ARCA as an archetypal definitive notation

Meurig Beynon.

Department of Computer Science, University of Warwick.

ABSTRACT

ARCA is a programming notation which was originally developed with the
computer animation of a class of diagrams studied by ARthur CAyley in mind. It is
presented here as an archetypal example of a "definitive notation", in a sense explained in
a previous paper by the author.

This paper is an abbreviated form of [3], and describes the main principles behind
the design and implementation of an ARCA system.

Introduction.

In many contexts, geometrical diagrams have proved to be a powerful means of representing
information. Their importance in geometric design and modelling is self-evident, but they can also be
helpful in describing abstract concepts whose geometric nature is less apparent. Combinatorial graphs -
comprising vertices (possibly labelled), together with edges (possibly directed, labelled or coloured) -
provide many examples of diagrams of the latter kind: circuit diagrams, transition diagrams for finite state
machines, and Hasse diagrams for partially ordered sets and lattices. Typically, the semantic content of
such a graph is implicit in the incidence relations, but can be inspected only when an appropriate geometric
realisation is constructed. Appropriate computer-aided design tools can be used both to construct such
realisations, and to assist subsequent interaction and interpretation.

ARCA is a programming notation which was originally designed with the interactive display and
manipulation of "Cayley diagrams" - a particular class of combinatorial graphs - in mind. The chief
characteristics of Cayley diagrams (CDs), and the special problems posed by their representation are
outlined in §1 and §2 below. Though ARCA was designed for a specific application, the ARCA system
seems likely to prove useful for a variety of purposes, and features of the design itself may have wider
interest. In particular, in a sense explained in [2], ARCA is here presented as an archetypal (or even
ARCAtypal!) example of "a definitive notation".

This paper is an abbreviated form of [3]; for fuller details the interested reader should consult [1], [2]
and [3].

§1. Cayley diagrams and graphs.

Cayley diagrams were devised by Arthur Cayley (1821-1895) for representing group-theoretic
relations pictorially. Simple examples of Cayley diagrams (CD) appear in Fig’s.1-4. (In interpreting these
diagrams, all oriented edges are to be one colour [red], and all unoriented edges are to be bidirected edges
of another colour [green].) It will be helpful to distinguish between a CD and the abstract graph - a "Cayley
graph” (CG) - which it depicts. A brief sketch of some of the principal features of CD’s (as they relate to
the design of ARCA) is given here; for further details, see [4]. In the sequel, a superficial understanding of
the relationship between groups and CD’s will suffice.

The relationship between a CG and its associated group is most easily illustrated with reference to
Fig.1. It is a simple exercise to the reader to label the vertices of Fig.1. with the six permutations of the set
{1,2,3} in such a way that the vertex with label p is connected to the vertex with label p.(1,2,3) under a red
edge, and the vertex with label p.(1,2) under a green edge. If R and G respectively denote the permutations
(1,2,3) and (1,2), it is then trivial to compute any product of R’s and G’s by tracing a path of appropriately
coloured edges in Fig.1.

It is easy to verify that each of the three products
R3 , G2 and (R.G)2

represents the identity permutation. Indeed all relations between R and G (ie product of R’s and G’s
defining the identity) can be derived from the 3 relations above simply by using the group axioms. For

instance:
R.GR2.GR=R.GR2.GR.G2=RGR.R.G2G=R.G2=1,
since G2 = 1, and multiplication is associative.

Formally, the CG of Fig.1. is associated with the group freely generated by two generators r and g subject
to the relations:

B =g2=(rg)2 =1,
or equivalently, with the presentation:
<r,g|nB=g=(@Cg2=1> (1.1)

of the symmetric group Ss.

-2

In general, a CG is specified either by exhibiting a set of generators for a concretely presented finite
group (e.g. {R,G} for S3), or by giving a particular presentation for an abstract finite group (e.g. the
presentation (1.1) for S3). All vertices of a CG are equivalent under symmetry, and if one is selected as the
initial and unique final state the resulting finite state machine recognises relations over the alphabet of
generators. This interpretation of a CG is useful when constructing a CD, since it provides an intrinsic
method of referencing one vertex relative to another by specifying an appropriate path via a string of
generators (or inverses of generators, which correspond to traversing directed edges in the opposite sense).

