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1. Introduction

The purpose of a computer program is to describe methods of solving certain problems. It is necessary to
represent a problem somehow in the program. Many (if not most) programming languages have variables and
procedures. The variables refer to some storage spaces to hold data representing objects (e.g. the coordinates of
an object). A procedure is a sequence of instructions telling the computer how to calculate the data stored in
the variables. Due to the side effects of some instructions, the data can be converted into human readable
forms, e.g. the write statement in Fortran can display data in a specified format.

An interior designer might like to draw a picture of a room with some furniture inside it on the display screen.
Suppose there is a program which allows a user to enter the coordinates of these objects through the keyboard.
This program can redraw the objects if the user issues a “refresh” instruction, or more conveniently, redraw
the objects automatically after new coordinates have been entered or existing coordinates changed. It is not
difficult to write this kind of program in conventional procedural languages, such as Pascal or C. Some
existing software, like MacDraw or some CAD packages, let the user manipulate graphical objects. These
packages do the job quite well since they have highly interactive user-interfaces.

However the interior designer may require more than just refreshing the display of the objects on the screen;
he may wish to specify some of their relative positions. For example, he may also like to put a lamp at the
centre of the table no matter where it will be. That means the coordinates of the lamp are determined by the
coordinates of the table. In this case, he has to calculate the new position of the lamp and redraw it after it has
been moved. Since he may move the table several times to see which position is better, he will be required to
repeat the same process — calculate new coordinates and redraw the objects. Obviously it is a tiresome and
error-prone job especially when the number of objects and definitions becomes large.

Some software packages, such as MacDraw, allow the user to group several objects into a single large object.
The user can then manipulate the object using the operations provided by the packages. The grouping of
objects preserves the relative coordinates and attributes of the objects among the same group during the
manipulations. Hence, if a table and a lamp are grouped together, translation of the table will also translate the
lamp by the same amount. However grouping objects also puts extra restrictions on the objects. For instance,
the enlargement of the table will also resize the lamp in the same ratio, and this may not be the intention of the
user. The method of grouping objects provides very restricted transformations on objects. Complicated
definitions of objects, such as '

“C lies at the mid-point of line AB, where endpoints A and B are defined

independently” —(1-1)

cannot be specified by this method. Thus the method of grouping objects can only be considered as a macro
manipulation on a number of objects.

Therefore it is much more convenient to allow the user to specify the abstract definitions of the objects in
terms of other objects. For example, the point C described in (1-1) can be defined in terms of points A & B
mathematically as below.

C= A system that can manage definitions is called a definitive system or definition-based system.

+
2
The use of a definitive system to describe geometric relationships also has another advantage. Many CAD
systems allow the user to specify parametric objects, i.e. generic objects whose size and position can be

determined by giving parameters. In conventional systems, such objects are represented by small procedures
comprising appropriate sequences of drawing instructions, but a method of specifying the relationships




between parts of the object explicitly is preferable. For example contrast the two specifications of a square
with given corner and size below.

(2) Definitive

XY parametric shape square(x,y,size)
‘ point NE, SE, SW, NW

line N, S, E, W

size

N = [NW, NE]
E = [NE, SE]
- S = [SE, SW]
size W o= [SW. NW]
(1) Procedural W= {x, y)
moveto x, y NEf {X+SJ'.Ze, v} ‘
lineto x+size, y SE = {x+size, y-size}
lineto x+size, y-size SW = {x, y-size}

lineto x, y-size end
lineto x, v

In the first example, the size and position of the corner are fixed when the symbol is drawn. In the second
example, the object specified by the definition:

S =square(X, Y, SIZE)
would be re-defined if the value of the variable SIZE were to change.

Unfortunately, conventional languages do not provide any built-in facility to help writing a definitive system.
Thus the programmer must write a detailed definition manager to handle the definitions.

A well-known example of a system based on definitive principles is the spreadsheet software which has
recently become so popular in business and personal accounting applications. A spreadsheet is a program that
provides us with a large grid of cells into which we can put in numbers and formulae. A cell that contains a
formula causes the system to re-calculate the formula whenever any cell on which it depends is changed, and
display the new value on the screen automatically. The display action is implicitly invoked by the system after
the re-calculation. These actions can be called implicit actions because they are pre-defined in the system.

The make command in UNIX! is a good example of file maintenance software. Unlike the spreadsheet
software, the user has to specify the updating action in a file (the makefile) explicitly. These actions can be
called explicit actions. For example, to express the fact that “object file.o is compiled from source file.c”, the
appropriate makefile is:

file.o : file.c
cc -c file.c

The first line indicates the dependence and the second line contains a UNIX command showing how the object
file can be compiled from the source file. The explicit actions allow less restricted updating actions to be
defined. For example, the user can give different options to the compiler or use different compilers to compile
the target object. However the user has to make sure that there are no destructive side-effects.

In a definitive system, each definition has one and only one target object (such as a cell or an object file).
Usually there is at least one source objects. The target object is said to “depend on” the source objects because
it is computed from them only and whenever the values of the source objects change the target object must be
re-computed. No cyclic definitions are allowed since recursively defined definitions lead to meaningless
definitions, suchas“n=n + 1”.

1 UNIX is a trademark of Bell Laboratories




A spreadsheet program and the make command are driven by definitions. Although make is more like a
dependency maintainer (it keeps track of objects by referencing the dependence, but does not refresh the target
object), it combines representation of data dependencies with explicit actions resembling those needed to
maintain definitions. Actually a definitive system can be implemented using a dependency maintainer with
some built-in computing utilities. Internally, a system builds a dependency graph according to the definitions
given and uses this information to determine which data has to be updated; from the formula of the definitions,
it knows how to compute the targets.

