Implementing a definitive notation for interactive graphics

Meurig Beynon and Edward Yung,
Dept of Computer Science,
University of Warwick,

Coventry CV4 7AL

ABSTRACT

This paper describes the application of a definitive (definition-based) programming
paradigm to graphics software. The potential merits of using definitive principles for
interactive graphics were considered from a theoretical perspective in [Be87], this paper is
complementary, in that it describes the insights gained through practical experience in
implementing a prototype system. The main characteristics of the prototype implementation
are illustrated by simple examples. Analysis of the abstract machine model underlying this
implementation suggests a general purpose programming paradigm based on definitive
principles that can be applied to more ambitious applications.

Introduction

This paper describes the application of a novel programming paradigm to graphics software.
The programming paradigm - "definitive programming" - is based upon the use of definitions for
interaction. The potential merits of using definitive principles for interactive graphics were
considered from a theoretical perspective in [Be87]; this paper is complementary, in that it describes
the insights gained through practical experience in implementing a prototype system.

The notion of using definitive notations for interaction was first described in [Be85]. The
essential principle in developing such a notation is to devise an "underlying algebra" of data types
and operators which reflects the universe of discourse, and to introduce appropriate variables to
represent values in the underlying algebra, either explicitly or implicitly, through a defining
formula. In such a system, a pure definitive notation, a program - or dialogue - essentially
consists of a sequence of variable definitions and evaluations. Perhaps the simplest example of
such a notation is obtained by choosing the underlying algebra to be traditional arithmetic, when the
dialogue resembles the use of a spreadsheet, stripped of its tabular interface.

As explained in [Be85], definitive notations appear to be very well-suited for dialogue. They
make it possible to represent the state of a dialogue effectively, since the combination of implicit
and explicit definitions allows both persistent relationships, and transient values, to be recorded.
An important feature of a dialogue over a definitive notation is that all the information needed to
determine the current state of the dialogue is automatically stored, and can be recovered by
interrogating the variables to obtain their current definitions.

It is not our purpose in this paper to describe the detailed design of programming notations
based on definitive principles; the illustrative examples below make use of abstract notations
adapted from DoNaLD ("a definitive notation for line drawing"), and EDEN ("an evaluator for
definitive notations"), and the interested reader is referred to [Be86a] and [Yu87] for more details.
Our emphasis is upon introducing general principles and techniques that can be used to implement
definitive notations for graphics, and - pursuing the directions suggested in [Be87] - can be
developed to support much more sophisticated systems and applications than are illustrated here.

The paper is in two main sections. §1 introduces the principal features of the graphics
notation DoNaLD, and illustrates how it may be used to describe a room layout so as to allow
interactive experimentation with furniture configurations and room dimensions. §2 introduces the
programming language EDEN, intended for the implementation of definitive notations. It also

includes some program fragments showing how a DoNaLD dialogue is translated into EDEN. An
examination of the abstract machine model underlying EDEN suggests a general purpose
programming paradigm based on definitive principles. Some directions for future research
directions are also outlined.

§1 DoNaLD: a definitive notations for line drawings
1.1 Basic principles

The DoNaLD notation (a "Definitive Notation for Line Drawings") is intended for the
interactive display and manipulation of planar diagrams comprising points and lines. As a definitive
notation, it is based upon an underlying algebra comprising five data types: integers, reals,
points, lines and shapes, and a variety of simple geometric operators. Scalar values are
represented by integer or real variables, points in the plane by point variables, directed line
segments (that is, lines defined by an appropriate pair of endpoints) by line variables, and line
drawings comprising a multiset of points and lines, together with a set of real and integer
attributes by shape variables. Following the usual pattern, a DoNaLD dialogue then consists of a
sequence of declarations of variables, definitions of variables of the form:

variable = formula
specifications of user-defined operators, and evaluations of variables. For this purpose, realising
the line drawing represented by a shape variable is viewed as a special kind of evaluation.

The full details of the operators in the underlying algebra appear in [Be86a]. In brief, there
are standard arithmetic operators, vector operators acting upon points viewed as 2-dimensional
vectors, and a variety of operators on points and lines. The latter include constructors to synthesise
a point in the plane from its component coordinates, and a line segment from its endpoints, and
selectors to extract coordinates from points and endpoints from lines in the usual fashion. There
are also geometric operators for rotating and scaling shapes, and an operator for combining two or
more shapes.

