domain, where different

corpora and tasks still require different adaptation techniques. BioBERT [91] is a

biomedical language model based on the BERT-Base variant [36], with additional

pre-train on biomedical documents from PubMed and PMC collections, and uses

the same training settings adopted in BERT. SciBERT [8] follows the BERT’s masking

strategy to pre-train the model from scratch using a scientific corpus composed

of papers from Semantic Scholar [4]. Out of the 1.14M papers used, more than

80% belong to the biomedical domain. They both showed state-of-the-art result

compared to the non-BERT SOTA on several tasks, as Named Entity Recognition,

Question Answering and Relation Extraction [8, 91]. BioMed-RoBERTa [60] is

instead based on RoBERTa-Base [104] using a corpus of 2.27M articles from the

Semantic Scholar dataset [4]. While the previous models have been pre-trained on

biomedical corpora, our BEM approach is a fine-tuning strategy that relies on the

trained model to specialize them with fine-grained updates lead by the external

biomedical knowledge encoded into the named entity recognizer.

6.3 BEM: A Biomedical Entity-Aware Masking Strategy

The fundamental principle of a masked language model (MLM) is to generate word

representations that can be used to predict the missing tokens of an input text.

Chosen a piece of text x from a large unlabeled corpus X , the training is performed

by masking tokens in x, so that a pair (x, y) can be generated and used to update

the model (e.g. x = “Coronaviruses [MASK] a group of RNA [MASK]”; y= (“are”,

“viruses”)). A good and general-purpose MLM aims at encoding syntactic and

91



[MASK] with [MASK] ([MASK] 1.59) were more likely to 

reach to the [MASK] [MASK] than those without.

Patients

composite

diabetes HR

endpoints

Figure 6.1: Sentence from the AI2’s COVID-19 Open Research Dataset [177] with
entities masked based on the SciSpacy NER [126].

semantic information, along with some implicit knowledge (e.g., viruses), allowing

it to correctly predict the missing token y using the representation of x. While this

general principle is adopted in the vast majority of MLMs, the particular way in

which the tokens to be masked are chosen can vary considerably. We thus proceed

to analyze the random masking strategy adopted in BERT [36] which has inspired

most of the existing approaches, and we then introduce the biomedical entity-aware

masking strategy used to fine-tune MLMs in the biomedical domain.

BERT Masking strategy.

The masking strategy adopted in BERT randomly replaces a predefined proportion

of words with a special [MASK] token and the model is required to predict them. In

BERT, 15% of tokens are chosen uniformly at random, 10% of them are swapped

into random tokens (thus, resulting in an overall 1.5% of the tokens randomly

swapped). This introduces a rather limited amount of noise with the aim of making

the predictions more robust to trivial associations between the masked tokens and

the context. While another 10% of the selected tokens are kept without modifications,

the remaining 80% of them are replaced with the [MASK] token.

Biomedical Entity-Aware Masking Strategy

We describe an entity-aware masking strategy which only masks biomedical entities

detected by a domain-specific named entity recognizer (SciSpacy1). Compared

to the random masking strategy described above, which is used to pre-train the

masked language models, the introduced entity-aware masking strategy is adopted

to boost the fine-tuning process for biomedical documents. In this phase, rather than

randomly choosing the tokens to be masked, we inform the model of the relevant

tokens to pay attention to, and encourage the model to refine its representations

using the new surrounding context. Figure 6.1 shows an example of a sentence from

1https://scispacy.apps.allenai.org/
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Figure 6.2: Schematic depiction of the main steps involved in pre-training and
fine-tuning a LM for the Biomedical QA task.

the AI2’s COVID-19 Open Research Dataset [177] whose biomedical entities are

masked based on the SciSpacy NER [126].

Replacing strategy

We decompose the BEM strategy into two steps: (1) recognition and (2) sub-sampling

and substitution. During the recognition phase, a set of biomedical entities E is identi-

fied in advance over a training corpus.

