Research report 93

DEFINITIVE PRINCIPLES FOR
INTERACTIVE GRAPHICS

Meurig Beynon

(RR93)

Abstract

A definitive (ie definition-based) programming paradigm for interactive graphics is
investigated. Two contrasting examples of graphics notations for line-drawing
applications based upon definitive principles are described. The advantages of using
a definitive notation for interactive design, and as a medium for representing several
kinds of abstraction are considered. Some relationships between definitive
programming and other paradigms for graphical applications are identified, with a view
to developing abstract models and formal methods for computer aided design.

Department of Computer Science Feb 1987
University of Warwick

Coventry

CV4 7AL, UK

Definitive Principles for Interactive Graphics

Meurig Beynon -
"~ Deptof Computer Science ™~~~ S
University of Warwick

Abstract

A definitive (ie definition-based) programming paradigm for interactive graphics is
investigated. Two contrasting examples of graphics notations for line-drawing applications
based upon definitive principles are described. The advantages of using a definitive
notation for interactive design, and as a medium for representing several kinds of
abstraction are considered. Some reladonships between definitive programming and other
paradigms for graphical applications are identified, with a view to developing abstract
models and formal methods for computer aided design.

Keywords: graphics languages, user-interface design, human-computer interaction,
data types and data structuring, formal methods, computer aided design

Introduction

Many different paradigms for computer graphics systems have been proposed and
developed. Amongst these are the procedural, the constraint-based, the functional and, most
recently, the object-oriented approaches. This paper examines yet another paradigm: the use of
definidve (ie definitdon-based) {B1] notations for computer graphics and computer aided design.

Each programming paradigm for a graphics language has its characteristic emphasis. In a
definitive programrming notation, the emphasis is upon interaction [B1]. The general principle is to
regard "drawing a diagram” as a design process in which the intended semantics of the diagram has
an important role, and to provide an appropriate framework within which the design dialogue can
be conveniently represented. Essentially, a definitive notation consists of an underlying algebra of
data types and operators (an abstract data type) together with a set of typed variables whose values
are either given explicitly, or defined implicitly by means of formulae in terms of other variables,
Each stage of the design process is then represented by a suitable set of variable definitions, which,
in the context of a graphics notation, can be used to describe the abstract structure underlying a
picture in much the same way that the definitions of fields in a spreadsheet impose abstract
relationships upon scalar values. Perhaps the principal advantage of this approach is that partially
completed images are recorded in such a way that the manner of construction is irrelevant, and that
the user has considerable flexibility in choosin g and modifying the underlying conceptual model.

Two contrasting definitive graphics notations have been developed by the author: DoNaLD -
"a definitive notation for line drawings" [B3], and ARCA, for the display and manipulation of
combinatorial diagrams [B2,B4]. This paper includes an overview of both notations (§2), with an
emphasis upon illustrating the theoretical principles underlying their design.

DoNaLD has been designed as a popular graphics system illustrating definitive principles.
The underlying algebra is based upon real, integer, point, line and shape variables, where
point and line values are geometric Cartesian or polar coordinates and line segments in the plane,
and a shape value is a line drawing composed of a set of points and lines. Specifying an
appropriate mode for defining the value of a variable of a complex data type presents a problem in a
detinitive notation [B1], in so far as (for instance) the value of a shape variable may either be
specified directly in terms of other shapes, or by specifying its component points and lines
independently. To overcome this problem, DoNaLD includes two kinds of shape variable: virtual
shape variables whose value is defined by a single formula of type shape, and open shape
variables, which comprise a set of point, line and shape variables which are used to define
component points, lines and subshapes. There is a strong analogy between "shape and open
shape variables” in DoNaLD, and "files and directories” in UNIX. This is reflected in the
user-intertace for DoNaL D, in which there is a window associated with each open shape variable.
Editing the definidons within a window then resembles working within a subdirectory.

ARCA is a more sophisticated notation than DoNaLD, and may have more interest as an
experiment in software design than as a practical programming medium. It is primarily aimed at the
~~design and manipulation of a“class of combinatorial diagrams with a rich and clearly defined
mathematical semantics. The underlying algebra comprises integer, vertex, colour and
diagram data types, which respectively represent scalars, Euclidean coordinates, abstract
incidences, and realisation of coloured digraphs which semantically can be viewed as finite
automata. In this context, the problem of defining variables of complex data types is resolved by
introducing an auxiliary definitive notation so that the mode in which a variable is to be used for
representing a value can be suitably declared. This has the advantage that, at the discretion of the
user, the mode of a variable can either be specified precisely, enabling rigorous semantic checks on
subsequent definition, or loosely specified so as to permit flexible use.

Although the ARCA system, as presently developed, deals primarily with geometric aspects
of diagram manipulation, the richness of the associated semantic framework naturally suggests its
consideration as a prototype computer aided design system. A subsidiary theme of the paper, to be
developed in §3, is that definitive principles offer a promising approach to the problems of handling
many different kinds of abstraction of central importance in computer aided design. Some
discussion of connections with other programming paradigms, and directions for further research,
is also included.

§1. Background

1.1 Paradigms for eraphics languages

rs

Many different paradigms have been proposed for graphics languages. Amongst these are the
procedural, the constraint-based, the functional, and more recently the object-oriented approaches.
This paper investigates graphics notations based upon yet another paradigm: a definitive
("definition-based") approach which may be seen as a generalisation of the spreadsheet concept.

As is to be expected, the emphasis in some of the most successful and highly developed
commercial packages (eg DOGS and BOXER (P1]) is upon a procedural approach. Such languages
in effect provide a powerful virtual machine for graphics incorporating high-level primitive
operations, such as the display or transformation of a complex shape. The limitations of describing
graphical images using such tools resemble those of describing an algorithm in a sophisticated
high-level procedural language: it is hard to infer abstract relationships between components of an
image from a recipe for its construction.

Historically, constraint-based graphics offers perhaps the most significant alternative to a
procedural approach [N1]. Since the pioneering work of Sketchpad [S2], several experimental
systems for graphics have used this paradigm. A constraint-based system deals very directly and
elegantly with the problem of specifying functional relationships between geometric elements, but
does not have the same flexibility as a procedural system if extended interaction is needed to create
large and complicated images. It'may be necessary to construct a figure which can be conveniently
specified approximately by a single constraint, but to modify it in some point of detail for instance.
In other situations, it may be necessary to invoke a set of constraints whose consistency is difficult
to determine, or to revoke constraints in a conmolled manner. Dealing with these problems can
easily lead to a situation in which detailed knowledge of how an image is constructed is required to
manipulate it.