A definitive system saves us from remembering what has to be updated when certain data have been changed.
It is especially useful in a continuously changing environment; for instance, a programmer would use make to
compile those modified modules of a large project under development. The success of spreadsheet programs
and make has illustrated the advantages of a definitive paradigm.

Another advantage of a definitive system is regarding human-computer interaction. Some definitive systems
can be programmed to echo the up-to-date data on the display as soon as certain data has been changed by the
user. The user can know the result of the change immediately and then continue to modify the definitions.
This interactive behaviour of the definitive system may contribute to applications, such as computer aided
design (CAD) systems, that require intensive human interaction.

Definitions are also good for specifying relationships between objects. The side-effects of updating actions are
able to simulate the actions of objects responding to a change in the environment.

An implementation of a definitive system is not a trivial task. As mentioned earlier, it may involve developing
a complicated dependency maintainer. It is more sensible to make a general purpose definitive system and
build a special purpose system front-end on top of it. Unfortunately no such systems are publicly available. An
experimental language EDEN — an evaluator of definitive notations? — was designed to try to fulfil this
purpose. It was designed to be a general purpose language supporting definitions. Users can define their own
procedures and functions using some C-like statements. An interpreter can be customized for different
applications. The first prototype of such an interpreter was implemented in 1987. Since that time, another
prototype of the same language has been implemented. The difference between these two versions is mainly
concerned with the internal evaluation strategy, and should not concern the naive user.

EDEN is a hybrid language that combines elements of traditional procedural and definitive languages?. It has
both advantages and disadvantages of procedural and definitive languages. This user handbook is a guide to
the EDEN programming language.

This handbook consists of 4 chapters. Chapter 1 introduces the fundamental philosophy of the definitive
paradigm and gives an overview of the EDEN language. Chapter 2 describes all features of the EDEN
language. A programming tutorial is given in chapter 3; where there are examples illustrating the chief
characteristics of EDEN programming. Chapter 4 deals with some advanced topics including the internal
evaluation strategy of the interpreter. It is also concerned with customizing the interpreter.

2 Y W Yung, EDEN - an evaluator of definitive notations, MSc Thesis, Department of Computer Science,
University of Warwick, 1989
3 Some people use the term “definition-based” languages




2. Fundamental Philosophy

2.1 Concept of EDEN Programming

The important ingredients of the EDEN language are the formula definitions and action specifications. In this
section, we explain these concepts.

2.1.1 Formula Definition

A definition of an object is expressed as a mathematical expression. A variable is called a formula variable if
its value is defined in terms of other variables, e.g:

VEQ(V11 V2, vy Vn)

where V is the name of the formula variable, and ® represent an expression with the variables v{, V2, ... , Vp
involved. The variables v1, Vo, ... , Vp are called the source variables of this definition since the value of v is
computed from their values.

EDEN supports the concept of definition. A formula definition has the form:
vis ®(vq, v, ..., Vp) — 21

The keyword “is” defines a formula variable v whose value is computed from the values of source variables v1,
Vo, ..., Vn and the expression on the right hand side, denoted by ®, is the formula of the variable v. In other
words, a formula describes how the value of a variable is computed from other data. These formulae are
permanently valid (unless they are re-defined). That is, no matter what the values of source variables are, the
value of variable V is always equal to ®(v1, vo, ... , Vn). Thus a formula gives an abstract definition of a
variable rather than the explicit value of it. This is the major difference between formula definitions and
assignment statements. For example, after executing the assignment

v==®(vq, Vo, ..., Vn)

v is equal to ®(v1, Vo, ..., Vp) only after the expression @ is evaluated and before any of the values of the
source variables is altered.

Unlike the assignment statement, the formula definition, itself, is not an executable statement. When and how
the formula expression defined in the definition is managed by the system. However, the values of the formula

variables are guaranteed to be up-to-date when the variables are examined.

Notice that a definition does not imply the inverse definitions (where these exist); for example, the definition
(2-1) does not imply

—— j
Vi i8 ®; (V, V4, V2, ..., V=1, Vi1, ...y Vn) where 12j2n.

A definition can be a representation of a real relationship among objects; for instance, “a lamp is placed
(somewhere) on a table” can be formulated as:

lamp_position is table_position + something




If the table is re-positioned the lamp will also be moved because the definition has specified the position of the
lamp in terms of the position of the table, the system can automatically keep track of these definitions and re-
calculate lamp_position whenever table_position has been changed. But if the lamp_position is then
redefined to

lamp_position Is desk_position + something

we mean to put the lamp on the desk instead of the table. The table remains at the same position because it is
not defined in terms of the lamp. Note that the new definition of lamp_position overwrites the previous
definition. Hence the lamp can be moved independently by redefining its definition.

2.1.2 Action Specification

So far, we have talked about formula definitions without mentioning the updating actions (e.g. renew the
display of the content of a variable when it is changed) since there is no default implicit action associated with
each definition. However, EDEN provides a way of defining explicit actions. Thus the user can specify special
updating actions for different devices. In the rest of this handbook, the term “action” refers to “explicit
action” because it is the only kind of action available in EDEN.

The following statement illustrates a sample action definition.
proc display_v : v { display(v); }

The keyword “proc” defines an action, named as display_v, which invoked by the system when the value of
variable v, (specified after the colon) is changed. The curly brackets {} enclose a list of statements to be
executed sequentially. In this case, there is only one procedure call. The procedure display is defined
separately. By calling different functions (with appropriate side-effects, e.g. writeIn(...) prints the values of its
arguments on the standard output) in the function libraries, display can do different updating actions. This
makes EDEN more extensible.