The group-theoretic information in a CD is captured in the incidence relations between vertices and
edges, which can be derived from an abstract group presentation (such as (1.1)) by the well-known
technique of "coset enumeration”. The specification of coordinates for the vertices of a CD has no purpose
other than to aid the apprehension of the relations between the generators, and to provide a visual image of
the group. The problem of realising an abstract CD effectively resembles that of laying out an abstract
circuit, in that the relevent criteria are aesthetic and pragmatic, and are not easy to specify precisely. It is
obviously desirable that a planar realisation should preserve symmetry as far as possible, that paths should
be easily traceable, and that edge-crossings should be introduced only if they enhance symmetry or assist
readability. Some pioneer work on the realisation of CDs was carried out by Maschke [6], who classified
and constructed realisations of CDs which can be embedded in the plane without crossings. Fig.4 is a
"good" realisation (due to Maschke) of the CD associated with the presentation:

<x,y|x2=y5=(xy)3=1>

of the alternating group As.

The problem of constructing a good 2-dimensional realisation of a CG is clearly closely connected
with the underlying group structure, but has no simple general solution. Though coset enumeration can
determine the incidences of a CG, it generates a haphazard indexing of vertices which does not aid its
realisation as a CD. In special cases, there are group-theoretic methods of constructing symmetric
realisations of CGs, but these are generally in Euclidean spaces of dimension higher than 2. For instance,
there is a natural way to construct higher dimensional CDs for a direct or semi-direct product from CDs
representing its components. However, even if it were possible to devise effective methods of constructing
CDs automatically, a notation such as ARCA would still be very useful, as explained in §2.

§2. The background to ARCA.

Generalities.

In many applications, it is important to recognise that a visual image is of limited use when divorced
from the underlying conceptual model. In devising a graphics system for such an application, it is not
enough merely to provide for efficient display; it must be possible to specify the conceptual models
underlying images simply and systematically. This is the case for large CDs, where generation of a picture
is of little value without a medium for referencing vertices and edges for group-theoretic purposes. It is
helpful, for instance, to display paths of edges defining relations, products of group elements, or subgroups.
It is also interesting to examine the consequences of introducing a new generator (which is graphically
equivalent to replacing each instance of a particular sequence of directed and coloured edges by a single
edge of a new colour), or forming a quotient group (which entails identifying vertices lying in the same
coset of a normal subgroup).

ARCA is conceived as a medium to be used (possibly in conjunction with automated techniques) for
constructing computer representations of CDs to assist comprehension, display and manipulation. A CD
has considerable semantic content, and the data structure needed to represent it is correspondingly
complex. In view of this, the exclusive use of a graphics interface is inappropriate, and the ARCA system
has two interfaces with the user: a primary screen on which the text of an ARCA program is developed,
and an auxiliary screen for graphical display as and when required.

ARCA as a "definitive notation".

ARCA has been designed as a "definitive notation” in a sense explained fully in [2]. In developing a
definitive notation for a particular application, an appropriate underlying algebra of data types and
operations must first be chosen.

When displaying and manipulating CDs, it is necessary to specify scalar, vector and incidence
information. In ARCA, such information is respectively represented by integers (of specified modulus),
vectors of integers (of specified dimension), and perms i.e. permutations / partially defined permutations
(of specified degree). The data types in the underlying algebra comprise these three primitive types,
together with a complex data type which is used to represent (partial) CDs. There are numerous algebraic
operators which relate integers, vectors and perms (e.g. arithmetic operations on integers, vector operations
such as addition, rotation and reflection, scalar product, and composition and superposition of perms),
which together define the primitive data algebra. There are also special operators (such as are needed to
join subgraphs, or index such a join).

Following the principles described in [2], a definitive notation includes variables which denote
implicitly or explicitly defined values in the underlying algebra. The values of variables are determined by
a sequence of definitions, each of which either assigns a formula or a specific value to a variable.
Semantically, a formula assignment:

a = f(b,c,...,2),
where f is a formula over the underlying algebra in the variables b,c,...,z , asserts that (until redefinition
occurs) the value of the variable a is to be determined as and when required by evaluating the formula
f(b.c,...,z) over the underlying algebra. The value of the variable a is then implicitly defined in terms of the
values of other variables. In the particular case where the formula f is constant, such a definition specifies
an explicit value for the variable a.