A possible solution is to use a purely declarative notation: an idea explored by Henderson
(H1], and developed by others with applications such as VLSI in mind (eg Sheeran [S1]). Such an
approach is atractive when the objective is to display an image which can conveniently be specified
statically in its entirety, and gives partcularly impressive results for images which can be defined
using recusrion or higher-order functional abswractions. In the functional framework, as with
constraint-based systems, it is nevertheless hard to see how to describe iterative design of an image
In a satisfactory way.

Object-oriented programming techniques for graphics [G1], though ostensibly procedurally
based, have some of the advantages of each of the above methods. It is relatively easy to ensure

~
<

that functional relationships between geometric entities are preserved by suitable protocols between
objects for example, and to make incremental changes by modifying the behaviour of a single
object. Such techniques also offer scope for associating semantic information with components-ina- - -
~ natural way. The main problem in this context is the lack of a suitable semantic model in which to
interpret the representation of a graphical image within an object-oriented system.

The features required of a graphics language are influenced by the intended application. It is
particularly important to distinguish between contexts in which the intention is merely to construct
pictorial images, and those where additional manipulation and interpretation of graphical images is
needed. In the former case, a sophisticated paintbox facility may be most appropriate; a set of
operations which can be freely used to paint a picture as conveniently and efficiently as possible. In
the latter, a means of representing an image in a more abstract fashion must typically be devised.
From an implementation perspective, this may be seen as the distinction between either defining a
pattern of pixels directly, or building up an abstract data structure which encodes semantic
information about an image, and in particular can be used to construct a graphical representation.
This distinction is often reflected in the chosen user interface, which may involve explicit
referencing of displayed elements and / or more oblique methods based upon textual input.

The historical development of systems for graphics reflects a general wend towards methods
in which the emphasis is upon building appropriate underlying data smuctures to represent pictures,
rather than simply upon drawing pictures directly. There are a variety of reasons for this. A primary
reason is that in many of the most important applications of graphics (eg circuit design, mechanical
engineering drawing, architectural draughting) the graphical images have an associated semantics
which cannot reasonably be ignored. It has become increasingly evident that means of binding
conceptual structure to images is essential if effective manipulation and interpretation is to be
possible in such contexts. Even in those applications where pictorial images might be seen as the
principal objective, as in computer animation, or the layout of illustrations in a paper, it may still be
preferable to work with an abstract representation. This reflects the need in general for interactive
modification of images, either whilst iterating towards a suitable image, or on subsequent
manipulation. Such interaction usually entails a mechanism for referencing an image in a
semantically sensible fashion, and also requires a framework within which the stages of an iterative
design process can be conveniently represented. It is with applications of this nature that this paper
is primarily concerned.

1.2 The definitive proeramminge paradiem

Procedural graphics languages are based upon sophisticated sets of operations which can be
used to construct images efficiently. Functional graphics languages swess ways of specifying the
abstract structure of images effectively. Constraint-based languages give scope for the
representation of abstract structure, and at the same time permit some degree of flexibility in choice
of parameters. The object-oriented approach, if used intelligently, provides a framework within
which some of the advantages of all these paradigms can be gained, but does not have an entirely
satisfactory semantics. '

The primary emphasis in using a definidve programming paradigm is upon interaction [B1].
The general principle is that of viewing drawing as a design process, and capruring the stages of the
design in a way which is transparent to the user, and conveniently represented in a computer, viz
by storing a set of appropriate variable definitions. Perhaps the most significant advantage of this
approach is that the details of a partially completed image are abstractly recorded so that the manner
in which it has been constructed is irrelevant, and that the user has considerable flexibility in
choosing and modifying the underlying conceptual model. Such an approach allows the user
considerable scope for introducing appropriate means of referencing components of an image, for
instance, and makes subtle forms of backtracking possible without complicating the semantics.

The principles behind definirive notatons for interaction are set out at length in [B1], and will
merely be summarised here. In essence, a definitive notation consists of an underlying algebra of
data types and operators (an "abstract data type") together with a set of typed variables whose
values are either specified explicitly, or defined implictly by means of formulae in terms of other
variables. A typical action in a definitive notation dialogue is then the declaration, definition or
evaluation of a variable. Simple as this programming paradigm may seem, experience suggests that

~
9

it can be used as a framework within which to develop a rich variety of notations. Possible
extensions and refinements to be explored (some of which are illustrated in connection with the

notations ARCA and DoNalL.D below) include: the introduction of user-defined data types and

—operators, special modes-for associating values with ‘Variables for the purposes of definition and
evaluation, concurrent use of two or more definitive notations in counterpoint, and context
switching through changing the underlying algebra. It may be noted in particular that a functional
language is designed to address just one of these issues, viz the specification of user-defined data
types and operators, so that, in some variants, definitive programming is more general than

functional programming.

A spreadsheet - stripped of its tabular user interface - provides the simplest example of a
definitive notation, in which the underlying algebra is traditional arithmetic. It may be seen that the
formulae used to define fields in a simple spreadsheet provide a conceptual model which underlies
the scalar information explicitly displayed, and allow the user to manipulate this information in a
manner which reflects an abstract view. The theme of this paper is that the same programming
paradigm can be used effectively when specifying geometric information in an abstract fashion.
Indeed, it will be argued - in this context with specific reference to graphics applications - that
definitive notations are a powerful means of describing many different kinds of abstraction.
Practical evidence to support this view is based on the design of two contrasting definitive notations
for graphics: the ARCA notation, intended for the display and manipulation of combinatorial
diagrams, and DoNaLD, a definitive notation for describing line drawings. The principal features
of these notations are described in §2 below. For more details, the interested reader should refer to