1.2 Dealing with complex data types

The introduction of complex data types into the underlying algebra poses some problems for
the definition and reference of variables (cf [Be85] and [Be87]). The solution to the reference
problem for shapes adopted in DoNaLD is based upon a representation of a line drawing by a
shape variable resembling that of a file system directory as a union of files and subdirectories.
Such a representation corresponds to an abstract view of a line drawing as a union of points, lines
and sub-drawings. In effect, it is based upon a recursive specification of the shape data type, viz:

shape = set of real / integer attributes + set of points + set of lines + set of shapes.

There are two kinds of variable of type shape; these are declared as "shape” and "openshape”
variables, and are broadly analogous to "abstract” and "explicit" variables as described in [Be85].
The value of a shape variable is to be defined implicitly by means of an expression of type shape.
An openshape variable, which resembles a directory, is composed of constituent real, integer,
point, line, shape and openshape variables, and its value is defined componentwise by
associating values with its constituent scalar attributes, points, lines and subshapes.

Each variable is either declared globally, or denotes a constituent of an openshape variable,
which may itself be a variable of type shape. The value of a shape or openshape variable which
is declared as a constituent of an openshape variable X is a subshape of the value of X,
comprising a subset of the set of points and lines associated with X. The authentic variable name
is that used to reference the variable from the global context, and is in general specified by a
sequence of openshape variable names separated by '/'s to identify the enclosing openshape,
followed by a local name to identify the appropriate constituent. (The syntax resembles filenames in
UNIX directories.) A variable declaration thus takes the form

type var_name

2

where fype is integer, real, point, line, shape or openshape, and var_name is of the form
context loc_var_name
where context 1is a concatenation
(loc_var_name [)*
in which each loc_var_name references an openshape variable.

The semanues of integer, real, point and line variables is straightforward. A declaration
of the form
openshape S
identifies S as an explicit shape variable, which is not itself an l-value, but enables the subsequent
declaration of attributes and components of S. The subshape S can then be defined componentwise
according to the normal semantic rules. In contrast, a declaration of the form
shape V
identifies V as a virtual shape variable, whose value and component structure must be defined by
means of a shape expression, and, in particular, cannot be defined componentwise.

1.3 Changing contexts

The syntax of a DoNaLD dialogue is simplified by introducing an analogue of "chanéing the
directory" in a file system; the hierarchical view of a line drawing as incorporating sub-drawings
can then be reflected in the manner in which it is defined and referenced.

Formally, the set of variables associated with the openshape variable V consists of the
points and lines of V, together with local scalar variables and all variables associated with
subshapes of V. Definitions of the constituents of openshape variables are governed by a single
scope rule: each subshape V/S of V, and all variables associated with V/S must be defined in terms
of variables associated with V. Conceptually, the actions in a DoNaLD dialogue can be viewed as
taking place in the context of a single universal openshape variable U, whose constituents are the
point, line, shape and openshape variables not contained in any user specified openshape
variable.

The construct used to specialise the dialogue to a particular context, and provide for all
references to variables to be interpreted relative to an openshape other than U is:
within context { }
where a general sequence of actions, possibly including further within-clauses, is specified
between the braces.

The scope rules permit a variable v within the openshape S (and necessarily not within any
openshape subshape of S) to be defined in terms of variables defined in the enclosing context for
S, rather than within S itself. To avoid having to leave the context of S in order to make such a
definition, each variable associated with the enclosing context for S in the expression defining v can
be prefixed by an escape symbol "\", to indicate that it is to be interpreted with reference to the
enclosing context for S.

1.4 The user interface

A typical DoNaLD dialogue includes many definitions, not all of which can be conveniently
displayed at once, reflecting different levels of abstraction in the description of a picture. The
user-interface for DoNaLD is designed to reflect the way in which relationships at each level of
abstraction are captured by a set of definitions, and is based upon a family of windows associated
with openshape variables.

With each openshape variable, there is an associated context window, in which the
appropriate local definitions are displayed together with the names of any local openshape

variables, and through which the relationships within that context can be viewed and manipulated.
The context windows are organised in a tree structure reflecting the hierarchical relationships
between contexts. At the highest level of abstraction, and the root of the tree, there is a global
window, in which all the declarations and definitions of variables at the outermost level are
displayed. Each openshape variable in the global context defines a subcontext at the next level of
abstraction, and its associated window is a child of the global window.