Note that the value of v is not passed as a parameter to display_v when the action is invoked, but since it is a
global variable, it can be accessed by the action directly.

2.2 The EDEN System

The EDEN language has definitions, actions and some conventional features. The conventional features are,
for example, iterative loops, flow control statements, user-defined functions and read/write variables.

The variables can be classified into 4 types: read/write variables, functions, formula variables, and action
specifications. EDEN has different statements to assign values to these variables.

2.2.1 Read/Write Variables

Read/write variables (RWV) are the same as the variables of conventional languages. As the name implied, the
value of a RWV can be assigned and examined by the user. For instance,

A=1

will assign integer 1 to the RWV A. The value of a variable is referenced if the variable appears in an
expression — e.g. the right-hand side of the assignment statement. For example,

B=A
puts the value of A into RWV B,

Note that, in EDEN, a function is considered as a RWYV (although there is a different instruction to define a
function, and some restrictions on their definition). Functions will be discussed in the later chapters.




2.2.2 Formula Variables

A formula variable (FV) consists of a data register (DR) and a formula expression (FE) (or simply formula).
The formula describes how the value of the data register (DR) can be computed from other variables (RWV or
FV). The system will always update the DR using the formula whenever it is possible. This part of the system
is called formula data maintainer (FDM). Figure 2-1 gives a block diagram of the formula maintaining sub-
system.

The value of a formula is equivalent to the value of the DR of that FV. The user can (re-)define the formula of
a definition but not the value of the DR. This means that the DR is read-only by the user. In EDEN, the
formula of a formula variable is defined using the “is” operator, for example:

fisa+b
defines a FV f whose value is always equal to the sum of the values of variables a and b. The expression “a +
b” is the FE of f. Note that all variables mentioned in the FE, in this case, & and b, can be either FV's or
RWV's.

The value of a FV is referenced if the name of the FV appears in an expression, e.g. the right-hand side of an
assignment statement.

The syntax of a formula definition is given in the next chapter.

Figure 2-1: The block diagram of a formula maintaining sub-system.

The arrows show how data might flow. E.g. the user can define a FV by giving the formula to it. As shown in the diagram,
the user can examine the value of a DR but not write to it. When the user (re)defines a FV or writes to a RWV, the FDM|
will re-calculate those DR's using their associated FE's. The FDM will read the values of some RWV's and/or DR’s if it is
necessary. The results will be assigned to the DR's by the FDM.
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2.2.3 Action Specification

An action specification (AS) is a named sequence of instructions. This sequence of instructions will be
invoked by the system whenever the values of any source variables, specified explicitly in a list, are changed.
The term “changed” is causally defined. It may mean the value of a variable is different from the previous
one, or the value of a variable is overwritten (by the user or by the system) though the value may be the same
as the previous value. EDEN takes the latter definition. This definition of “changed” is used throughout this
handbook unless otherwise specified.

An example of an action definition is:

proc print_sum : a, b, ¢ { writeln("a+b+c=", a+b+c); }
This action, named as print_sum, will invoked by the system whenever the values of the source variables a, b
or ¢ (listed after the colon) are changed. The action will print a string and the sum of the values of these

variables on the screen due to the side-effect of the pre-defined function writeln.

The action execution manager (AEM) is responsible for invoking the action. This sub-system is called the
action execution management sub-system. Figure 2-2 gives a block diagram of it.

Figure 2-2: The block diagram of the action execution management sub-system.

The arrows indicate the possible data flow in the system. Shaded arrows indicate the data flow due to the side-effects of|
action execution. From this diagram, we see that the actions are invoked by the AEM. AEM loads the procedure of the
appropriate action from the AS and then executes it. The execution may cause a write to a (or some) RWV, or (re)define
FV's or AS's (using some tricks). Of course, the action may also access I/O devices (not shown in the diagram).
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2.2.4 Execution Strategy

EDEN is neither purely declarative (in which case the execution strategy does not affect the result) nor purely
procedural (some side-effect are triggered rather than called explicitly). Therefore, the user needs to aware of
the execution strategy in order to make the most out of EDEN.

EDEN takes precedence of formula evaluation over actions. This means that EDEN will update all the value
changes to the variables first. The triggered actions are queued in an action queue. After all the variables are
updated, those actions queued will be performed. This will ensure that any reference to a variable will get the
most up-to-date value.

EDEN also uses a breath-first scheme of evaluation. Under such scheme, the interpreter spends more time on
scheduling the order of evaluation than a depth-first scheme but it has an advantage of doing the evaluation of

variable or the triggered actions only once in each phase. For example:

proc dummy : A { /* dummy() will be executed when A changes */

auto i; /* local variable */
for (i =1; 1 <= 10; i++) {
vV = 1i;
}
}
proc Print_V : V {
write(v, ' ');
}
A =1; /* change A to trigger dummy () */

the interpreter will produces the output:
10
rather than

123456782910

While the depth-first scheme is good at monitoring the change of values, the breath-first scheme the current
implementation using is more efficient in producing the final result. Should the later output is preferred, the
user has to force the interpreter to execute the actions in the action queue by a eager() statement. For the
above example, the required result can be generated if dummy is alternatively defined as:

proc dummy : A { /* dummy() will be executed when A changes */

auto i; /* local variable */
for (1 = 1; 1 <= 10; i++) |

vV = 1i;