[B2,B3,B4].
§2. Two examples of definitive notations for graphics

2.1 DoNaLD: a definitive notation for line drawines

The DoNaLD notation is designed to demonstrate the use of definitive principles in a simple
graphical application. The purpose of the notation is to describe and manipulate line drawings
composed of points and lines in the plane. As will be illustrated in 2.2 below, it is not necessarily
appropriate in all applications to conceive points and lines as concrete geometric entities - a more
abstract view is desirable in some contexts - but in DoNaLD the underlying algebra is based upon
data types for representing planar drawings in the most direct and unsophisticated fashion. In all
there are 5 data types in this algebra:

real, integer, point (= real x real), line (= point X point),

shape (= set of points X set of lines),

which are respectively used to represent real and integer scalar information, geometric points and
line segments in the Euclidean plane, and line drawings composed of a multiset of points and a
multiset of lines. The operators of the algebra include standard arithmetic operations on scalars,
projection operators to select component coordinates from points, and endpoints from line
segments, and simple geometric operators for specifying the line segment joining two endpoints,
the point of intersection of two line segments, or the result of interchanging the endpoints of a line
segment. There are also operators which act upon shapes, combining two shapes into a single
shape, or rotating one shape into another.

The use of real, integer, point and line variables in DoNaLD is very straightforward. The
type of each variable is declared before use, and the value is subsequently defined by a formula -
possibly an explicit value - of the corresponding type. As explained in [B1], few semantic rules
govern variable definitions: it is only necessary to ensure that no circular definition is introduced. It
may also be noted that undefined values can be handled very easily within a definitive notation,
using a simple lazy evaluation strategy.

Variables representing complex data types within a definitive notation present some syntactic
and semantic difficulties. To an extent, these are evaded by the restriction to planar line drawings.
Were it possible to define points in dimension > 2 in DoNaLD, it might have been necessary to
provide a mechanism for specifying the components of point variables independently.” As
discussed at length in [B1], this would probably have necessitated the introduction of two kinds of
point variable: abstracr variables, whose values are specified by a single algebraic expression

4

returning a point, and composite variables to be viewed as arrays of variables of type real. Since a
DoNaLD point has only two components, the exclusive use of "abstract point variables" does not
cause too much inconvenience. - S

The design and use of shape variables is more problematical. Recall that the value of a
shape variable is 2 multiset of geometric points and lines, so that the need for some mode of
incremental definition cannot reasonably be ignored. A naive approach is to introduce abstract and
composite shape variables, where an abstract shape variable has its value defined by a shape
expression, and a composite shape variable by giving appropriate definitions for its component
points and lines. One major problem arises: the dichotomy between abstract and composite shape
variables is crude, and proves too clumsy in practice. It may be convenient to specify a line
drawing by describing some component points and lines explicitly, and the remainder by abstractly
defined subshapes for instance. A simple and elegant solution for this problem is to replace the
concept of a composite shape variable, which in effect comprises a family of constituent point
and line variables, by a more general notion for which the term open shape variable has been
devised. An open shape variable resembles a composite shape variable in that it incorporates
constituent point and line variables, but may also include constituent shape variables (the
“constituent subshapes") which may themselves be open shape variables. (A recursive definition
of the data type shape as '

shape = set of points x set of lines X set of shapes
might be viewed as the basis for the concept of an open shape variable.)

The introduction of open shape variables plays a major role in the design of DoNaLD. In
the first place, it simplifies the problems of referencing component points and lines within a shape
very considerably, by making it possible to organise related components of a line drawing into a
single subshape. (By way of illustration, an open shape variable to represent the plan of a
building might include the points and lines defining the overall configuration of rooms, together
with a component open shape variable to represent the layout of each room in greater detail.
Within each room there might be points and lines to represent significant locations, and further
component shape and open shape variables to represent fittings and furniture. Typical definitions
might specify the location of a light fitting with reference to the corners of the room, and describe
the structure of several identical desks via shape variables defined either by a single open shape
variable - or a user-defined nullary operator - representing an archetypal desk.) The referencing
mechanism used syntactically resembles the use of directories in the UNIX file system: a point p
within the open shape T which is a subshape of the globally declared open shape S is denoted
by S/T/p relative to the global context. The semantics of point and line references is a little subtle:
in effect the declaration of point and line variables within an open shape T introduces labels
which can be used for the selection of the corresponding points and lines from the line drawing
associated with T. To ensure that there are appropriate ways to refer to the points and lines of line
drawings defined by general shape expressions (eg the expression defining abstract shape
variables), it is necessary to establish conventions for determining labels for the components of
such expressions, which may in some cases involve mechanisms for disambiguation. A full
discussion of these issues, which js related to the question of why the dara type shape represents
line drawings rather than labelled line drawings, is beyond the scope of this brief overview [B3].

In view of the analogy with directories of files mentioned above, it is natural to introduce
some device corresponding to "changing directories”. It is convenient to think of the global context

as associated with a "universal open shape" I, so that the declarations of variables in the global

context are interpreted as specifying components of I'. The user interface for DoNaLD is based
upon a hierarchy of windows, and rooted upon the global window in which the declarations and
definitions of the globally declared points, lines and abstract subshapes appear together with the list
of open shape variable names. There is one such "context window" associated with each open
shape variable, which can be displayed after selecting the open shape variable name in the
raditional fashion. A virtue of this interface is that variables can be rererenced relative to their
current context, thereby avoiding excessive use of variable references from the global context in
much the same way that the use of directories can eliminate "absolute path names". Full details of
this interface are left to the readers imagination, but it is worth noting that the scope rules in
DoNaLD ensure thar the derinitions in each window reference variables lying within the

=
<

immediately enclosing context, so that syntactic conventions such as the "../../../" in UNIX are not
required.

"~~~ ‘Thedesign of shape variables in DoNaLD offers an attractive solution to the problems of
managing hierarchical abstraction of a kind which is very common in graphical applications. The
list of open shape variable identifiers within a particular context window may be viewed as
specifying the components of the associated line drawing which lie at the next level of abstraction.
Such a facility for specifying different levels of abstraction can be exploited both in defining and
displaying a diagram. (In this context, a diagram display is interpreted as a special kind of
evaluation, so that several different modes of evaluation are seen to exist.) It is particularly
lmportant to recognise that the set of definitions within a context window captures the current state
of a drawing design dialogue in a very effective manner, and is not subject to the same problems of
interpretation as an extract from a procedural program might be (cf [B3]). The order of the
definitions within a window is not significant, for instance, and the list of open shape identifiers
within the context window acts as a index to the ingredients of definitions which are not explicit at
the "present"” level of abstraction. The comprehensive nature of the semantic model supplied by the
context windows can be exploited in the design of additional features for manipulating definitions.
To avoid tedious or otherwise inconvenient multiple definitions, DoNaLD incorporates array
variables of each of the basic types, and some simple methods for iterative definition. The use of
these mechanisms is to be viewed very much as a means to an end: they are simply convenient
ways to edit the sets of definitions which alone describe the current status of the line drawing under
development.