In the above context, |g| may be used to denote the value of a subexpression g. Note that definitions
which lead to circularity, such as:
a=b; b=c; c=a+2
are trapped as semantic errors, but that a definition such as
a = |a+c|+b
which defines a by the formula:
’b+o, where a is the value of (a+c) current at the point of definition’
is permissible.

Representing CDs in ARCA.

The computer representation of a CD has to capture two aspects: the group-theoretic interpretation as
a CG, and the geometry of the diagram. In ARCA, scalars, vectors, and perms are represented by
"primitive’ variables of type integer, vertex and colour respectively. The type of a variable is specified on
declaration, and type of any algebraic expression can be determined statically. To allow convenient
incremental specification of vertex and colour values, as well as implicit definition of an entire vertex or
colour by a single formula of the appropriate type, there are two kinds of vertex and colour variables:
composite and abstract. A composite vertex (resp. colour) variable has a fixed dimension (resp. degree)
specified on declaration, and is semantically equivalent to an array of integer variables. Such variables
must be defined componentwise by a family of formulae of integer type. By contrast, an abstract vertex
(resp. colour) variable must be defined by means of a formula of type vertex (resp. colour). (For a fuller
discussion, see [2].) g

Note that an ARCA vertex variable, whether composite or abstract, represents an "abstract graph
vertex" rather than a geometrical point. There is no way of "equivalencing” a pair of vertex variables, and
distinct vertices, whether declared within a diagram or independently, serve as distinct names for abstract
vertices. By making appropriate assignments, it is nonetheless easy to ensure that two vertex variables
represent the same geometrical point. For instance, if u,v and w are declared abstract, the assignments

W=W; Vi=W

will ensure that the coordinates of u and v coincide with those of w until such time as new formulae are
assigned tou or v.

-4-

ARCA vertex variables provide a means of referencing vertices of an abstract graph which is
essential for satisfactory representation of a CG. As explained above, it is easy to generate the incidences
of a CG without having any coordinates for the vertices in mind, which makes direct means of reference
(e.g. via a mouse or light-pen) of limited use. In any case, even an array which supplies an index for each
abstract vertex of a CG may be unhelpful in group-theoretic terms. A satisfactory representation of a CG
requires an array of indices for abstract vertices together with the transition (a permutation of indices)
induced by each generator. In an ARCA program, this information is associated with a variable of type
diagram, as explained more fully in §3. The diagram syntax is designed to assist referencing of vertices
relative to each other via paths of edges (see §1). This mode of referencing can be used iteratively to
specify subgroups or subsets of vertices with special symmetries.

In describing the geometry of a CD, it is often necessary to specify geometrical relationships
between vertices. When seeking a good realisation of a particular CG, it may be helpful (for instance) to
constrain a subset of vertices to define a square, or to be collinear. The vertex array of an ARCA diagram
can consist of abstract or composite variables (depending on the mode of declaration), so that the
coordinates of vertices of diagrams can be constrained to satisfy vector relationships or scalar relationships
between components by making appropriate definitions.

Implicit definition can also be useful for specifying incidence information. For instance, it is often
possible to transform one CD to another by changing the orientation of a suitable subset of edges. By
defining incidences implicitly in such a case, a single ARCA diagram can be used to represent two or more
CDs (see [1]).

§3. Programming in ARCA.

Some simple program fragments illustrating the main principles of ARCA are presented informally
below. The commentaries on the programs which follow serve as a tutorial introduction to ARCA. For
formal details, see [1].

The most direct way of representing a CD in ARCA is to define a diagram which describes the
necessary incidence and coordinate information explicitly. In such a diagram, coordinates and incidences
are respectively described by a vertex array and a colour list. Example 1 is an ARCA program which
defines a diagram D to represent the CD depicted in Fig.1. The diagram D is declared at line 3, and the
colours and vertices of D are defined at lines 4-5 and 6-9 respectively.