eager() ; /* force execution of action queue */
}

}

One should not presume the order of action execution. A general principle is that if the order of execution will
significantly affect the result, it is likely that it is not a good program. However, some sort of ordering is
necessary. A typical example is the simulation of a clocked system. In a clocked system, there should be
actions such as:




proc clocking? : clock {/* a clocking process */
clock++; /* advance the clock */
}

proc devicel: clock { /* action synchronised by clock */
... /* action body */
}

proc device2: clock {
/* action body */
}

In this cases, the clocking action should be executed last so that it would not block out other actions to be
performed in this clock cycle. To solve this scheduling problem, EDEN has a to-do list (in fact two to-do lists,

one currently executing and the other one is really to be executed). The clocking action above should be
rewritten as:

proc clocking : clock { /* a clocking process */
todo("clock++;"); /* advance the clock in future */
}

This will cause the statement:

clock++;

to be saved in the (future) to-do list. After all the triggerred actions and things-to-do in the current to-do list
have been executed, the system will perform those statements in the future (now becomes the current) to-do
list. In this case, when clock++ is executed, all other actions will be triggered and executed in this 'clock
cycle' and another clock++ statement is scheduled to do after all the necessary actions are performed in this
clock cycle.

4 The clocking mechanism cannot be replaced by a for/while loop because within a loop the EDEN

interpreter will not accept any user input. So the user cannot interact with the simulation.




3. EDEN Language Guide

3.1 Introduction

The EDEN language has a number of C-like statements and operators. C programmers may find it familiar but
they are still advised to go through this chapter since there are new data types and operators. Not all C
operators have been implemented.

An EDEN program is a list of statements. Each statement can be one of the followings: formula definitions,
action specifications, function (procedure) definitions and C-like procedural statements.

program:
Statement program

When a procedural statement is encountered, this statement will be executed. The effect of execution is to
evaluate an expression, assign values to variables or call other functions/procedures (these must be defined
earlier). The order of statements reflects the order of execution, and thus affects the results of computation.
The user is responsible for arranging the statements in proper order to get the correct results.

In addition, the EDEN interpreter will do the (re-)calculation of the formula definitions and/or invoke the
procedures defined by the action specifications automatically. The order of calculation of formula definitions
and execution of actions should not be of concern to the user, and is fully controlled by the interpreter.

The dependency-link command is an alternative way of specifying actions. The query command inspects the
current definitions of the objects.

3.2 Lexical Conventions

There are five classes of tokens: identifiers, keywords, constants, operators, and other separators. Blanks, tabs,
newlines, and comments (collectively, “white space™) as described below are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to include the
longest string of characters which could possibly constitute a token.

3.3 Syntax notation

In the syntax notation used in this chapter, syntactic categories are indicate by italic times roman type, literal
words and characters in courier type, and keywords in bold courier type. Alternative categories are
listed on separate lines. An optional terminal or non-terminal symbol is indicated by the subscript “opt”, so
that

[ expression-listopt ]

indicates an optional expression list enclosed in square brackets.
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3.4 Comments

Comments are arbitrary strings of symbols placed between the delimiters /* and */. The whole sequence is
equivalent to a white space. Note that /* */ can be nested. It is useful to comment a block of program with
comments in it.

Lines beginning with % (no even spaces or tabs before it) are also comment lines (See 3.18).

/* This is a comment */
/* --- Begin of comment ---
/* This is a nested comment */
--- End of comment --- */
% This is a single-line comment

Comments are not parts of the executable program, but are used by the programmer as a documentation aid.

3.5 Identifiers (Names)

An identifier (name) consists of a sequence of letters and digits. The first character must be a letter. The
underscore character _ is considered a letter. EDEN imposes no limit on the number of characters in a name,
but the implementation of the EDEN interpreter does (about 255 characters). An EDEN keyword cannot be
used as an identifier.

Examples of identifiers:

hello this_is_a most_unusually_long_name
IF fo0 bAr HorseSense
varl var2 _auto_

Upper- and lowercase letters are distinct, so Count and count are different identifiers. An identifier is a
symbolic name of a variable, function or other objects.

3.6 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

append default func proc
auto delete if return
break do insert shift
case else is switch
continue for para while

3.7 ObjectsS and Lvalues

An object is a manipulatable region of storage; an /value is an expression referring to an object. An obvious
example of an lvalue expression is an identifier. There are operators which yield Ivalues: for examples, if E is
an expression of pointer type, then *E is an Ivalue expression referring to the object to which E points. The
name “lvalue” comes from the assignment expression E1 = E2 in which the left operand E1 must be an
Ivalue expression.

Objects can be a read/write variable, a function (procedure), a formula variable or an action specification.

3.7.1 Read/Write Variables

A read/write variable (RWV) is a named storage that holds a data. The data can be any one of the data
structures described in §3.8.

5 The vocabulary is based upon the C reference manual. The term “object” is NOT used in the OOP sense.
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There is no need to declare a variable before it is used. Memory storage is allocated when the variable name
first appears in a program.

Data can be assigned to RWV's using assignment statements (see §3.10.11). For example,
VvV =1;

The identifier (name) V denotes a RWV whose value is assigned to integer 1 by the operator =. The semi-colon
terminates the statement.

The value of a RWV is referenced if its name appears in an expression. If the RWV has not been assigned a
value before its value is referenced, the value @ (means “undefined”; see §3.8.1) is assigned to it automatically.

Different typed data can be assigned to the same variable at different time. The EDEN interpreter checks for
data type clash at run-time.