Then, at the sub-sampling and substitution stage, we first sample a proportion ρ

of biomedical entities E∫ ∈ E . The resulting entity subsets E∫ is thus dynamically

computed at batch time, in order to introduce a diverse and flexible spectrum of

masked entities during training. For consistency, we use the same tokenizer for

the documents di in the batch and the entities ej ∈ E . Then, we substitute all

the k entity mentions wk
ej

in di with the special token [MASK], making sure that no

consecutive entities are replaced. The substitution takes place at batch time, so that

the substitution is a downstream process suitable for a wide typology of MLMs.

The main steps involved in specializing a language model for the biomedical QA

task are depicted in Figure 6.2.

6.4 Evaluation Design

Biomedical Reading Comprehension

We represent a document as di := (si
0, . . , si

j−1) , a sequence of sentences, in turn

defined as sj := (wj
0, . . , wj

k−1), with wk a word occurring in sj. Given a question
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q, the task is to retrieve the span wj
s, . . , wj

s+t from a document dj that can answer

the question. We assume the extractive QA setting where the answer span to be

extracted lies entirely within one, or more than one document di.

In addition, for consistency with the CovidQA dataset and to compare with

results in Tang et al. [161], we consider a further and sightly modified setting in

which the task consists of retrieving the sentence si
j that most likely contains the

exact answer. This sentence level QA task mitigates the non-trivial ambiguities

intrinsic to the definition of the exact span for an answer, an issue particularly

relevant in the medical domain and well-known in the literature [171]2.

Datasets

We assess the performance of the proposed masking strategies on two biomedical

datasets: CovidQA and BioASQ.

CovidQA [161] is a manually curated dataset based on the AI2’s COVID-19

Open Research Dataset [177]. It consists of 127 question-answer pairs with 27 ques-

tions and 85 unique related articles. This dataset is too small for supervised training,

but is a valuable resource for zero-shot evaluation to assess the unsupervised and

transfer capability of models.

BioASQ [164] is one of the larger biomedical QA datasets available with over

2000 question-answer pairs. To use it within the extractive questions answering

framework, we convert the questions into the SQuAD dataset format [143], con-

sisting of question-answer pairs and the corresponding passages, medical articles

containing the answers or clues with a length varying from a sentence to a para-

graph. We used the provided passages including PubMed abstracts and snippets,

associating the full abstract when available. When multiple passages are avail-

able for a single question, we form additional question-context pairs combined

subsequently in a post-processing step to choose the answer with the highest prob-

ability, similarly to Yoon et al. [197]. For consistency with the CovidQA dataset, we

report our evaluation exclusively on the factoid questions of the BioASQ 7b Phase

B1.

Baselines

We use the following unsupervised neural models as baselines: the out-of-the-box

BERT [36] and RoBERTa [104], as well as their variants BioBERT [91] and RoBERTa-
2Consider, for instance, the following QA pair: “What is the incubation period of the virus?”, “6.4 days

(95% 175 CI 5.3 to 7.6)”, where a model returning just “6.4 days” would be considered wrong.
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Biomed [60] fine-tuned on medical and scientific corpora.

To highlight the impact of different fine-tuning strategies, we examine several

configurations depending on the data and the masking strategy adopted. We

experiment using the SQuAD and BioASQ QA training pairs during the fine-tuning

stage and denote the models using them with +SQuAD or +BioASQ respectively. When

we fine-tune the models on the corpus consisting of PubMed articles referred to in

the BioASQ and AI2’s COVID-19 Open Research Dataset, we compare two masking

strategies denoted as +STM and +BEM, where +STM indicates the standard masking

strategy of the model at hand and +BEM is our proposed strategy.

More precisely, +BEM+BioASQ indicates a model that is first fine-tuned over the

collection of biomedical articles (e.g., with BEM), and then further trained on a

set of question-answer pairs (e.g., the BioASQ training set). The first fine-tuning

step enhances the model with domain-specific information, while the second stage

endows the language model with task-related capabilities. Additionally, we report

the T5 [142] performance over CovidQA, which constitutes a current state-of-the-

art [161].

Metrics

To facilitate comparisons, we adopt the same evaluation scores used in Tang et al.

[161] to assess the models on the CovidQA dataset, i.e. mean reciprocal rank (MRR),

precision at rank one (P@1), and recall at rank three (R@3); similarly, for the BioASQ

dataset, we use the strict accuracy (SAcc), lenient accuracy (LAcc) and MRR, the

BioASQ challenge’s official metrics 3.