At any given stage in a DoNaLD dialogue, a number of windows can be open, but only one
window is currently active. In general this is the window associated with the current context. In
effect, all declarations and definitions made whilst a particular context window is active are
interpreted as being in the scope of a within current_context clause. Each context window has a
header to specify the openshape variable name relative to the universal context, and a footer
comprising a set of "buttons" which are used for interrogation of variables or to change the current
context, together with a dialogue box in which new declarations and definitions can be entered.
Figure 2 illustrates how the definitions in Figure 1 might be presented via such an interface (for
more details, see [Be86a].)

1.5 An illustrative example

The form of the basic notation introduced above is illustrated in the abbreviated dialogue
depicted in Figure 1 below. A dialect of DoNaLD has been used; this makes use of a simple subset
of the DoNaLD operators, but incorporates additional features for handling simple geometrical
constraints. Figure 2 gives full details of the definitions in the context window associated with the
openshape room, and the corresponding graphical display. (The dotted lines are used to indicate
the extent of the geometric objects defined by the variables door and desk.) Figure 3 depicts the
context windows of the openshapes that are introduced in the dialogue of Figure 1. ,

In Figure 1, the global context for the dialogue is the openshape room. The room is defined
to be rectangular. The definitions used for this purpose include implicit definitions of the wall
represented by the lines E, S, and W in terms of the comners of the room (the points NW, NE,

SW and SE), and of the four corners in terms of the explicitly defined width, length and centre of
the room. The remaining wall, represented by the pair of lines NI and N2, is implicitly defined in
terms of the corners NW and NE and the location and dimensions of the door.

Figure 1 also illustrates the use of simple constraints. In DoNaLD, three types of constraint

handling are envisaged; these are syntactically expressed in the form:
impose B, monitor B, maintain B
where B is a boolean variable defined to represent a condition expressed in terms of primitive
arithmetic and geometric relationships. Each of the above constructs is to be read as the declaration
of a particular type of boolean variable: in effect, "impose B" is an abbreviation form of:
imposed constraint B

Semantically, impose B ensures that the state of dialogue is never such that B is violated; a
dialogue action that would lead to such a state is automatically revoked. The use of monitor B on
the other hand permits violation of the constraint B, but monitors such a violation - for example, by
displaying a warning message in a special monitoring window whilst B is violated in the current
dialogue state. The use of maintain B is intended to indicate that a violation of the constraint C
through a dialogue action on the part of the user will provoke a computer response that restores a
state of dialogue in which C is once more valid. (Maintenance of a constraint in general requires
details of the actions prescribing the computer's response to a violation - see [Bo86] and §2.2
below.)

In Figure 1, the declaration of desk as an openshape within room is subject to the imposed
constraint that the extent of the variable desk is contained in the extent of the variable room. (Details
of the auxiliary geometrical primitives required to support subshapes - such as the extent of an
openshape, and the boolean operators for shape inclusion - are left to the reader's imagination.)

4

§2 EDEN: an evaluator for definitive notations
2.1 Background to the implementation

The system of definitions and constraints in Figure 1 describes the semantic content of the
user's interaction in a direct and simple fashion. The virtue of using a medium such as DoNaLD is
that "the semantics of the current dialogue state” has an unambiguous interpretation, and the
user-computer interaction can be conceived as a sequence of transitions from one system of
definitions to the next. In effect, the procedural elements of the dialogue are encapsulated in
dialogue actions, such as updating the parameter door/open, at a high level of abstraction.
(Compare the representations of current state of the interface described in [Fo87b].)

In implementing such a dialogue, the mechanisms used to handle the textual and graphical
displays also have to be considered. Just as in a spreadsheet the displayed values of variables must
be continously updated, the graphical display must be kept consistent with the current dialogue
state. Other aspects of the user-interface must also be implemented, such as the management of the
context windows outlined in §1.4. :

It will be convenient to distinguish between those aspects of the interaction that are concerned
with the semantics of the application (eg does the door currently hit the desk?), and the more
ephemeral issues concerning the current state of the display interface (eg is the context window for
the openshape desk currently open?). In general, many different kinds of interaction must be
supported:

user actions that affect the application semantics

(eg doorlopen = true)
computer responses that affect the application semantics
(eg revoking a user action that causes violation of an imposed constraint)
computer responses that are linked to the application semantics
(eg updating the current position of the door on the graphical display)
computer responses that are independent of the application semantics
(eg opening a context window when the user enters the context of another openshape)

In our present prototype implementation, the distinction between interaction involving the
application semantics and interaction concerned with interface management is reflected in the mode
of implementation. For modelling the semantics of the interaction in the application, we translate the
DoNaLD dialogue into a lower level definitive notation that forms part of the implementation
language. This means in particular that the current state of the semantic dialogue is explicitly
modelled (albeit in a modified form) in the implementation. For dealing with the dynamic behaviour
of the display interface, we then use conventional procedural programming techniques, linked -
where appropriate - to the current state of the semantic dialogue.

