What is CS?

Discuss nature of the subject. Does it exist?
Analogy with telescope or microscope: subject matter is determined by what the
instrument reveals
Danger of seeing subject solely through the major applications
Might be viewed as having stimulated fields which have been dormant for years
in which profound questions concerning psychological and philosophical basis of
knowledge and intelligence are involved.
Possible parallel between general perception of computing today, and view in AI
circles in 1960s: dangers of misconceptions about how much revolutionary
progress can be expected
Problems of balanced perception at present: transitions

Hardware developments

Software system developments of unparallelled complexity

Involvement of the advertisors

Background

Algorithms: Euclid, Gauss, Galois, Hilbert
Theories: Newton, Boole, Frege
Theorems: Turing, Godel

1950-60: -> Machines + Languages + Algorithms + Applications

FORTRAN compiler development:
Objectives - Develop a HHL for programming, and write a compiler

Consequences - innovations / development resulting
(a) non-numeric applications
(b) structural design of "large" programs (phases of a compiler)
(c) identification/solution of syntactic problems
Initiated proliferation of HHLs,
search for a better general purpose programming language
diversification of applications

Programming Language Development

Objective - Develop a general puprose language for programming
Eliminate the difficulties of reasoning about algorithms
at a low-level of abstraction

Consequences - Two aspects of the problem identified: design / implementation
Principles of design lead to syntactic problems solution (ALGOLG60)
Data structures recognised as important
Implementation leads to a caucus of important programming techniques
hashing, parsing, tree-building, translating, sorting/searching
Prompts deep questions about the semantics of PLs:
how to identify and interpret meaningful programs
Applications indicate that a general purpose paradignimay be difficult
Trend towards monolithic languages: PL1, ALGOL68

Applications
Objectives: Develop hardware/software tools for specific uses

Consequences - Many different programming paradigms initiated
AI -> LISP, computer engineering control applications -> APT
graphics -> SKETCHPAD, linear algebra -> APL, business -> COBOL
operating systems -> ?°?
Became clear that no single paradigm for programming is
appropriate for all applications, that there are many choices of



"virtual machine", that the theory of algorithms is very complex
Several really clever ideas in algorithms discovered; eg fact
that there are many different algorithms for sorting/searching; new
ideas in theorem-proving - resolution
Also became clear in AI particularly that issues of feasibility
were very significant: had been anticipated that computers would
outperform us much more dramatically in some tasks than is the case

Programming Language Semantics

Objective: Investigate how to design languages so that we can understand the
meaning of any program within the language, and what formal models to
use for reasoning about specific programs in a language

Consequences: Development of a variety of different mathematical models for
modelling programs. Algebra and Logic become significant part of the
mathematical foundation of programming. Recursive function theory,
lambda calculus, algebraic theories for data types.

Primary mathematical achievement: Scott-Strachey semantics
Paramount importance of having a good semantic model and
difficulty of giving semantics to complex procedural language recognisecd

Idea of developing a language from the intended semantic model
first conceived: the motivating idea behind functional languages

Programming Methodology

Objective: How do we write correct programs? How do we communicate about
program design? How do we document programs / program designs?

Consequences: Recognition that proving correctness of algorithms formally is
hard. Clear that a simple programming language helps c¢f Dijkstra’s
guarded commands vs Algol 68. Particular difficulties presented by
concurrent programs first encountered. Importance of program structure
first recognised. No "goto"s, appropriate abstractions essential ideas
behind "structured programming".

Concept of invariants as device for proving correctness of a
procedural program. Development of programming logics, specifically for
reasoning about programs.

Management aspects of software design task first considered

Theory of Algorithms

Objective: How do we recognise a good algorithm? How do we write efficient
algorithms? What is the impact of choosing different primitive actions
as a computational basis? When does a computational problem have a
feasible solution?

Consequences: Revival of interest in mathematical theory of algorithms
Investigation of upper / lower bounds on computational complexity
of problems. Surprises: eg matrix multiplication by Strassen, many
traditional algorithms unexpectedly subtle (coefficient growth),
lower bounds very hard to prove even when non-constructive proofs
indicate that many or most instances are hard.

Cook’s Theorem indicates that several important algorithmic
problems are essentially equivalent in complexity. Identification of
computational hierarchies.

Ground rules under which computations are performed seen to be
very significant. Search for satisfactory machine models for evaluating
the "real" complexity of a practical algorithm initiated.

Practical importance of parallel, approximate, probabilistic

algorithms recognised.

Contemporary view

Increasingly has become clear that the role which computers will play
in the future depends upon broader issues than have been addressed hitherto.



Trhe complexity of computer hardware now such that conventional methods of
designing software fail to exploit its apparent potential. This is the case even
if we approach the design task in a relatively informal way, not seeking to
justify our systems rigorously in every detail. Ironically, it is more than ever
evident that very large systems can only be designed with appropriate formal
methods. The nature, and degree of formality, of these methods is a particularly
topical issue. Might see this as analogous to the position of an engineer who
recognises that the theory of materials is hazy and incomplete, but still wishes
to investigate structural theories,.

At the high-level of abstraction characteristic of contemporary research
into applications, have strong connections with other disciplines.

Al: expert systems, theories of knowledge, psychology/philosophy
human-computer interaction, object-oriented paradigm,
special purpose applications using semantic elements

SE: enormous software systems, design tools, management problems
data bases as unifying resources
distributed systems, communicating sequential processes

New Architectures: Problems with VN machines
Alice, Flagship
Transputers, highly parallel systems
VLSI and special purpose machines