6.5 Experimental Results and Discussion

We report the results on the QA tasks in Table 6.1.

Among the unsupervised models, BERT achieves slightly better performance

than RoBERTa on CovidQA, yet the situation is reversed on BioASQ (rows 1,8). The

low precision of the two models (especially on the BioASQ dataset) confirms the

difficulties in generalizing to the biomedical domain. Specialized language models

such as RoBERTa-Biomed and BioBERT show a significant improvement on the

CovidQA dataset, but a rather limited one on BioASQ (rows 15,22), highlighting the

importance of having larger medical corpora to assess the model’s effectiveness.

3http://participants-area.bioasq.org/Tasks/b/eval_meas_2018/
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# Model
CovidQA BioASQ 7b

P@1 R@3 MRR SAcc LAcc MRR

1 BERT 0.081∗ 0.117∗ 0.159∗ 0.012 0.032 0.027

2 + SQuAD 0.110 0.131 0.158 0.292 0.343 0.318

3 + BioASQ 0.125 0.177 0.206 0.226 0.317 0.262

4 + STM + SQuAD 0.114 0.146 0.173 0.305 0.355 0.336

5 + STM + BioASQ 0.132 0.195 0.218 0.233 0.325 0.265

6 + BEM + SQuAD 0.126 0.173 0.191 0.317 0.371 0.349

7 + BEM + BioASQ 0.145 0.278 0.269 0.241 0.341 0.288

8 RoBERTa 0.068 0.115 0.122 0.023 0.041 0.036

9 + SQuAD 0.098 0.134 0.160 0.353 0.365 0.328

10 + BioASQ 0.106 0.155 0.178 0.278 0.324 0.294

11 + STM + SQuAD 0.107 0.148 0.175 0.361 0.388 0.347

12 + STM + BioASQ 0.112 0.167 0.194 0.282 0.333 0.300

13 + BEM + SQuAD 0.114 0.162 0.185 0.368 0.391 0.353

14 + BEM + BioASQ 0.125 0.198 0.236 0.323 0.374 0.325

15 RoBERTa-Biomed 0.104 0.163 0.192 0.028 0.044 0.037

16 + SQuAD 0.111 0.308 0.288 0.376 0.382 0.358

17 + BioASQ 0.128 0.355 0.315 0.415 0.398 0.376

18 + STM + SQuAD 0.118 0.314 0.297 0.381 0.390 0.367

19 + STM + BioASQ 0.136 0.364 0.321 0.423 0.410 0.397

20 + BEM + SQuAD 0.121 0.331 0.323 0.385 0.397 0.378

21 + BEM + BioASQ 0.143 0.386 0.347 0.435 0.443 0.398

22 BioBERT 0.097∗ 0.142∗ 0.170∗ 0.031 0.046 0.039

23 + SQuAD 0.161∗ 0.403∗ 0.336∗ 0.381 0.445 0.397

24 + BioASQ 0.166 0.419 0.348 0.410† 0.474† 0.409†

25 + STM + SQuAD 0.161 0.411 0.339 0.387 0.447 0.401

26 + STM + BioASQ 0.172 0.432 0.385 0.418 0.482 0.416

27 + BEM + SQuAD 0.168 0.427 0.354 0.391 0.458 0.423

28 + BEM + BioASQ 0.179 0.458 0.391 0.421 0.497 0.434

29 T5 LM

30 + MS-MARCO 0.282∗ 0.404∗ 0.415∗ — — —

Table 6.1: Performance of language models on the CovidQA and BioASQ 7b1 dataset.
Values referenced with * come from the Tang et al. (2020) work and with † from
Yoon et al. (2020).
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Figure 6.3: Perplexity of MLMs using different masking strategies on the collection
of medical articles.

A general boost in performance is shared across models fine-tuned on the QA

tasks, with a large benefit from the BioASQ QA. The performance gains obtained by

the specialized models (BioBERT and RoBERTa-Biomed) suggest the importance of

transferring not only the domain knowledge but also the ability to perform the QA

task itself (rows 15,17; 22,24).