DoNaLD includes an important additional feature which deserves a brief mention. In view of
the very rudimentary set of operators in the underlying algebra, some provision has to be made for
user-defined operators. Since the syntax of the definitive notation which is the essence of DoNaLD
1s not really appropriate for the specification of such operators, the manner in which user-defined
operators are specified is not of great relevance in this context, and can be viewed as a separate
concern. Ideally, a simple functional language over the basic data types might be used, but the
solution proposed in [B3] is a simple procedural notation. The significant fact is that a user-defined
operator defines a pure function, and can have no side effects.

2.2 ARCA: a definitive notation for describing combinatorial diagrams

Like DoNaLD, the ARCA notation is used for describing and manipulating graphs. Unlike
DoNaLD, the ARCA notation is designed with abstract graphical applications in mind, and this is
reflected in the nature of the underlying algebra. The idea of viewing a graph as an abstract
combinatorial object comprising vertices and edges satisfying particular incidence relations is
central to the design of ARCA. This means for instance that concepts such as edge traversal and
connectivity can be captured within the semantic model of an ARCA diagram. A vertex of a
diagram in ARCA is associated with an index, rather than identified with its location in a particular
realisation, and the edges of the diagram are specified via relations between vertex indices rather
than by geometric line segments. Indeed, the edges have additional attributes, including a colour
and a direction, so that an ARCA diagram can easily be interpreted as a finite automaton. A full
discussion of the background to this semantic model, which is derived from a class of finite
automata studied by Arthur Cayley in connection with group theoretic investigations in the 19th
century, appears in [B2]. In this context, it will be enough to conceive an ARCA diagram as
describing a deterministic finite automaton in such a way that a vertex represents a state, and an
edge of a particular colour a state transition labelled by a particular input symbol. This particular
semantic model is significant as a common interpretation for a graph, which underlies applications
in which the edges of a graph are used to represent relations on the set of vertices (cf the transport
networks in §3).

There are three primitive data types in the underlying algebra for ARCA. These are integer,
vertex and colour, which are repectively used to represent scalar, coordinate and incidence
information. All scalar information - including the coordinates of geometric points - is interpreted as
discrete, and the versatility of the integer date type is enhanced by the introduction of an
associated modulus for each integer variable. Integer values of modulus >1 have their traditional
interpretation as residues, and are useful as indices when referencing cycles of edges within a

6

~vertex —comprises an array of integers of modul

diagram. The "ordinary" integers are viewed as "integers modulo 0", whilst the scalar components
of coordinates are expressed in terms of special purpose geometric units which can be conveniently
regarded as "integers of modulus 1". Coordinate information - represented by values of type

us 1, and may be of any dimension >1. In effect,
the value of a variable of vertex type is a vector comprising integer components representing a
“sufficiently accurate" approximation to a geometric point under an appropriate convention. The
representation of incidence information is more subtle, and corresponds to "simultaneous
specification of all the transitions associated with a particular input symbol in a deterministic finite
automaton” rather than to the "independent specification of each transition”. A variable of type
colour accordingly has a value which is a partial permutation of an appropriate degree ("the
number of states”) and is primarily used in connection with a particular specification of vertex

indices within an ARCA diagram (see below).

There is one complex data type - the diagram - which may be seen in some ways as
analogous to the DoNaLD type shape. A value of type diagram is a realisation of a combinatorial
graph: an indexed set of vertices with associated coordinates (possibly in dimension >2), and a
family of edges partitioned by colour which define incidences between these vertices.

The underlying algebra for ARCA includes a rich variety of operators, and is far more
sophisticated than that of DoNaLD. It includes all the standard operators relating scalars, vectors
and permutations, and special purpose operators introduced to assist the problems of specifying
explicit values for permurtations, vectors and vertex indices in diagram expressions. There are also
Operators to construct a join and product of diagrams, making it possible to address quite
sophisticated semantic aspects of ARCA diagrams within the notation.

The problem of defining the values of variables of a complex data type alluded to in
connection with shapes in DoNaLD occurs in an even more acute form in ARCA. The fact that
both vertex and colour variables can have an arbitrary number of components precludes the
exclusive use of abstract variables of these types, and the intricate form of the diagram data type
poses additional difficulties. It may be convenient to define the value of an ARCA diagram
variable by a diagram expression, or by specifying explicit lists of colour and vertex
expressions to define component variables of a composite diagram variable, and it may be
appropriate that these component variables themselves be abstract or composite variables. For
instance, it can be useful to define the coordinates of a diagram by supplying an independent
definition for each coordinate of the first vertex, and to define those of the other vertices in terms of
the first vertex by abstract vertex expressions. The problems posed by the diversity of abstractions
from a diagram value which may arise cannot reasonably be solved simply by devising a
mechanism for typing variables once-and-for-all on declaration. Such an approach is too inflexible.
Nor is the solution adopted in DoNaLD appropriate in this context, since it is not generally
convenient to specify a finite automaton recursively. (There is however a connection between the
solutions adopted in DoNaLD and ARCA, in that the use of open shape variables in DoNaLD is
effectively an explicit mechaism for specifying the mode of a variable to represent a shape value.)

The key idea which leads to a satisfactory resolution of these difficulties is that of dynamic
variable declaration: the inroduction of a mechanism for declaring variables interactively. As might
be expected, this takes the form of an auxiliary definitive nortation for specifying the mode of
abstraction by which a variable is to represent a value. The underlying algebra for this definitive
notation is essentially the same algebra as that used for specifying the values of ARCA variables
viewed at a higher level of abstraction, so that operators are defined on "abstract value types" or
variable remplates rather than on explicit values. These templates can be viewed as precisely
describing the levels of abstraction at which the components of a complex data value are specified.

