
Appendix 5

Blocks testing

In this appendix we describe an abstract definitive machine program to simulate the movement of blocks. The
program uses a DoNaLD interface to present an animated picture of the blocks being moved.

213

Appendix 5 Blocks implementation

In this appendix we present an adm program to simulate the movement of blocks. For control purposes we have

introduced new driving variables, but the program is essentially the one developed in §4.3.

entity handler(_block)

definition

driving[_block] = drivingL[_block] || drivingR[_block],

drivingL[_block] = holding[_block] && pushingL[_block],

drivingR[_block] = holding[_block] && pushingR[_block],

pushingL[_block] = FALSE,

pushingR[_block] = FALSE,

holding[_block] = FALSE

action

(!holding[_block]) -> holding[_block]=TRUE,

(y[_block]==0) && holding[_block] && (!driving[_block])

 -> holding[_block]=FALSE,

(y[_block]==-1) && holding[_block] && (!driving[_block])

 -> pushingL[_block]=TRUE,

drivingL[_block] -> pushingL[_block] = FALSE,

(y[_block]==1) && holding[_block] && (!driving[_block])

 ->pushingR[_block]=TRUE,

drivingR[_block] -> pushingR[_block] = FALSE

}

entity control(_blk1,_blk2)

{

definition

Appendix 5: Blocks testing

214

y[_blk1], y[_blk2], x[_blk1]=rand(3), x[_blk2]=rand(3),

action

 true

print("pa, pb, ha, hb, dra, drb, dlb, dla, ss = ", pa, ",", pb,

",", ha, ",", hb, ",", dra, ",", drb, "," ,dlb, ",", dla, ",", ss)

-> y[_blk1] = |x[_blk1]|-1; y[_blk2] = |x[_blk2]|-1,

 ha = holding[_blk1] ; hb = holding[_blk2] ;

 dra = drivingR[_blk1]; drb = drivingR[_blk2];

 dla = drivingL[_blk1]; dlb = drivingL[_blk2]

}

entity blockstate()

{

definition

 stringtaut = (!stringsnap) && ((pb-pa)==d),

 touching = (pb-pa)==1,

 stringsnap = FALSE,

 pa = -1, pb = 1, ha = 0, hb = 0, ss=0,

 dra = 0, dla = 0, drb = 0, dlb =0,

 d = 5 //d is the length of the string

action

 (pb-pa)>d && !stringsnap -> stringsnap = TRUE; ss=1

}

entity blockmover(_blk1,_blk2)

{

action

 drivingL[_blk1] && !stringtaut -> pa = |pa|-1,

Appendix 5: Blocks testing

215

 !holding[_blk2] && drivingL[_blk1] && stringtaut

-> pb=pa+d; pa=|pa|-1,

 drivingR[_blk1] && !touching -> pa = |pa|+1,

 !holding[_blk2] && drivingR[_blk1] && touching

-> pb=pa+1; pa = |pa|+1,

drivingL[_blk2] && !touching -> pb = |pb|-1,

 !holding[_blk1] && drivingL[_blk2] && touching

-> pa=pb-1; pb = |pb|-1,

drivingR[_blk2] && !stringtaut -> pb = |pb|+1,

 !holding[_blk1] && drivingR[_blk2] && stringtaut

-> pa=pb-d; pb=|pb|+1

}

 The following instantiations are made:

control(0,1)

handler(0)

handler(1)

blockstate()

blockmover(0,1)