The interpreter assumes all objects are RWV's until they are defined to be functions, formula definitions or
action specifications.

3.7.2 Function Definition
A function definition is an object that stores an entry point (address) of a sequence of instructions (the
function) which computes a result from the parameters. There are some functions pre-defined by the

intepreter. The user can defined his/her own functions using some procedural statements.

The value of a function definition is equivalent to the function (address of the instruction sequence). (See
§3.8.8)

Note that the interpreter allows an identifier designating a RWV to be re-used as a function name but not vice
versa, because the intepreter assumes all objects are RWV's initially.

3.7.3 Formula Variable

A formula variable is an object that stores a formula expression (unlike a RWV which stores a value). See
§3.13.1 for the syntax of a formula definition. The value of a formula variable is equivalent to the current
value of the formula expression that the variable stores. To optimize the computation speed, the formula
variable also stores the up-to-date value of the formula expression. So, whenever, the value of the formula
variable is referenced, this value is used. The interpreter is responsible for updating this value.

An identifier designating a RWV can be re-used to designate a formula variable and vice versa.

3.7.4 Action Specification

An action specification is an object that stores an entry point (address) of an instruction sequence — the action
procedure. See §3.13.2 for the syntax of an action specification. It also stores a list of objects on which the
action depends. Whenever the values of these objects (usually are RWV's or formula variables) are changed the
action procedure will be invoked by the system.

Note that the value of an action specification is equivalent to the address of the action procedure.

An identifier designating a RWYV can be re-used as an action name but not vice versa.

3.8 Data Structures

There are 8 different data types: @, integer, character, floating point, string, pointer, list, and function.
Integer and character types are sometimes collectively called integral type.
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3.8.1 @ (undefined)

The constant @ (undefined)® is a special value. It has a unique (un-named) data type. Some operators, such as
arithmetic operators, accept @ as their operands, and usually @ will be returned. Other operators which do not
take @ operands will generate an error. See §3.10 for the discussion on operators.

3.8.2 Integer
Decimal integer constants

A decimal integer constant is a stream of digits with non-leading zero. E.g.

123 valid

Al123 invalid (begins with non-digit)

0123 invalid (begins with zero but is a valid octal)
Octal integer constants

An octal integer constant is a stream of digits with a leading zero. The digits 8 and 9 have octal values 10 and
11 respectively. E.g.

0456 valid (= 302 decimav

018 valid (= 020 octal = 16 decimal)

456 invalid (but is a valid decimal)

A456 invalid (begins with non-digit)
Hex imal i n

A hexadecimal integer constant is a stream of hexadecimal digits starting with 0x (zero followed by the
character x). Letters A to F have the hexadecimal values 10 to 15 respectively. Lowercase letters a to £ are
equivalent to their corresponding uppercase letters. E.g.

0xAB valid (= 171 decimal)

Ox1f valid (= 31 decimal)

AB invalid (begins with an alphabet letter)
01f invalid (missing x)

3.8.3 Character

A character constant is a character enclosed in single quotes, as in 'x'. The value of a character constant is
the numerical value of the character in the machine's character set. E.g.

‘A" valid (value is 65 for the ASCII character set)
'AB' invalid (more than one character)

Certain special characters, such as the single quote ' and the backslash \, may be represented according to the
following table of escape sequences:

& The-behaviour-of-@-is-similarto the L (bottom) of some algebras.
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newline NL(LF) '\n'

horizontal tab HT "\t
backspace BS ‘\b'
carriage return ~ CR ‘\r’
form feed FF ‘\f!
backslash \ "\
single quote ' T\
double quote " A
null NUL "\O!
bit pattern ddd '\ddd"

The escape \ddd consists of the backslash followed by a stream of octal digits which are taken to specify the
value of the desired character. If the character following a backslash is not one of those specified, the
backslash is ignored.

3.8.4 Floating point”

A floating point constant consists of an integer part, a decimal point, a fraction part, and an exponent part;
where an exponent part is an e or E, and an optionally signed integer exponent. The integer and fraction parts
both consist of a sequence of digits. Either the integer part or the fraction part (not both) may be missing;
either the decimal point or the e (E) and the exponent (not both) may be missingNote that a floating point
constant may not contain any embedded blanks or special characters.

Some floating point constants are:

1.23 .23 0.23 1. 1.0 1.2el0 1.23e-15
but not

1,000.00 comma not allowed

1 000.00 embedded space not allowed

1000 decimal point or exponential part needed

.e0 integer part or fractional part needed

-3.14159 this is a floating point expression, not a constant
3.8.5 String

A string constant is a character sequence enclosed in double quotes:

"this is a string"
The backslash convention for representing special characters can also be used within a string. This makes it
possible to represent the double quote and the escape character backslash \ within a string. It is not possible
for a string to contain the \0 (NUL) character since it is used to represent the end of string internally.
Therefore,

"this is the end\Ohere we passed the end of string"

is equivalent to

"this is the end"

If s denotes a string expression, and i an index (an integer expression) then s [i] denotes the ith character in
the string. (see also §3.9.1)

7 Floating point type was not implemented in the earliest version of the EDEN interpreter.
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An individual character of a string can be accessed randomly by giving the index — an integer expression
enclosed in [ ] — after the string expression. The first character is numbered 1 (not zero). For example, if

s = "abcdef";
then
s[1] is the first character of s, i.e. 'a"'.

s[i] is the ith character of s.

It is illegal to index beyond the current number of characters in a string. So s [7] is an error since s has only
six characters.