The details of this moding mechanism can best be indicated with reference to an example. As
mentioned above, there are many different ways in which a diagram variable can be used to
represent a diagram value. The simplest uses an abstract diagram variable whose value is defined
directly by means of a diagram expression. An appropriate mode declaration for such a variable
takes the form:

mode D = abst diag
- 4 declaration which precludes the existence of component vertex and colour variables for D.
For the latter 1o exist, D must be declared as a composite variable, and it then becomes possible to

7

give independent definitions to the component vertices and colours of D. An appropriate declaration

in this case might take the form:

' _ modeD ='abc-diag15._ . _
~ indicating that D has component colours a_D, b_D and c_D, and vertices D!1, .
suggested above, it might be that the component coordinates of the vertey variable D!1 were then
to be defined by independent integer expressions, but that the vertex D!2 was to be defined by an
single expression of type vertex. To provide for this, the declarations:

mode D!1 = vert 4 and mode D!2 = abst vert
might then be used. The elaboration of this concept of variable mode should not be difficult to infer

from these examples, and has a number of interesting ramifications.

It may be observed that the mode definitions used above are explicit: that is, mode

expressions such as
‘abc’-diag 15
represent values in the algebra of templates. It may also be convenient to make the declaration of a
variable mode implicit, declaring
mode D!1 = mode DI2
for instance, to indicate that the template for the component variable D!1 is to be that specified for
D!2. Indeed, there is a rich underlying algebra of templates which includes images of all the
operators in the underlying algebra of ARCA values, as determined by relations such as
vert2 +vert2 =vert2 and abst col . col 3 = abst col

expressing the fact that the vector sum of two composite vertices of dimension 2 defines a
composite vertex of dimension 2, and that the product of an abstractly defined permutation and an

which are compatible in so far as they can represent the same value, and relations such as

vert 2+ vert 3=@ and vert + int = @
(where @ represents an undefined value) which embody semantic rules concerning type
information.

The introduction of an auxiliary definitive notation has other implications. A potential

semantc problem is that any value definition of a variable such as
v =[273]

can be conceived as implicitly defining information about the variable mode. The function of a
declaration is of course to constrain the manner in which the value of a variable can be defined, so
that there are necessarily semantic rules to relate the definitions of mode and value. In essence, a
single semantic rule suffices: in a definition of the variable v by the expression E, v and E must
have compatible templates, and the mode of v must be at least as abstract as that of E. (In the
ARCA interpreter currently under development, the slack nature of this constraint between
declaration and definition is being exploited to admit conventions for variable typing which can be
"arbimrarily" weak and strong at the discretion of the user.)

The ARCA system illustrates ways of capturing abstraction within a definitive notation

framework which are complementary to the hierarchical abstractions in DoNaLD. The original

and manipulate Cayley diagrams of groups: a class of finite state machines which effectively supply
geometrical models for the multiplication tables of groups (cf [B2] for details of this connection).
The richness of the underlying algebra, and the complexity of the diagram data type reflects the
complicated semantics of a Cayley diagram, which can be viewed both as a geometric object, and
as an encoding of a sophisticated algebraic object. Contexts in which the same object admits quite
distinct abstract interpretations in this way abound in computer aided design, and the counterpoint
between two or more such Interpretations is often of central importance. The manner in which the
definitive programming paradigm can be used to capture such "orthogonal abstraction" will be
considered in §3 below, and is well illustrated by the ARCA system.

In the context of this paper, it is inappropriate (o attemnpt to explain fully the variety of issues
relating to Cayley diagrams and their properties which can in principle be addressed in a consistent

8

., DIIS. As

and integrated fashion within the framework of ARCA, but the example to be considered in §3
below, based upon a more familiar and concrete domain, may give some insight. (The reader with a

sophisticated algebraic knowledge will appreciate that the semantic domain addressed by ARCA is - -

“especially - perhaps even artificially - well-suited for the application of definitive principles. For
instance, within the ARCA system, it is trivial to abstract the group multiplication table from a
Cayley diagram, to exhibit the multiplication of elements graphically, to trace out relations on the
diagram, and to compute the orders of elements represented by vertices of the diagram. The
significant feature of such a system is not "being able to carry out these operations” - which are
computationally easy - but being able to perform these operations by direct reference to the
graphical display via the underlying semantic model which may be seen as an analogue of the
group-theorist's interpretation of the diagram.)

§3. Evaluating definitive principles for computer aided design

3.1 Definitve principles for abstraction

Experience gained from research on ARCA and DoNaLD suggests that definitive principles
are particularly useful as a means of capturing forms of abstraction commonly encountered in
computer aided design. It will be helpful at this point to identify these forms of abstraction, and to
examine in general terms how definitive notations can aid their description. This exercise is
instructive both in respect of the definitive programming paradigm, and of the design process.

Three pervasive kinds of abstraction can be identified: hierarchical, generic and orthogonal.
It is difficult to give formal definitions for these concepts, but the following informal
characterisations are proposed:

hierarchical abstraction refers to the process of viewing a single complex object at different
levels of detail, as in viewing an electronic device as a black box, or as a system of interconnected
functional cells, or as VLSI circuit layout;

generic abstraction refers to the process of associating many related objects into a single
class, as in identifying 1, 2 and 3 as "integers"”, and <1,2>, <1,2,3> and <2,3,4,5> as "lists";

orthogonal abstraction refers to the process of interpreting a single object, or a single class
of objects, in several independent ways, as in viewing a label on a picture as a pattern of pixels, or
as a string of letters, or as a meaningful name.

Hierarchical abstractions can be captured in a definitive notation in a number of ways. The
form of the sequence of definitions used to specify a value might be used to indicate a hierarchy of
different views for instance. Thus the sequence of definitions

profit=sales-costs

sales=carpetsales+curtainsales

costs=tax-+rates+expenses+wages

expenses=services+supplies
services=gas+electricity+telephone

~

suggests many levels of detail at which the profit made by a shop could be specified. A single form
of hierarchical abstraction is commonly used in connection with definitions of values within a
particular class, as in the specification of a hierarchical data type such as the ARCA diagram, or
the DoNaLD shape. Such abstractions are both hierarchical and generic, in the sense to be
explained below. The recursive definition of the data type shape which underlies the shape
variables in DoNalLD illustrates a technique which can be used to introduce hierarchical abstraction
at arbitrarily many levels, as might be appropriate (for instance) in the definition of fractals or
recursive list structures.