Appendix 5: Blocks testing

216

Appendix 5.1 DoNaLD interface

 An example of the output generated by the program of Appendix 5 is:

pa,pb,ha,hb,dra,drb,dlb,dla,ss = -1,1,0,0,0,0,0,0,0

pa,pb,ha,hb,dra,drb,dlb,dla,ss = -1,1,TRUE,TRUE,FALSE,FALSE,FALSE,

FALSE,0

pa,pb,ha,hb,dra,drb,dlb,dla,ss = -1,1,TRUE,TRUE,TRUE,FALSE,FALSE,

FALSE,0

pa,pb,ha,hb,dra,drb,dlb,dla,ss = 0,1,TRUE,TRUE,FALSE,TRUE,FALSE,

FALSE,0

pa,pb,ha,hb,dra,drb,dlb,dla,ss = 0,2,FALSE,TRUE,FALSE,FALSE,FALSE,

FALSE,0

pa,pb,ha,hb,dra,drb,dlb,dla,ss = 0,2,TRUE,TRUE,FALSE,TRUE,FALSE,

FALSE,0

pa,pb,ha,hb,dra,drb,dlb,dla,ss = 0,3,TRUE,TRUE,FALSE,FALSE,FALSE,

FALSE,0

pa,pb,ha,hb,dra,drb,dlb,dla,ss = 0,3,TRUE,TRUE,TRUE,TRUE,FALSE,

FALSE,0

pa,pb,ha,hb,dra,drb,dlb,dla,ss = 1,4,TRUE,TRUE,FALSE,FALSE,FALSE,

FALSE,0

and so on...

This output is clearly very uninformative, and so a graphical interface has been constructed for the program. The

demonstration file which is executed contains the following command:

cat blocks | ./am -s -n -a > amlog &

tail +0lf amlog | cat -u donald.init - | donald

The first command commences execution of the blocks adm program, with the output sent to a file called

amlog. The second command takes the contents of amlog as it appears and passes it to the DoNaLD [Beynon et al

Appendix 5: Blocks testing

217

86] interpreter. The DonaLD interpreter is initialised with the file donald.init, which sets up the picture, and

then reads the output generated by the blocks program. The picture on the screen is animated according to the

changes in values of variables caused by the execution of the blocks program. The file donald.init contains:

int pa, ha, dra,dla,ss declare these variables as DoNaLD variables

openshape block1 describe block1

within block1 {

 point centre, NW,NE,SW,SE, N,E,S,W,X

 centre = +~/pa*100, 500

NW = centre+,50

SW = centre-,50

NE = centre+,50

SE = centre+,-50

N = if ~/ha then (NE+NW) div 2 else centre

S = if ~/ha then (SW+SE) div 2 else centre

E = if ~/ha then (NE+SE) div 2 else centre

W = if ~/ha then (NW+SW) div 2 else centre

X = if ~/dra then E else if ~/dla then W else centre

line Nl,Sl,El,Wl,NX,SX,WE

Nl = [NW,NE]

Sl = [SW,SE]

El = [SE,NE]

Wl = [SW,NW]

WE = [W,E]

NX = [N,X]

SX = [S,X] }

int pb, hb, drb,dlb

openshape block2 describe block2

within block2 {

 point centre, NW,NE,SW,SE, N,E,S,W,X

Appendix 5: Blocks testing

218

centre = +~/pb*100, 500

NW = centre+,50

SW = centre-,50

NE = centre+,50

SE = centre+,-50

N = if ~/hb then (NE+NW) div 2 else centre

S = if ~/hb then (SW+SE) div 2 else centre

E = if ~/hb then (NE+SE) div 2 else centre

W = if ~/hb then (NW+SW) div 2 else centre

X = if ~/drb then E else if ~/dlb then W else centre

line Nl,Sl,El,Wl,NX,SX,WE

Nl = [NW,NE]

Sl = [SW,SE]

El = [SE,NE]

Wl = [SW,NW]

WE = [W,E]

NX = [N,X]

SX = [S,X]

}

line string describe the string

string = [(block1/SE+block1/NE) div 2,

 if ss then (block1/SE+block1/NE) div 2 else

 (block2/SW+block2/NW) div 2]

int TRUE, FALSE

TRUE =1

FALSE=0

The output of the blocks simulation, as stored in amlog, is then used to produce an animated representation of

the blocks on the screen. This is difficult to demonstrate, so we here just give two possible pictures which can

Appendix 5: Blocks testing

219

occur. Block A being held and block B being moved right:

and block A not being held and block B being moved left:

Appendix 5: Blocks testing