In §2.2 below, we examine the advantages of our implementation strategy from a pragmatic
perspective. In particular, we outline the main features of the programming language EDEN that
has been developed as an evaluator for definitive notations, and illustrate how the dialogue in
Figure 1 can be translated into EDEN. In §2.3, we consider the abstract machine model underlying
EDEN, and propose a simplification that represents a new general purpose programming paradigm
based on a direct generalisation of pure definitive notation. Some of the ramifications are briefly
examined in §2.4. A key idea is that definitive principles can be used to describe all aspects of the
interaction, not only the semantics of interaction in the application.

2.2 The EDEN language

The EDEN language (an "Evaluator for DEfinitive Notations") is intended as a general
purpose software tool to assist the implementation of definitive notations [Yu87]. EDEN includes

the traditional features of a procedural language: in this case, a subset of C. It also supports a
definitive notation over an underlying algebra comprising lists (as in Lisp) whose atoms are either
scalars or strings. The dependencies between the variables in this definitive notation are monitored
at all times, and the current values of variables are selectively updated as required. Within EDEN,
the user can define list functions to augment the underlying algebra, so that form of the list
definitions can be very general. For convenience, variable type checking is handled automatically in
EDEN, and no declarations of variables are required.

EDEN has an additional feature whereby procedural actions, whether in the form of
redefinitions of explicitly defined list variables, or more traditional invocations of C-like
procedures, can be linked to the semantics of the "internal dialogue" in the definitive notation. To
this end, the user can specify a procedural action to be triggered when the value of a variable in the

internal dialogue is altered, whether directly or as a result of the redefinition of another variable.
(For a fuller account of the semantics of EDEN see §2.3 below.)

The above discussion can be illustrated by some simple fragments indicating how the
DoNaLD dialogue in Figure 1 is translated into EDEN:

DoNaLD input

int width, length
point centre

point NW,NE,SW,SE
line N,S,E,W

width = 800
length = 800
centre = {500, 500}

N1=[NW, door/hinge]
N2= [door/hinge + {door/size, 0}, NE]

6penshape desk
monitor door_hits_desk
door_hits_desk = intersects(desk,door)

within desk {
int width

}

-

EDEN translation

_ is [OPENSHAPE, _width, _length,
_centre, _NW, _NE, _SW, _SE,
_N,_S,_E, _WJ;
new_object(_centre, _NW, ..);
proc P_centre: _centre { plot_point(_centre); }
proc P_NW: _NW { plot_point(_NW); } :

_width is 800;
_length is 800;
_centre is [POINT, 500, 500];

_N1is [LINE, _NW, _door_hinge]
_N2 is [LINE, vector_add(_door_hinge,
[POINT, _door_size, 0]), NE];

_room_desk is [OPENSHAPE, _desk_width, ...];
proc monitor_door_hits_desk: _door, _desk
{ if intersects(_door, _desk)

then print("door hits desk") }
_desk_width is 200;

Note that in translating DoNaLD definitions to EDEN definitions, the translator prefixes object
names with underscores (the identifier associated with the root shape room is suppressed). The
EDEN definition "_ is [OPENSHAPE, . . .]" is equivalent to the sequence of variable declarations
in the DoNaLD input; it defines the value of the variable "_" as a list whose first element is the type -
code OPENSHAPE, and whose subsequent elements are implicitly specified by the variables
_width, _length, _centre etc whose definitions are introduced at a later stage.

The procedure newobject initializes the graphics segments. The syntax
proc procedure_name : trigger { procedure_body }
is used in EDEN to designate a procedure to be executed when the value of a trigger variable is
altered. The triggered actions P_centre, P_NW, . . . are generated by the translator, and serve to
update the graphics segments when the values of the DoNalLD variables centre, NW, ... are
altered. (The procedure plor_point is a graphics display procedure written in EDEN.)