Example 1.

vert 2: v;
v = [0,0];
’ab’-diag (vert 2, col 6) : D;
a_ D={1,3,5%6}1\{2,6,4%6};
b_ D = {1,2%6}\{3,4%61\{5,6%6};
D!1=1[0,1%1]; D!2 = [0,2%1];
withint3:1=23do
DI(2*T’) = rot(D12,1-1,v);
D!(2*7’-1) = rot(D!1,I-1,v)

= R R N S)

—\D 00 ~J

o

od

Declaration of a vertex variable is illustrated at line 1. By default (i.e. unless the keyword abst is
used), primitive variables are taken to be composite on declaration. A primitive variable may have an
associated non-negative integer weight ; this is the modulus of an integer variable, the dimension of a
vertex variable, and the degree of a colour variable. The weight of a variable gives information about the
values it can represent, and must be specified when an composite variable is declared. As an example, the
variable v declared at line 1 has dimension 2, and is used to represent coordinates in the plane. A colour
variable of degree r represents a perm of the set { 1,2, ..., r } of residues modr. An integer variable of
modulus d represents a residue mod d if d > 2, and a traditional integer if d=0. An “integer of modulus 1"
has a special interpretation, and - in a sense explained in [1] - "1 modulo 1" represents "a suitable
geometric unit for purposes of display.”

-5-

Many of the standard operators in ARCA are intended to simplify the specification and manipulation
of constants of primitive type. The operator "%" is used when specifying integer constants modulo a base,
so that "8%3" and "2%3" both represent the residue 2 modulo 3 (c.f. line 6). Cross-modulus arithmetic is
illegal in general, but an integer of modulus 0 may be coerced to a particular modulus in context. The
postfix operator " * ", which returns the principal value - the unique representative in the range 1<r'<n of a
residue r modulo n, assists translation between moduli (c.f. lines 8-9). Though ’cyclic notation’ is an
excellent way of denoting traditional permutations, denoting perms which are partial functions poses some
problems. This is illustrated at line 4, where the RHS denotes the perm (1,3,5)(2,6,4) in conventional cycle
notation. In ARCA, this perm is most conveniently described as the superposition () of {1,3,5} - the perm
which maps 1,3,5 cyclically but is otherwise undefined - and {2,6,4}. Note that the degree of a perm such
as {1,3,5} is ambiguous, and suitable conventions for inferring weight information are needed if
expressions such as {1%6,3%6,5%6} are to be avoided (c.f. [1] §3.3).

The with -loop is semantically similar to a conventional for -loop, and incorporates a specification of
a special "control variable”, which resembles an integer variable in a conventional procedural
programming language. The with-loop is in effect equivalent to the four definitions obtained by
substituting I=1 and I=2 into the definitions at lines 8 and 9. The operator rot(,,) is used at lines 8-9 to
denote planar rotation. An integer of modulus 2 or more is required as the second parameter, and is
interpreted as an angular measure; thus

rot(D!12,1%3,v)

represents "the vector obtained by rotating (the coordinate vector of) D!2 anti-clockwise through 7/3
radians about [0,0]."

The diagram D declared at line 3 has two colours, denoted a_ D and b_ D, and six vertices, denoted
D!1, ..., D!6. The vertices and colours are specified (by default) as composite (c.f. Example 2 line 3), and
have dimension 2 and degree 6 respectively. Note that all vertices of D have the same dimension, and all
colours of D have the same degree , which is necessarily also the number of vertices in D.

In Example 1, all definitions specify explicit values for variables. The operators ([1, { }, %, \, *, +,
rot() etc.) which appear on the RHS’s of these definitions all belong to the primitive data algebra (c.f. §2
and [1] §2). By replacing line 3 of Example 1 by

3 ’ab’-diag (abst vert, col 6) : D;
and deleting line 6, the definitions at line 8-9 specify the coordinates of the vertices D!3, ...,D!6 implicitly
in terms of D!1 and D!2, and a diagram to represent a family of realisations of the CG of Fig.1 is obtained.
In each realisation, the triples (D!1,D!3,D!5) and (D!2,D!4,D!6) are at the vertices of equilateral triangles
centred on [0,0], but D!1 and D!2 are at points which can be independently specified. Thus the geometric
configuration could be completely specified by
D!1=1[0,3%1];D!2=[0,4%1] or D!2=2.D!1;D!1=[0,2%1].