We further examined whether the fine-tuning of the QA pairs affects not only

the model adaptation to the QA task but it further helps realign the representations

for the domain at hand. The report scores point out that the vanilla LMs are the ones

gaining the most when using in-domain QA pairs, such as BioASQ, compared to the

SQuAD (rows 3,5; 15,17). The advantage tends to be reduced on already specialized

LMs (rows 17,19; 24;26).

A further fine-tuning step before the training over the QA pairs has been proven

beneficial for all of the models. The BEM masking strategy has significantly amp-

lified the model’s generalisability, with an increased adaptation to the biomedical

themes shown by the notable improvement in R@3 and MRR; with the R@3 outper-

forming the state-of-the-art results of T5 fine-tuned on Ms-Marco [6] and proving

the effectiveness of the BEM strategy.

In Figure 6.3, we report the LM perplexity obtained when fine-tuning the

model with the standard masking strategy versus the BEM strategy with different

proportions of medical entities. Vanilla LMs experienced a huge gain with just

a small fraction of entities, while already specialized LMs have a lower but still

significant improvement. This could be expected as the specialized LMs have

already encoded a large domain knowledge with representations that need to be

realigned to the new ones.

Finally, we report an excerpt of question-answer pairs from the CovidQA data-

set. In particular, Table 6.2 shows questions from the CovidQA related to three
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BERT with STM BERT with BEM

What is the OR for severe infection in COVID-19 patients with hypertension?

- There were significant correlations between
COVID-19 severity and [..], diabetes [OR=2.67],
coronary heart disease [OR=2.85].

- There were significant correlations between
COVID-19 severity and [..], diabetes [OR=2.67],
coronary heart disease [OR=2.85].

- Compared with the non-severe patient, the pooled
odds ratio of hypertension, respiratory system
disease, cardiovascular disease in severe patients
were (OR 2.36, ..), (OR 2.46, ..) and (OR 3.42, ..).

- Compared with the non-severe patient, the pooled
odds ratio of hypertension, respiratory system
disease, cardiovascular disease in severe patients
were (OR 2.36, ..), (OR 2.46, ..) and (OR 3.42, ..).

What is the HR for severe infection in COVID-19 patients with hypertension?

- - - -

- After adjusting for age and smoking status,
patients with COPD (HR 2.681), diabetes (HR 1.59),
and malignancy (HR 3.50) were more likely to reach
to the composite endpoints than those without.

What is the RR for severe infection in COVID-19 patients with hypertension?

- - - -

- In univariate analyses, factors significantly asso-
ciated with severe COVID-19 were male sex (14
studies; pooled RR=1.70, ...), hypertension (10 stu-
dies 2.74 ...), diabetes (11 studies ...), and CVD (..).

Table 6.2: Examples of questions and retrieved answers using BERT fine-tuned either
with its original masking approach or with the biomedical entity-aware masking
(BEM) strategy.

statistical indices (i.e. Odds Ratio, Hazard Ratio and Relative Risk) to assess the

risk of an event occurring in a group (e.g. infections or death). We notice that even

though the indices are mentioned as abbreviations, BERT fine-tuned with the STM

is able to retrieve sentences with the exact answer for just one of three questions.

By contrast, BERT fine-tuned with the BEM strategy succeeds in retrieving at least

one correct sentence for each question. This example suggests the importance of

placing the emphasis on the entities, which might be overlooked by LMs during the

training process despite being available.

6.6 Summary

We presented BEM, a biomedical entity-aware masking strategy to boost LM adapt-

ation to low-resource biomedical QA. It uses an entity-driven masking strategy to

fine-tune LMs and effectively lead them in learning entity-centric knowledge based

on the pivotal entities characterizing the domain at hand. Experimental results have

shown the benefits of such an approach on several metrics for biomedical QA tasks.
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Chapter 7

Conclusion

In this thesis, we proposed to combine topic modelling principles with neural archi-

tectures and distributional word representations for text analysis. We introduced

several new models and conducted a systematic analysis showing to what extent this

could be a suitable and promising combination for capturing high-level semantics

and for generating topical features for downstream tasks.