The EDEN definitions "_N is [LINE, ...]" and "_width is 800" are direct analogues of the
corresponding DoNaLD definitions.

In the DoNaLD dialogue, the variables width and length act as two parameters of the room.
The EDEN translation guarantees that the new shape of the room is automatically redisplayed when
these parameters are changed. The triggered action associated with monitoring the constraint
desk_in_room in DoNaLD behaves similarly.

There are clear advantages in adopting EDEN as the implementation language. If a traditional
procedural language is used, the simplicity of the definitive model of the current state of dialogue is
obscured by the procedural mechanisms that must be invoked to effect state transitions, and great
care is needed to ensure that other procedures (such as display procedures) operate in consistent
dialogue states. These problems can be ameliorated by using an object-oriented programming
paradigm for information hiding, but the synchronisation of update and display must still be
specified explicitly. An EDEN implementation considerably simplifies the prescription of display
actions linked to the semantics of the underlying application. It can also treat simple constraint
management in an appropriate manner viz as direct manipulation of the state of the dialogue by the
computer. (As a simple illustration, maintenance of the constraint "x==y" can be conveniently
handled by introducing actions ensuring that if the value of x - respectively y - changes between
one dialogue state and the next, then the dialogue action "if (x!=y) then y=Ix|" - respectively "if
(x!=y) then x=lyl" - is performed. Here "IxI" denotes “the current value of the variable x".)

A potential problem with EDEN is that it supports methods of programming that may be
powerful but can be obscure and difficult to analyse. There is the possibility of interference
between actions, and of non-termination through recursive invocation of actions. Triggering of
display procedures still means that reasoning about the current state of the display during an
interaction entails knowledge of the history of a complex sequence of events. These concerns
motivate a closer examination of the abstract machine model underlying EDEN.

2.3 The abstract machine model

Designing a medium for implementation is in effect designing an appropriate abstract
machine code. The abstract machine model we have adopted solves the problem of representing the
state of a general definitive dialogue by incorporating a low-level definitive notation as part of the
machine code. In our case, the underlying algebra for this low-level notation is essentially based
upon lists (as in Lisp) whose atoms are integers. The abstract machine can be then be viewed as
having auxiliary definitive registers (DRs) that represent explicitly or implicitly defined lists and
integers, and auxiliary machine instructions simulating the effect of redefinitions. The "hardware
support" for the DRs includes a component that records the tree of dependencies between DRs,
together with a mechanism whereby updating one DR automatically - ie as an indivisible action -
selectively updates all dependent DRs. To implement a dialogue over an arbitrary definitive notation
D on such a machine, the definitions in D are compiled into definitions in the low-level definitive
notation in such a way that the updating of values of variables in D is carried out automatically. It
will be convenient to refer to the "state of dialogue” within the abstract machine, as represented by
the current definitions of the DRs, as the internal dialogue state (IDS), and the auxiliary
machine instructions that update the IDS as the internal transitions (ITs).

As described, our machine model has the limitations of a pure definitive notation. It passively

7

supports a user dialogue consisting of a sequence of variable definitions by recording and
maintaining the functional relationships between variable values, but has no independent capability
for contributing to the dialogue (ie changing the dialogue state autonomously) or invoking "external
actions" such as are required to display updated values, or declare error conditions.

To elaborate our model further, we must provide a way to program autonomous action
contingent upon current dialogue state. Since activities such as constraint processing require
responses to user dialogue actions that directly affect the dialogue state (eg actions that restore the
table to its original position if it is placed outside the room), it must be possible to program our
abstract machine to perform actions that can conditionally update the IDS. To achieve this, a trigger
mechanism is introduced whereby updating (ie altering the value of) a DR conditionally schedules a
sequence of machine instructions for execution. An action queue is included as a component of the
machine for this purpose; "scheduling a sequence of instructions" is then interpreted as "pushing
the given sequence of instructions in order into the action queue". Programming the abstract
machine can be viewed as associating a (possibly empty) set of rules with each DR. A typical rule
for the DR v is then denoted v ~> p, read "v triggers p", where p takes the form of a guarded
command if g then s. Such a rule is interpreted:

when the DR v is updated by an internal transition

if g is true in the current internal dialogue state

then schedule the execution of the sequence of machine code instructions s.
To summarise: a typical IT comprises the redefinition of a DR that automatically causes all
dependent registers to be updated, all triggers associated with updated registers to be activated, and
all sequences of machine code instructions associated with true guards to be scheduled. No
guarantee is given about the order in which instructions within distinct guarded commands are
scheduled; the only assurance is that the next instruction will be executed only when there are no
pending instructions for scheduling.