The suffix operator # returns the current number of characters in the string. In the last example, s# is 6. For
the empty string, " "4 is 0.

3.8.6 Pointer

Pointers are the addresses of objects in the memory space. The prefix operator & gets the address of an object.
For example,

iptr = & int_variable;
cptr = & s[5]; /* if s is a string, cptr points to the 5t char of s */

The prefix operator * refers to the object which the pointer is pointing to. For example,

int_variable; */
s[51; */

* iptr ; /* i
* cptr ; /* ¢

i
c

[

There are no pointer constants, and no pointer operations except the pointer equality checks.

3.8.7 List
The list is the only structured data type in EDEN. Data items of different types can be grouped to form a list
using the list formation operator [] (see §3.10.3). Commas are used to separate the data. The whole list is
considered as a single data item. For example, the list
( 100, 'a', "string", [1,2,3] ]

holds four items: an integer (100), a character ('a'), a string ("string")and alist ([1,2,3]).
There are no list constants in the language. The characteristics of the list data type are:

@ Different typed data can be stored in the same list. For instance,

L = [ 100, 'a', "string", [1,2,3] 1;

L holds four items: an integer (100), a character ('a'), a string ("string") and a list
(11,2,31).

O The individual items of a list can be accessed randomly by giving the index (an integer
expression quoted by [ 1) after the list. The first item is numbered 1 (not zero). (See also §3.9.1.)
For example,

L{1] is the first item of L, i.e. 100 (in the previous example).
L{4][2] is2.

Q Itis illegal to index beyond the current number of items of a list. So L. [5] is an error since L has
only four items.
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The suffix operator # returns the current number of items in the list. In the last example, L# is 4,
and L.[4] # is 3. For the empty list, [ 1# is 0.

The infix operator // returns the concatenated list of two lists; for example,
(1,2,31 /7 [5,6,7]

produces

[1,2,3,5,6,7]
List-related statements are: append, insert, delete and shift statements.

There are no list constants.

3.8.8 Function

EDEN allows the user to define functions (or procedures). The syntax of defining a function is: (see §3.12 for
the formal description)

func identifier { para-aliasop; local-var-declarationgp; statement-listops }

Notice that there is no parameter list after the identifier. The parameters form a list named $
(dollar sign). Hence

$[1] represents the first argument
$[2] represents the second argument
etc.

For convenience, $[n] can be replaced by $n, where n is a decimal integer constant. The
optional para-alias gives nicknames to the arguments. The syntax is:

para identifier-list ;
$# is the current number of arguments. List operations are applicable to $.
All parameters are passed by value.
Local variables must be declared at the beginning of the function body and are preceded by the
keyword auto (means dynamically allocated). All local variables are RWV's. There is no need
to declare the type of local variables because EDEN does the run-time type checking. The syntax
is:

auto identifier-list ;
where identifier-list is a list of identifiers separated by commas.
The return statement returns the value of the expression. The syntax is:

return expressiongpt ;

If the expression is omitted, @ will be returned. Flowing off the end of a function is equivalent to
return @.

The value returned can be ignored by the caller. In this case, the function acts as a procedure.

The keyword func can be replaced by proc. There are no differences between these two
keywords. Thus they can be interchanged. The purpose of having another keyword is to self-
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comment the program. It is intended (not restricted) that £unc should be used for defining side-
effect-free operators.

For example:
func max /* returns the max. value of its arguments */
{
para m; /* m is the first argument $1 */
auto i; /* declare local variables */
for (i = 2; 1 <= $#; i=i+1) {
/* for the other arguments */
if (${i] > m) /* the ith argument */
m= $[il;

}

return m; /* returns max to the caller */
}

defines a function named max which returns the maximum value of its arguments.

O To call a function, the arguments must be put in parentheses preceded by the function name. For
example,

MaxNumber = max(0,1i,3,k);

evaluates the maximum value of 0, i, j and k, and stores the results in the RWV MaxNumber.
The parentheses cannot be omitted even if no arguments are passed to the function.

O The function name, itself, denotes an entry point (a pointer) of the function code. It is a valid
value (a pointer to a function) that can be used in an expression. Thus, if

F = max;
then the statement

MaxNumber = F(1,3,2);

assigns 3 to MaxNumber.

Also a function can be put into a list. For example, if
G = [ min, max ];

where min is supposed to be a function that returns the minimum value of its arguments, then
Num = G[n](1,3,2);

Num will have the value 1 ifnis 1 (G[1]1=min), 3 ifnis 2 (G[2]=max).

O Once an identifier is used as a name of a function/procedure/action, it cannot be re-used to
designate a RWV/formula variable. This restriction is posed by the interpreter (not by the

language) to prevent destroying a function definition accidently.

O There are some pre-defined functions, such as write, writeln, and exit. (see §3.17)

3.9 Expressions

The precedence of expression operators is the same as the order of the major sub-sections of §3.10, highest
precedence first.

All integer overflows are ignored in the current implementation. Division by 0 causes a run-time error.
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3.9.1 Lvalue

lvalue:
identifier

$number

lvalue [ expression ]
* expression

* expression *

( lvalue )

Identifier were discussed in §3.5.

The dollar sign $ is the actual argument list of a function; $number is the number-th argument where number
is a decimal integer constant.

A lvalue followed by an expression in square brackets is a Ivalue. The intuitive meaning is that of a subscript.
The 1value must have type string or list. The expression must be of integer type.

The unary * operator means indirection: the expression must be a pointer, the result is an Ivalue.