In particular, we showed that by combining topic models and neural archi-

tectures it is possible to analyse user sentiments and opinions, or domain-specific

concepts. With TDAM (§3) and the Context-GPU (§5), we explicitly took into account

the local and global context of words to represent user sentiments and biomedical

concepts, respectively, while simultaneously exploiting the large knowledge impli-

citly encoded in these distributional representations of text. Then, with DIATOM

(§4), we combined topic models with neural techniques to generate topics convey-

ing different types of information (i.e. user opinions or plot/factual descriptions).

Finally, inspired by the recent advancements in topic models [85], we proposed BEM

(§6), a simple yet effective masking strategy to enhance contextualised language

models by leveraging the entities of interest in the biomedical domain.

We conclude by summarising the aforementioned contributions with regards to

each chapter, highlighting the current limitations and some suggestions for future

research directions.

7.1 Summary of Contributions

In the following, we describe the contributions (C) of each chapter referencing the

corresponding research objectives (RO) outlined in CHAPTER 1.
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CHAPTER 3 provided a thorough analysis of TDAM, introducing a new GRU cell to

capture the topical information in a hierarchical neural architecture with auxiliary

memory (C. 1). We showed that the resulting architecture is a promising approach

to combine global and local context of words in the multi-task learning setting (RO

1). The experimental assessment on sentiment classification, topic coherence (RO 2)

and aspect-based analysis (RO 5) demonstrated that the attention mechanism could

be a viable solution to simultaneously control and integrate the sentiment (RO 3)

and topic information.

CHAPTER 4 described DIATOM, a novel neural topic model to generate disentangled

topics through the combination of variational autoencoders and adversarial learning

(C. 3). Employing just the ratings of user reviews, the model was able to generate

and separate topics describing user opinions from topics conveying plots or factual

descriptions, without being misled by the sentiment expressions within them (e.g.,

plots with sentiment lexicons). We were able to assess the model capability to

consistently disentangle opinion-bearing topics from plot/neutral ones measuring

the introduced disentangling rate (RO 5). The experimental assessment was based

on a newly introduced dataset, namely the MOBO dataset (C. 4), pairing movie and

book reviews with their plots, along with human-annotated sentences used for topic

labelling. The results on the novel dataset showed an overall improvement of the

quality of topics (RO 2) using several metrics, and better sentiment classification

compared to other supervised topic models (RO 5).

CHAPTER 5 presented the Context-aware Pólya urn model (Context-GPU). It expan-

ded the Generalised Pólya urn model leveraging the combination of the LSI and

the FastText embeddings (RO 1) to drive the weighting scheme for topic generation

(C. 2). This implied a combination of word representations based on their local and

global contexts using windows-based and corpus-based embeddings, respectively.

As a result, it mitigated the impact of the topic shifting issue on the final coherence

of the generated topics (RO 2). Additionally, the pretrained FastText embedding

had the advantage of implicitly incorporating external knowledge used to analyses

the technical documents (RO 3), while its character-oriented design was proven

suitable to identify medical phrases, which often share morphological similarities,

such as prefixes or suffixes (RO 4). The experimental assessment demonstrated a

cost-effective process, generating more accurate and expressive topics.

CHAPTER 6 introduced the biomedical entity-aware masking strategy (BEM), which
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inspired by the promotion of entities in topic models [85], leveraged the biomedical

entities (RO 4) to efficiently fine-tune masked language models (C. 2). Results on

both the BioASQ dataset [164] and the CovidQA collection [161] showed the BEM

strategy outperforming the existing methodologies to fine-tune MLMs (RO 5).

7.2 Current Limitations and Future Directions

We conclude by highlighting the limitations and still open research questions for

each work presented, along with possible future research directions.

Effective pretraining of hierarchical neural networks. Although TDAM (§3) is

able to provide contextualised features analogously to the recently developed trans-

former architectures, its sentiment classification performance is still not on par

with the state-of-the-art language models [36]. One of the main reasons is that the

pretraining of the hierarchical architecture has a much more limited impact on the

final performance [47] than the benefit gained from most of the transformer-based

architectures. To mitigate this issue, a possible extension of TDAM and its hierarch-

ical architecture would consist of pairing a neural topic model with the GRU unit to

inject further topical information directly into the recurrent analysis of the corpus.