Generic abstractions are most directly represented within the framework of a definitive
notation by the data types within the underlying algebra, which are associated with a class of
explicit values. Definitions of variables in terms of undefined variables (which is essentially
parametrisation of expressions) can be used to describe particular instances of generic abstraction.
This is an especially important device in the design process, when it may be necessary to describe
the form of parts of an object which cannot as yet be specified in greater detail. The use of modes in
ARCA illustrates a method for extending the scope of generic abstractions based on variable type
declaration; a fact which enhances the utility of variables whose values are undefined. With such a

9

moding mechanism, it becomes possible to specify very precisely the form of parts of an object
which are as yet undefined. Yet another kind of generic abstraction applies at a higher level of
abstraction, and corresponds to the device - familiar to algebraists - of "changing the underlying
algebra”-The essential idea here is that the underlying algebra may itself be abstractly described in
such a way that the operators and elements admit many consistent interpretations. As a simple
illustration, a definitive notation based upon commutative ring addition and multiplication could
serve as a calculator if the underlying algebra were the real numbers, as a context for performing
residue arithmetic over a quotient of the integers, and as a medium for polynomial manipulation if
the operators were viewed as symbolic. (The manner in which open shapes in DoNaLD can be
used to define different contexts suggests a further application for the "change of algebra" concept:
it might be that the nature of the underlying algebra could be context dependent, so that - for
instance - the interpretations of point, line and shape - together with the associated incidence
operators - could be chosen to describe spherical geometry within some subshape. As a simpler
lustration, a context-dependent change of scale could also be construed as a change of algebra.)

Orthogonal abstraction is one of the most significant problems to be addressed in computer
aided design. The idea that a single object admits several different interpretations is of central
importance in the computer aided design process, and the difficulties presented by translation
between semantic models are a common source of frustration. The solution adopted in ARCA
supplies the archetype (even the ARCAtype) for the application of definitive principles in handling
orthogonal abstraction. The key idea is that a single data type can be designed to synthesise several
different semantic ingredients, in the same way that the ARCA diagram incorporates abstract
group theoretic information encoded in the colour list, and geometric information encoded in the
vertex list. In other words, an ARCA diagram represents both an "abstract finite automaton” and "a
picture of the automaton” in the form of a graph whose nodes represent states and whose edges
represent transigons.

It is interesting to note that this particular feature of the ARCA design has been criticised for
violating the principle of "separation of concerns”. The appropriate answer to this criticism is that
“juxtaposition of concerns" plays a very significant part in the design process, and what is
important is that the specification of independent semantic information can be separated as
necessary. It is quite possible to define and evaluate the coordinates of the vertices of an ARCA
diagram without supplying any colour information, for instance; but the user has the means to
integrate information about coordinates and incidences as required. As an indication of the subtlety
of the interaction between semantic models of an ARCA diagram, it is possible (for example) to
define the coordinates of the i-th vertex D!i of a diagram D in terms of the coordinates of DIG+1D)
and those of the vertex D!j which is reached by following a specified sequence of coloured edges in
D from the vertex D!i in a direction determined by the parity of i. In fairness, it must be added that
the successful integration of independent semantic information illustrated by the ARCA diagram
depends upon a suitable interrelationship between concerns. Where this is absent, the juxtaposition
of semantic information within a data type effectively amounts to the parallel use of two disjoint
definitive notations. As an illustration of this, it might be that in drawing a Cayley diagram solely
for purposes of display the ARCA system could be used to produce a graphical image - perhaps a
projection of an embedding in dimension > 2 - which could subsequently be reinterpreted as a
DoNaLD line drawing and manipulated as a geometrical object. The virtue of this approach is that
issues concerning incidences between geometrical edges - for instance - are more easily addressed
by DoNaL.D, in view of the abstract combinatorial nature of edges in ARCA.

As a footnote to this section, it is interesting to ask whether there is an alternative framework
which provides a better formal characterisation of the kinds of abstraction which appear in
computer aided design than the definitive programming model. It is arguably the case that neither a
purely procedural nor a purely declarative programming paradigm offers the same scope for
representing many varieties of abstraction. Indeed, the definitive framework for modelling
abstractions can perhaps be useful both in an analytcal and a prescriptive role. The example below
suggests that the scope to choose and model abstractions of various kinds using definitive
principles can assist the user in developing a definitive notation for a particular applicaton.

3.2 An extended illustrative example

To clarify some of the issues considered above, it will be helpful to look abstractly at a

possible graphical application, and to speculate upon ways in which definitive principles might be
applied. To give a particular focus to the discussion, let us imagine that an ambitious graphics
based system to provide comprehensive travel information is to be developed. This will make it

- easier to explain the Jong term objectives and motivating ideas behind the development of definitive

principles than is possible solely with reference to the relatively modest graphical systems so far
developed.

Central to the travel agency, there will be a graphical system for displaying geographical
information in the form of an atlas comprising maps of various kinds. These maps will include an
image of a 3-dimensional globe, various world maps in appropriate projections, maps of specific
countries, of districts within a country, of holiday cities, towns and villages, and of localities
within these holiday resorts. The relationship between these maps illustrates a very common form
of hierarchical abstraction: ideally, we should like to link the complex of maps appropriately so as
to reflect the fact that a map of a particular city lies within a district of a particular country, for
instance. To represent such an atlas using a definitive notation, it would first be necessary to devise
an appropriate underlying algebra: that is, a set of data types and operators for describing each type
of map via a suitable family of definitions. A naive solution to this problem would involve
developing a data type appropriate for representing the map as a pictorial image, as in a traditional
atlas, but this is only one aspect of the semantics of the map which is relevant in this context. In
effect, there is a need for orthogonal abstraction, whereby places and transport connections are
represented both by an image on the map, and by a combinatorial graph indicating when and how
places are connected.