An expression enclosed in a pair * (open quotes) is a Ivalue where the expression must be of string type. The
object, referred to by it, is the object having the name identical to the string. For instance, * "A" " is equivalent
to the object A.

A parenthesized lvalue is a lvalue which is identical to the unadorned lvalue.

3.9.2 Primary expression

primary-expression:
Ivalue
( expression )
primary-expression [ expression ]
primary-expression ( expression-listopt )

A lvalue is an simple expression. The value of the object is returned.

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression.

A primary expression followed by an expression in square brackets is a primary expression. The intuitive
meaning is that of subscript. The primary expression must has type string or list. See 3.8.1.

A function call is a primary expression followed by parentheses containing a possibly empty, comma-separated
list of expressions which constitute the actual arguments to the function. The primary expression must be of
type function. See 3.7.8.

In preparing for the call to a function, a copy is made of each actual parameter (even it is a string or a list);
thus all argument-passing in EDEN is strictly by value. A function may change the values of its formal
parameters, but these changes cannot affect the values of the actual parameters. On the other hand, it is
possible to pass a pointer on the understanding that the function may change the value of the object to which
the pointer points. The order of evaluation of arguments is undefined by the language. (Although the current
implementation evaluates parameters from left to right, the user should not assume this fact.)
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3.10 Operators

3.10.1 Arithmetic operators
Expressions with binary operators group left-to-right. The usual arithmetic conversions are performed.

arithmetic-expression:
expression + expression
expression - expression
expression * expression
expression / expression
expression % expression
- expression

The result of the + operator is the sum of the operands.

The result of the - operator is the difference of the operands.

The binary * operator indicates multiplication.

The binary / operator indicates division.

The binary % operator yields the remainder from the division of the first expression by the second. The two
operands must be of integral type (i.e. integers or characters).

The unary - operator is the negative of its operand.

All arithmetic operators are strict, i.e. they return @ if either operand is @.

If both operands of an arithmetic expression are of integral type, the result is always an integer. If any operand
is a floating point, the result is a floating point (except for the % operator which takes integral operands only).

3.10.2 String and list operators

string-expression:
expression / / expression

list-formation-expression:
expression // expression
[ expression-listopy ]

expression-list:
expression

expression , expression-list

integer-expression.
expression #
If the operands of // are of string or character type, the result will be a string which is the concatenation of
the two operands. If the operaands are of list type, the result will be a list which is the concatenation of the two
operands. If either or both of the operands is @, the result will be @. (see pre-defined function substr and
sublist)

The [] operator groups the values of the expressions into a list. The expression list is a list of expressions
separated by commas. If the expression list is omitted the list returns a null list.

3.10.3 Pointer operator

pointer-expression:
& lvalue

The result of the unary & operator is a pointer to the object referred to by the lvalue.
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3.10.4 Relational operators

The relational operators group left-to-right, but this fact is not very useful; a<b<c (meaning (a<b) <c) does
not mean what it seems to be ((a<b) and (b<c)), as in a normal mathematical expression.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or equal to) all
yield 0 if the specified relation is false and 1 if it is true. The type of the result is integer. The usual arithmetic
conversions are performed.

Two strings may be compared. Single characters are compared from the left to the right according to their
codes in the machine's character set. Note that a string is always terminated by \0, so the shortest string is
considered the smaller. Strings are equal only if their lengths as well as their contents are identical.

It is an error if the two operands are of different types, but if either argument in an relational expression is @
then the value is @. Lists and pointers cannot be compared using the relational operators.

3.10.5 Equality operators

equality-expression:
expression == expression
expression ! = expression

The == (equal to) and ! = (not equal to) operators are exactly analogous to the relational operators except for
their lower precedence. (Thus a<b == c<d is 1 whenever a<d and c<d have the same truth-value).

Note that two lists can be compared for equality. Lists are equal only if their lengths as well as their contents
are identical. Two pointers can be compared for equality. Pointers are equal only if they points to the same
object.

3.10.6 Logical operators

logical-expression.
expression && expression
expression and expression
expression | | expression
expression oxr expression
! expression
not expression

EDEN is operating in 3-value logic (true, false and @). Any non-zero value means true; zero means false. In
addition to the lazy operators (as in C, lefi-to-right evaluation, the second operand is evaluated only if
necessary), eager operators — and, or, not — are also defined. Notice that the truth tables for the lazy and the
corresponding eager operators are not identical.
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@ && @ = @ |@and @ = @] @ @ =@)|@or @ =208
@ & F = @ |@ and F = @| @ F=@|@orF=4a@ 1@ =T not @ = @
@ & T =@ |@and T = @] @ T=@| @orT=2@
F & @ = F |F and @ = @| F @=@}| For@=a@
F & F=F|Fand F = F| F F =F F or F =F IF =T not F =T
F & T=F|Fand T =F| F T =T ForT=T"T
T & @ = @ |Tand @ = @| T @ =T | Tor @ =2¢
T & F =F |Tand F = F| T F=T| Tor F="T IT = F not T = 0
T && T =T |Tand T=T| T T=T|ToxrT=T"T

Truth Tables for operators: &&, and, ||, or, !, not

3.10.7 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and if it is true, the result is the
value of the second expression, otherwise (i.e. false or @) that of third expression. The second and third
expressions need not have the same type; moreover only one of them is evaluated.

3.10.8 Assignment operators

assignment-expression.:

lvalue = expression
lvalue += expression
Ivalue —= expression
++ lvalue

lvalue ++

-- lvalue

value —-

There are three binary assignment operators, =, +=, and -=, all of which group right-to-left. All require an
lvalue as their left operand. The right operand is evaluated and the value stored in the left operand after the
assignment has taken place.