In the latter case, the coordinates of all the vertices of D would depend on the coordinates of D!1.

The CD of Fig.1 is closely related to the CD for the presentation < x,y | x2=y3 =1 and xy = yx > of
the Abelian group C; x Cs depicted in Fig.2. The geometrical relationship between the two reflects a
group-theoretic relationship; the group Ds is a ’semi-direct’ product of C2 and Cs (see [5] p.88-90).
Example 2 below generates a diagram D which represents the abstract graph of Fig.1 or Fig.2 according to
whether the value of the integer variable iis O or 1, and defines different planar realisations subject to the
current values of D!1 and D!2. For this purpose, both the vertices and colours of D are specified as
abstract atline 3. The "@" operator at line 5 denotes exponentiation of perms, and takes precedence over
superposition.

Example 2.

vert 2: v;
v=[0,0];
’ab’-diag (abst vert 2, abst col 6) : D;
int : i;
a_ D= {1,3,5%61\{2,4,6%6}@(1-2*i);
b_ D= {1,2%61\{3,4%6}\{5,6%6};
withint3:1=2,3do
D!(2*D) = rot(D12,I-1,v);
D!(2*I’-1) = rot(D!1,I-1,v)

AN AW e

— A0 00 ~]

0 od

Examples 1 and 2 illustrate the use of composite diagram variables. To allow more powerful
methods of manipulating diagrams, ARCA includes operators which act on diagrams, and abstract
diagram variables. A composite diagram variable can only represent graphs of fixed size, unlike an
abstract diagram variable, to which "a formula defining a diagram implicitly" as opposed to "a family of
formulae defining the components of a diagram implicitly" can be assigned (see [1] §5). This is illustrated
in [1] §9, where an abstract diagram to represent a generic class of CDs including Fig.’s 1-3 is defined.

For examples illustrating other ARCA features, including user-defined operators, see [3], where an
ARCA program for describing Fig. 4 is presented.

§4. Implementing an ARCA system.

In this section, the main features of the ARCA implementation currently under development are
discussed. Although the creation of a sophisticated environment for developing ARCA programs is
envisaged, the central point of reference for the design is the basic definitive notation as described in §2.
The use of such a simple framework appears to have several merits, ensuring clear semantics whilst
assisting modularity and extensibility.

The implementation of the definitive notation itself is conceptually simple, though there are some
technical difficulties. The large number of operators in the underlying algebra makes it convenient to use a
single token for distinct operators (e.g. ’+” for both scalar and vector addition, ’.” for multiplication of a
vector by a scalar and perm product), and variable typing is used to allow syntactic disambiguation.
Because of the central role of algebraic expressions, a definitive notation is well-adapted for the automatic
construction of an LR-parser via a compiler-compiler. (See [1] for a YACC specification of the ARCA
expression parser.)

The routines which are used in interpreting a definitive notation serve five main functions: compiling,
simplifying, evaluating, tracing and displaying formulae. In the current implementation, the formula
appearing on the RHS of a definition is compiled into a tree representation, simplified (e.g. by constant
folding, or by evaluation of subexpressions where specified), traced to check for circularity, then associated
with an abstract variable or composite variable component. Note that in the compilation phase it is
possible to distinguish between formulae or subformulae which define explicit and implicit values. This is
significant when a definition of one component of a composite variable in terms of a second component is
to be interpreted. Thus if k is an infeger variable, and v is an composite vertex variable, then a definition
such as

v[1] =k.v[2]
is to be permitted, whilst the formally similar assignment

v[1] = 2.v[k]
must be deemed a semantic error, since it is potentially circular. This interpretation is achieved in the
current implementation by "extracting explicitly indexed components of composite variables” in a suitable
fashion during the simplification phase.