At this stage, the full exploitation of the trigger mechanism has not been seriously
investigated; nor does this appear to be necessary in the present application. To reassure the reader
that there is some prospect of effective use of queues of triggered actions, a few comments are in
order. In the first place, interference between definitions in a dialogue is easily identified: it occurs
only between two or more definitions of the same variable, or when a variable dependent upon a
variable redefined in one definition appears in an evaluated expression in another. In the second
place, subject to non-interference between the ITs triggered by an IT, the IDS reached after
execution of all the triggered ITs will be unambiguously determined irrespective of the precise order
of execution.

2.4 An abstract machine model for definitive programming

Although the system of DRs and associated hardware has been presented above as a way of
extending a conventional Von Neumann machine, it is clearly sufficiently powerful in its own right
to merit consideration as an independent machine model. We propose to adopt this novel abstract
machine model as an appropriate computational model for supporting definitive programming
systems (cf [Be86b], which describes a closely related model incorporating concurrency). As might
be expected, this abstract machine has very much the same characteristics as the EDEN language.
On the one hand, it can be readily programmed to perform complicated tasks. On the other hand -
even though the elimination of conventional machine instructions from our model leads to a
considerable simplification - the possibility of interference between triggered actions and of
pathological non-terminating behaviour remains.

At first sight, programming in the definitive machine model is problematical. Without the
support of the conventional procedural framework, it is not immediately clear how a satisfactory
complete implementation of DoNaLD is possible, for example. There are two main areas in which
the current implementation relies on conventional programming techniques: the parsing of DoNaLD
for translation into EDEN, and the user-interface management.

8

The problem of writing a parser using a definitive machine model has yet to be seriously
addressed, though there seem to be prospects for using suitably defined dialogue states to simulate
the states of a parser, and EDEN actions to perform the appropriate "semantic actions". (For the
time being, conventional syntax directed translation techniques will be used to convert DoNaL.D
input into EDEN.)

Our proposed solution to the problem of handling the display interface is to devise an
appropriate definitive notation to describe the screen display. The triggered EDEN actions that
formerly invoked procedures to display error messages, or to open a new context window, will
then be replaced by dialogue actions in the display dialogue. The form of the definitive notation
required is the subject of current research, but it is anticipated that there will be many advantages in
adopting this approach. From the interface implementor’s perspective, the format of the display
interface can be partially described declaratively, and it will readily become possible to modify the
display to reflect dynamically changing characteristics of the screen data. In effect, the current state
of the screen display will be viewed as a system of definitions, rather than as a result of the
cumulative effect of many procedure calls (cf [Fo87ab] and [Ha87]).

The reader who is apprehensive at the potential complexity of the abstract machine may take
comfort from the fact that - as the EDEN fragments in §2.2 illustrate - its elementary use will
suffice to implement most of the DoNaLD environment. It seems likely that constraint management
is the only aspect that will call for more sophisticated use of the trigger mechanisms eg in using
iteration for constraint satisfaction (cf [Bo86]).

$3 Retrospect and prospect

Though the practical development of definitive programming systems is as yet at an early
stage of development, it is instructive to compare our approach with the object-oriented approach
described in [Bo86]. The combination of declarative and procedural elements referred to in [Bo86]
is itself a characteristic ingredient of programming with definitions. The role of SmallTalk as an
implementation medium - in particular, the use of trigger mechanisms for the maintenance of
constraints, and for animation - is in some respects similar to the use of the EDEN, as described in
§2 above. (See also [Le87], where similar principles are applied in a different style.)

At present, our prototype system gives very limited support for constraints, but this does not
reflect any difficulty of implementation other than that inherent in constraint manipulation as
described in [Bo86] and [Ne85]. It should be possible to implement methods for constraint
handling quite as sophisticated as these - by plagiarising [Bo86], and programming in EDEN rather
than SmallTalk, for instance! Though there might be some virtue - perhaps eg some simplification -
in translating techniques from an object-oriented to a definitive framework in this fashion, the
development of definitive programming is not primarily aimed at simpler or more efficient
implementation. The main advantage we anticipate in using the definitive programming paradigm
lies rather in the conceptual grasp over the current state of an interactive dialogue that it provides
[Be85]. At present, it is unclear how complex functional dependencies and the transparent acyclic
system of functional dependencies provided by a pure definitive notation can be most effectively
integrated to this end. In this connection, it should be noted that a simple functional relationship can
sometimes obviate the need for a complex constraint. The parametrised definition of the door in
Figure 1, for example, ensures that it is always within the room.