Additionally, an intermediate layer in between the word and sentence layers could

be added, defining a discourse-level layer [44, 189]. This discourse-level layer would

process the so-called elementary discourse units (EDUs), which are the minimal text

units of a discourse tree as defined in the Rhetorical Structure Theory [111], and

can be recognised with the appropriate text-level discourse parsers. As a result,

such a discourse layer would add an intermediate level of abstractions for a more

fine-grained resolution in detecting multi-word semantic units within sentences.

Topic with consistent polarities and different priors. Even though the adversarial

mechanism implemented in DIATOM (§4) is rather effective in disentangling opin-

ion and neutral/plot topics, at times, the opinion topics could exhibit terms of

mixed polarities. An additional adversarial mechanism can be a viable solution at

the cost of increasing the model’s complexity. Also, in our current model, the latent

plot topics za extracted from reviews are encouraged to have similar discriminative

power as the latent topic zd learned from plots directly for predicting the plots.

Instead, it would also be possible to impose a Gaussian prior centred on zd for

the latent plot topics in reviews rather than using the Gaussian prior of zero mean

and unit variance. Another approach would consist of replacing the plot classifier
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with a discriminator, as typically used in GAN training, where the learned plot

topics from different sources (reviews and plots) would compete with each other to

confuse the discriminator. Considering the augmented set of neutral/plot topics

generated by DIATOM, further analysis could leverage them to show the impact

of different types of neutral topics on the user opinions. Finally, while we focus

on separating opinion topics from plot or neutral ones in movie and book reviews,

our proposed framework can be applicable in other scenarios. For example, in

veracity classification of Twitter rumours, we want to disentangle latent factors

which are indicative of the veracity of tweets from those which are event-related.

Our proposed framework provides a potential solution to it.

Language models for medical abbreviations and medical topic coherence. The

Context-GPU model combines the windows-based and the corpus-based embed-

dings to generated topics composed of topical phrases. However, when analysing

clinical notes, many topical phrases results from the expansion of medical abbrevi-

ations. The clinical annotation tool adopted so far, i.e. MedTagger, does not provide

any mechanism to detect the best way to expand the abbreviations based on their

surrounding context. A promising approach would consist of adopting contextu-

alised language models to perform a context-aware expansion [82] at the cost of a

slightly more complex pipeline. General-purpose contextualised language models

[36, 104] or domain-specific biomedical LMs [3, 91] could be used to substitute

FastText [79]. These language models are not only strictly context-dependent, but

they also rely on the WordPiece tokeniser [185] that combines sub-words by fol-

lowing a precomputed likelihood, making such a tokeniser particularly suitable to

deal with medical phrases and jargon. Additionally, another approach to induce

more informative topics could leverage the named entity recogniser, i.e. SciSpacy

[126], presented for the BEM strategy (§6), to identify and then promote the medical

entities within topics, analogously to what suggested in Krasnashchok et al. 2018.

Although the current evaluation is based on the analysis of clinical notes, the quality

of the concepts expressed by the generated topics is solely based on the general-

purpose topic coherence [123, 148]. Although this provides some guarantees about

the meaningfulness of the topics, it does not assess whether they are consistent

from a medical point of view. A first viable research direction could be focused

on the human evaluation of such topics by medical practitioners, and on how to

consequently adjust and modify the models to increase the medical topic coherence.

In turn, this would pave the way to automatic approaches checking the medical

consistency of the topics by matching the expert judgement.
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Filtering the biomedical entities of interest. The introduced biomedical entity-

aware masking strategy relies on SciSpacy to identify the biomedical entities in

text. However, so far there is no mechanism leading the model to detect the most

relevant entities. A straightforward extension would consist of substituting the

uniform random sampling strategy that during each iteration chooses the biomedical

entities to mask with two possible alternative criteria reducing the original pool of

biomedical entities. In particular, a fine-grained approach could be based on the

Unified Medical Language System (UMLS) [18] meta-information associated with each

entity. One viable solution could be leveraging the Type Unique Identifiers (TUI) to

filter and keep only those entities belonging to specific type groups. Alternatively,

we could use the Concept Unique Identifiers (CUI), which group together entities

referring to similar concepts. Consequently, we would have fewer but more relevant

entities to be masked, and thus a more efficient and domain-driven process.
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