Simplification of formulae may serve several functions: it can be used for "optimising” defining
formulae, which are in general frequently re-evaluated, or for the elimination of constructs which are
primarily used for notational convenience (such as "1..5" for the list "1,2,3,4,5", or "a".b@2.c_ D" for
"a_ D".b_ D@2.c_ D"). There is also scope for invoking axioms which apply to the underlying algebra,
though this may not be appropriate for ARCA.

-7-

Evaluation of formulae is straightforward; it requires only a compendium of routines for evaluating
primary operators in the underlying algebra. Undefined values can be handled gracefully in a definitive
notation, and the evaluation routine should be adapted for this. For instance, when evaluating a composite
vertex variable, the ARCA interpreter may return a vector value of the appropriate dimension in which
some components are undefined. Efficient evaluation of standard operators can have a significant effect
upon the efficiency of the entire implementation; for this reason, the primary evaluation routines merit
"optimisation”, and, in some applications, might justify the provision of special hardware. Efficiency can
also be improved by storing the most recent evaluations of variables, and monitoring functional
dependencies so as to avoid unnecessary re-evaluation.

In a suspended ARCA dialogue, the current context is determined by the existing definitions of
variables. It is important that these definitions (which represent the "transient values” and "persistent
relations” alluded to in [2]), should be available for inspection. To this end, the ARCA interpreter includes
routines for reconstructing defining formulae from their compiled forms for display.

The above discussion deals with the implementation of the definitive notation upon which ARCA is
based, and addresses the issues which are most central to the entire system. At present, the development of
a suitable environment for exploiting ARCA fully is at an early stage, and it is only appropriate to outline
some of the features which are required for effective use.

The primary need is for high-level commands to allow basic semantic actions (such as displaying a
diagram, constructing the group table associated with a diagram, or highlighting the elements of a
subgroup within a displayed diagram) to be performed. Such actions have no side-effect upon the current
state of the ARCA dialogue, and are for the most part easy to implement since the relevant data is
conveniently stored and represented. There are some technical problems associated with the choice of
coordinate system for diagram display; these are simply solved by ensuring that the components of vectors
as specified by the user are conceptually "units of length" (represented in ARCA by "integer s of modulus
1"), and are scaled appropriately for purposes of display (cf [1]). In this context, the design of a
satisfactory format for the group-theoretic and graphical "command languages" is more problematical than
the implementation of commands. An interesting possible solution might be to interpret graphical and
group-theoretic commands within the framework of auxiliary definitive notations.

The design of the interface for the ARCA system is another important concern. In essence, the
process of defining and interrogating variables must be as convenient and transparent as possible. A
method of synthesising new definitions by editting previous definitions (or sequences of definitions within a
with-loop) might be useful. Another possibility might be use a mouse or light pen for determining the
index of a vertex within a displayed diagram, or for re-defining the coordinates of a displayed vertex. As
explained in §2, these methods could have limitations if several abstract vertices were represented by the
same geometrical point.

Acknowledgements.

I am grateful to Robin Milner for pointing out the "definitive"” (i.e. definition-based) nature of ARCA,
and his valuable suggestions for simplifying the original form of the notation as described in [1]. I am also
indebted to Kevin Murray for developing an ARCA interpreter.

References.

[1] W.M.Beynon
A definition of the ARCA notation, TC report No.54, The University of Warwick, 1983.

[2] W.M.Beynon

-8-

Definitive notations for interaction, Proc. of hci’85 "People and Computers: Designing the Interface”,
CUP, 1985. '

[3] W.M.Beynon

ARCA - a notation for displaying and manipulating combinatorial diagrams, Computer Science
Report XX, University of Warwick 1985.

[4] D.L.Johnson

Presentation of Groups, LMS Lecture Note Series 22, CUP 1976.
[5] Marshall Hall

The Theory of Groups, Macmillan, 1959.
[6] H.Maschke

The representation of finite groups, especially the rotation groups of the regular bodies in three- and
four-dimensional space, by Cayley’s colour diagrams, Amer.J Math. 18, 156-194, 1896.

[7] S.C.Johnson
YACC: Yet Another Compiler-Compiler, CSTR No.32, Bell Labs., Murray Hill, New Jersey, 1975.