A possible solution borrows some of the features of DoNaLD and ARCA. Since an
orthogonal abstraction for places and wransport links is needed, the basic data type used to represent
a place (which might be a country, district, city, village, or even a building) combines a
conventional map, and semantic information about sites and ransport connections between sites
within that place. Since a hierarchical abstraction for viewing places is clearly essential, the general
framework for the deign of the map data type is modelled upon the DoNaLD shape. A possible
recursive specification for the underlying data types is then:

map = image x list_of places x list_of links
place = map X reference x index

link = map x mode_of transport x index X index

where each place in the list_of places associated with a map M refers to a location on M with an
index (or identifier) whose coordinates are specified relative to M by the reference, and each link

in the list_of _links refers to a link between places with specified indices supplied by a specified
mode_of _transporr. As an illustration, a map variable to represent Britain would comprise a
pictorial image (image) together with a list of places of national interest and a list of principal
transport connections between these sites. One such place would be Coventry, with its own
associated map information (including its places of local interest, and transport connections)
together with a map reference relative to the map of Britain, and a characteristic index. Amongst the
transport connections in the list_of links for Britain might be the M1 motorway, from London to
Leeds, and the main railway line from London to Glasgow. The purpose of the recursive
specification for each transport link provided by the map of the link is to allow "sublinks" of a link
to be represented. For instance, a map of the main London-Glasgow railway line would include
Coventry (or perhaps Coventry railway station - a place within Coventry) as a place, and London to
Coventry as a rail /ink. In a similar fashion, the map of a motorway would include links to
represent the intervals between consecutive exits or service stations on the motorway. (Even these
sections of motorway could have an associated map in which the places indicated emergency

telephone points.)

The underlying data types above would be complemented by a set of operators designed to
describe the physical relationships between places, and the physical connections berween ransport
links. There would be operators resembling the join of DoNaLD shapes or of ARCA diagrams, for
instance, which would combine the images or several maps, and the associated lists of places and
links. Such operators could be used to construct maps for specific itineraries, or for the promotion
of a particular holiday region. Operators to return physical characteristics of places, such as the
average annual sunshine or rainfall, or the height above sea-level might be included. In the

11

orthogonal semantic model associated with places and links, there would be operators to identify
the endpoints of a link, and an operator to concatenate links, so that (for instance) a special bus

service could be represented by a link variable defined by a concatenation of road links. In general,-

 the principle within the model would be that much of the information was encoded in predefined
variables, but that the travel agent could modify or amend this information by redefining - or
declaring and defining - variables. The London-Leeds link supplied by the M1 motorway might be
predefined for instance as the concatenation of links associated with sections of the motorway
between junctions along its entire length. Such a definition mi ght need to be amended in the event
of closure of a complete section of the motorway, by redefining a link between junctions to
conform to the route for a diversion. Note that in principle this definition could take the form ofa
conditional expression, indicating for example that the diversion applied only on Sundays. It would
also be natural for a travel agent to introduce variables to represent places of peculiar local or
personal interest, such as hotels or related organisations with whom special arrangements had been

made.

Within the framework sketched above, it is easy to identify many "orthogonal” ways in
which information stored in the definitions of maps, places and links could be displayed. As in
ARCA and DoNaLD, such displays are viewed as different modes of evaluation, and might
correspond to partial evaluation (as in displaying the connections between stations on the London
Underground), or exceptionally to evaluation over an alternative underlying algebra (as for instance
in displaying flight paths between major airports as they would appear on the globe, rather than in a
planar projection).

It remains to consider the other aspects of the travel agent's task: advising upon the
scheduling and cost of journeys. A link in itself is an inadequate representation of a journey, since
it describes spatial rather than spatial and temporal information. A possible data type to record a
journey is a sequence of legs, where

~ leg = link x transporter x dept_time x arr_time.

Functions retumning the cost and duration of a leg would be available in the underlying algebra, and
there would be an operator to combine two journeys into a single Journey subject to feasible
scheduling. In this way, a variable of type journey could be used to represent an itinerary for a
particular client. As remarked above, the definitions of variables in this context could be framed so
as to accommodate a degree of uncertainty: perhaps indicating alternative travel plans where
appropriate, and incorporating parametrisation to reflect the dependence upon fuel surcharges, for
instance.

The significance of the fanciful travel information agency sketched above lies not in the
individual functions which it performs, but in the conceptual framework within which it has been
described. All the facilities described are within the compass of a conventional system incorporating
graphical, database and spreadsheet tools. The purpose of this illustrative example is to indicate
how the use of definitive principles might lead to an integrated system for data definition and
manipulation even in the context of a relatively unsophisticated application. In general, the benefits
of adopting a definitive notation will be most evident when the underlying algebra has a richer
structure than that associated with the travel information system, and the ARCA system - despite
the apparent lack of a practical application - is probably more representative of the potential of the
definitive programming paradigm.

Directions for further research

In this paper, the merits of the definitive programming paradigm for interaction and
abstraction in computer graphics and computer aided design have been outlined. To put these ideas
In perspective, it is helpful to look briefly at the connections with other programming paradigms,
and indicate future directions for research.

The functional programming paradigm is essentially based upon the definition of an abstract
data type (which can be viewed as an algebra of darta types and operators), and the evaluation of
associated algebraic expressions. A definitive notation which enables the user to specify new
operators and data types in principle supplies a more general framework. In practice, the primary
emphasis in the definitive notations so far developed has neither been upon enhancement of the

12

underlying algebra, nor upon the introdution of higher-order operators into the underlying algebra,
and to this extent represents a divergent direction of research. The case for using definitive

_____principles rather than purely declarative principles in applications involving interaction or iterative -~

design has been made at length in §3 and elsewhere [B1,B6]. It rests primarily on the need for
appropriate means of representing both the state of the dialogue and the abstractions which are of
central importance in such applications. It should be noted that a definitive notation for design
applications for which a special purpose functional language has already been developed (eg the

uEP language for VLSI design [S1]) could probably be derived by a process of enhancement in a
conceptually simple manner. The issues are technical (solving the problems of variable specification
and component reference for sophisticated data types) and philosophical (is it necessary, or
desirable, to introduce procedural elements into a purely declarative notation?), and represent one
direction for future research.