This research forms part of a broader programme concerned with the application of definitive
principles to the design and implementation of CAD software; an area in which the problem of
developing interfaces within which to integrate many different representations for a geometric
object is particularly acute (cf [La87] and [Ta87]). The graphical notation DoNaLD is much simpler
than the notations envisaged for CAD applications {Be87], but our use of the definitive
programming paradigm outlined above is equally elementary. It will be of particular interest to

9

determine whether the use of functional programming concepts for specifying higher-order
user-defined functions, or the use of symbolic manipulation to transform and simplify definitions,
can be helpful in more sophisticated applications. The conspicuous absence of an explicit data base
is also thought provoking.

Acknowledgements

We are much indebted to David Angier, Tim Bissell and Steve Hunt for contributions to the
design of DoNaLD. We also wish to thank Mike Slade for helpful comments and suggestions.

References

[Am86]] Amsterdam, Build a spreadsheet program, BYTE July 1986, p97-108

[Be85] W M Beynon, Definitive notations for interaction, Proc hci'85, CUP 85

[Be87] W M Beynon, Definitive principles for interactive graphics, Proc NATO ASI: Theoretical
Foundations of Computer Graphics and CAD, 11 Ciocco, July 1987

[Be86a] W M Beynon, D Angier, T Bissell, S Hunt, DoNaLD: a line drawing system based on
definitive principles, University of Warwick RR#86, 1986

[Be86b]W M Beynon, The LSD notation for communicating systems, University of Warwick
RR#87, 1986

[Bo86] A Borning and R Duisberg, Constraint-based tools for building user interfaces, ACM
Transactions on Graphics, Vol 5, No 4, October 1986, 345-374

[Ha87] P ten Hagen, R van Liere, A model for graphical interaction, Proc NATO ASI: Theoretical
Foundations of Computer Graphics and CAD, 11 Ciocco, July 1987

[Fc87a] J Foley, C Gibbs, W C Kim, S Kovacevic, Formal specification and transformation of
user computer interfaces, Report GWU-IIST-87-10, Dept of Electrical Engineering and Computer
Science, George Washington University, 1987

[Fo87b] I Foley, Models and tools for the designing of user-computer interfaces, Proc NATO AST:
Theoretical Foundations of Computer Graphics and CAD, Il Ciocco, July 1987

[La87] J Lansdown, Graphics, Design and Artifical Intelligence, Proc NATO ASI: Theoretical
Foundations of Computer Graphics and CAD, 11 Ciocco, July 1987

[Le87] C Lewis, Using the NoPumpG Prototype, University of Boulder, 1987

[Ne85] G Nelson, Juno, a constraint-based graphics system, SIGGRAPH '85, p235-243

[Ta87] T Takala, C D Woodward, /ndustrial design based on geometric intentions, Proc NATO
ASI: Theoretical Foundations of Computer Graphics and CAD, 11 Ciocco, July 1987

[Yu87] Y W Yung, EDEN: an evaluator for definitive notations, Final Year Project, Dept of
Computer Science, University of Warwick , July 1987

10

int width, length

point centre, NW, NE, SW, SE
line S,E,W,NI, N2
openshape door

within door {
boolean open

int size

point hinge , lock
line door

open = true

size =200

hinge =\NW + {10, 0}
lock = if open then hinge - {0, size) else hinge+{size, 0}
door = [hinge,lock]

}

width = 800
length = 800
centre = {500, 500}

Nl= [NW, doorihinge]
N2= [door/hinge + {door/size, 0}, NE]

6penshape desk
within desk {

int width , length

point centre, NW, NE, SW, SE
line N,S,E,W

width = 200

length = 600

bi)énshape drawer
within drawer {
int width, length

)érigth =\ength div 4
width =\width;

}
}

impose desk_in_room

desk_in_room = contains(room, desk)
monitor door_hits_desk
door_hits_desk = intersects(door, desk)

Figure 1: A sample DoNaLD dialogue