In graphical applications, there has always been a strong interest in techniques more closely
related to an equational rather than a functional programming paradigm. Constraint-based systems
represent an equational approach to geometry, and "intelligent” computer aided design systems
make use of logic programming concepts. Naively: functional programming seeks to represent data
by algebraic expressions typically involving higher-order operators, equational programming as the
solution to a system of equations, and definitive programming by a system of interrelated
definitions. At this stage, further research is needed to clarify the connections between these
alternative representations, but some pertinent informal observations can be made.

Where geometric aspects are concerned, the relationship between the equational (ie
constraint-based) and the definitive approaches can be illustrated to some extent by contrasting the
specification of a parallelogram as a quadrilateral in which opposite sides are of equal length, and
that given by a definition specifying the appropriate functional dependence of one vertex upon the
other three. The former specification has the advantage of expressing a symmetric relation between
the four vertices, so that the geometric relationship "ABCD is a parallelogram" is preserved under
displacement of any vertex. In the latter case, the definition of the vertex D ensures that ABCD
remains a parallelogram on displacement of the vertices A,B or C, but not on that of D itself. There
18 no doubt that the equational specification of constraints has aesthetc and practical advantages in
this and other similar contexts, but the less elegant approach based upon definitive principles offers
a better model in interactive use [B1,B6]. It is quite possible to specify a set of constraints which
has no feasible solution for instance, and the constraint-based approach gives less scope for
satisfactory representation of the state of the dialogue. A suggestive imprecise analogy between
specification "by equations” and "by definitions” may be seen in the specification of an ellipse as
"the set of solutions of a polynomial equation”, or as "the locus traced by a point with parametrised
coordinates", respectively. The definition of a geometric object within a definitive notation is
typically a parametrised description: a possible' generalisation of interest would entail the
introduction of an operator to the underlying algebra which constructed a locus from an appropriate
parametrisation.

A parallel relationship is observed where equational logic is concerned: the interdependences
between variables specified by a set of predicates clearly resemble those which are imposed by a
sequence of definitions. This tentatively suggests that definitive principles address in an explicit
manner semantic issues which are implicit in a logic program. It may be thar techniques such as
unification, which in effect find a parametrised solution to a system of equations, supply a link
between the logic programming and definitive programming paradigms. A more direct role for logic
programming principles in connection with a definitive notation ¢an be sought by introducing
axioms into the underlying algebra, and exploiting symbolic manipulation techniques in the
evaluation of formulae. More research is required in this area, but there is some evidence to suggest
that the semantic models for abstraction and interaction supplied by definitive principles are a good
basis for automated reasoning in an "intelligent” computer aided design system.

Amongst the programming paradigms for graphics, the object-oriented approach offers one
of the most effective ways of dynamically maintaining constraint relationships, and integrating
orthogonal semantic elements. In so far as it is easy to define variables x and y in an object-oriented
programming system which are constrained so that x=y+1 irrespective of whether x or v changes
its value, it is clear that such systems offer a more flexible mode! for handling constraints than a

13

definitive notation. Perhaps the fact that the maintenance of the functional relationships
x=y+1 and y=x-1

can be delegated to distinct objects - thereby avoiding the problems of self-reference implicit in
~— - -consideringthe pair of definitions within the same context - is significant. Such considerations

naturally point towards the development of a programming paradigm in which a network of
Independent processors interact via a definitive notation - an idea explored in the LSD notation for
communicating systems [B5]. The investigation of this generalisation of definitive notations, and
its relationship to the object-oriented programming paradigm, represents another promising
direction for further research. It seems probable that the intrinsic semantic intricacies of the
computer aided design process, and those of other graphically based concerns such as computer
animation, require a programming paradigm of this degree of sublety. It is to be hoped that the
perspective proposed in this paper can help to provide a coherent framework for its description.

Conclusions

The virtues of definitive principles for interaction and abstraction have been illustrated in
connection with relatively simple graphical systems. Many of the techniques and principles
described generalise directly to more sophisticated applications, but more research is required into
connections with existing approaches before large integrated systems based upon a definitive
programming paradigm can be developed. For instance, where computer aided design applications
are concermned, it is important to relate the representation and manipulation of data within a definitive
notation to the use of conventional data bases, and to consider the implications of introducing
functional and logic programming concepts, such as- higher-order functions, and automated
reasoning, which have an important part to play in future developments.

Acknowledgements

I am indebted to many undergraduates for work which has contributed to the development of the
ARCA and DoNaLD systems over several years. I am particularly grateful to Nader Fahranak for
helping to initiate the ideas on the design of ARCA which have been seminal in this research, and to
Kevin Murray for programming assistance and stimulating discussions.

References

(B1] W.M.Beynon "Definirive principles for interaction” in Proc hci'85, CUP Sept 1985
[B2] W.M.Beynon "ARCA: a notation for displaying and manipulating combinatorial diagrams”,
University of Warwick Computer Science Research Report #78, July 1986
[B3] W.M.Beynon, D.Angier, T.Bissell, S.Hunt
"DoNalLD: a line drawing system based on definitive principles”,
University of Warwick Computer Science Research Report #86, October 1986
[B4] W.M.Beynon, K.AMurray "The revised ARCA definition”,
University of Warwick Computer Science Research Report #**, <in preparation>
[B5] W.M.Beynon "The LSD notation Jor communicating systems”, ~
University of Warwick Computer Science Research Report #87, November 1986
[B6] W.M.Beynon "Paradigms for Programming”,
Alvey Software Engineering Mailshot, December 1986
[G1] A.Goldberg, G.Krasner, "SMALLTALK-80: Creating a User Interface and Graphical
Applications”, Addison_Wesley, 1985.
[H2] P.Henderson, "Functional Geomerry”, Proc. 1982 ACM S ymp. Lisp and Functional Prog.,
ACM, NY 10036, p179-187
[N1] G.Nelson, “Juno, a Constraint-Based Graphics System”, Proc. SIGGRAPH '85, Computer
Graphics Vol 19(3), p235-243, 1985.
[P1] PAFEC Ltd., DOGS user manual, PAFEC Ltd., Strelley Hall, Strelley, Nottingham, UK

[S1] M.Sheeran, "LFP, a language for VLSI Design”, Proc. ACM S ymp. on Lisp and Functional
Programming, pp104-112, 1984.
[S2] LE.Sutherland, "SKETCHPAD- A Man-Machine Graphical Communicarion System”, TR
#296, Lincoln Laboratory, MIT, 1963

14