In the simple assignment with =, the value of the expression replaces that of the object referred to by the
lvalue.

The behaviour of an expression of the form E1 op= E2 may be inferred by taking it as equivalent to E1 =
E1l op (E2);however, E1 is evaluated only once. Both of the operands must be of integral types.

The object referred to by the lvalue operand of prefix ++ is incremented. The value is the new value of the
operand, but is not an lvalue. The expression ++x is equivalent to x+=1.

When postfix ++ is applied to an Ivalue the result is the value of the object referred to by the Ivalue. After the
result is noted, the object is incremented in the same manner as for the prefix ++ operator. The type of the

result is the same as the type of the lvalue expression.

The lvalue operands of the prefix and postfix -- is decremented analogously to the prefix and postfix ++
operators respectively.

All the objects referred to by the lvalues of these assignment operators must be read/write variables, not
formula variables.

3.10.9 Precedence and order of evaluation
The table below summarizes the rules for precedence and associativity of all operators. Operators on the same

line have the same precedence; rows are in order of decreasing precedence, so, for example, *, /, and % all
have the same precedence which is higher than that of + and -.
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Operator Associativity

~~

~
—
—

left to right
not  ++ - - * & # right to left
/ % left to right
- // left to right
left to right
1= left to right
left to right
or left to right
right to left
right to left

W— R A4 % =~
o — R
o = A
[} i
Q.
v
v
I

il
+
1]
|

1]

3.11 Procedural Statements
Procedural Statements are executable statements. The statements are executed in sequence except as indicated.
3.11.1 Expression Statements
Most statements are expression statements, which have the form:
expression ;

Usually expression statements are assignments or function/procedure calls. For instances:

I=1; /* assignment statement*/
JT++; /* another form of assignment */
DoSomething (I, J):; /* procedure call */

3.11.2 Insert Statement
The statement
insert lvalue , expression-1 , expression-2 ;
inserts a value evaluated from expression-2 into the list object referred to by /value at the position expression-
1; expression-1 must be of integral type and cannot be smaller than 1 or be greater than the current number of
items of the list plus one. The list object referred to by /value must be a read/write variable.
3.11.3 Append Statement
The statement
append lvalue , expression ;
appends a value evaluated from expression to the end of the list referred to by Ivalue. It is equivalent to do
insert lvalue , lvalue % + 1 , expression ;
but the Ivalue expression is evaluated only once.
3.11.4 Delete Statement

The statement

delete /value , expression ;




deletes a value from the list object referred to by Ivalue at the position evaluated from expression; expression
must be of integral type and cannot be smaller than 1 or be greater than the current number of items of the list;
whence the list cannot be a null list. The list object referred to by lvalue must be a read/write variable.

3.11.5 Shift Statement
The syntax of the shift statement is:

shift hvaluegp; 1

The shift statement deletes the first value from the list referred to by /value; whence the list cannot be a null
list. If Ivalue is omitted, the argument list $ is assumed; hence it can only be used within a function body. The
equivalent delete statements of the shift statements are:

delete S, 1; /* shift; */
delete lvalue , 1 ; /* shift lvalue; */

3.11.6 Compound Statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-listop; }

statement-list:

statement
statement statement-list

3.11.7 Condition Statement
The two forms of the conditional statement are

if ( expression ) statement
if ( expression ) statement else statement

In both cases the expression is evaluated and if it is true, the first sub-statement is executed. In the second case

the second sub-statement is executed if the expression is false or @. As usual the “else” ambiguity is resolved
by connecting an else with the last encountered else-less if.

3.11.8 While Statement
The while statement has the form
while ( expression ) statement

The sub-statement is executed repeatedly so long as the value of the expression remains true. The test takes
place before each execution of the statement.

3.11.9 Do Statement
The do statement has the form
do statement while ( expression ) ;

The sub-statement is executed repeatedly until the value of the expression becomes false or @. The test takes
place after each execution of the statement.
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3.11.10 For Statement
The for statement has the form
for ( expression-lopt ; expression-2op; ; expression-3op; ) statement
This statement is equivalent to
expression-1 ;
while ( expression-2 ) {
sStatement
expression-3 ;
}
Thus the first expression specifies initialization for the loop; the second specifies a test, made before each
iteration, such that the loop is exited when the expression becomes false or @; the third expression often

specifies an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while clause
equivalent to

while (1);

other missing expressions are simply dropped from the expansion above.

3.11.11 Switch Statement

The switch statement causes control to be transferred to one of several statements depending on the value of an
expression. It has the form

switch ( expression ) statement

The statement is typically compound. Any statement within the statement may be labelled with one or more
case prefixes as follows:

case constant : statement
There may also be prefix of the form:

default : statement
When the switch statement is executed, its expression is evaluated and compared with each case constant. If
one of the case constants is equal to the value of the expression, control is passed to the statement following
the matched case prefix. If no case constant matches the expression, and there is a default prefix, control

passes to the prefixed statement. If no case matches and if there is no default then none of the statements in
the switch is executed.

3.11.12 Break Statement
The statement
break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

24




3.11.13 Continue Statement
The statement
continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for
statement; that is to the end of the loop.

3.11.14 Return Statement
A function returns to its caller by means of the return statement, which has one of the forms:
retuxrn expressiongpt ;

In the optional expression is omitted the value returned is @. Otherwise, the value of the expression is returned
to the caller of the function. Flowing off the end of a function is equivalent to return @.

3.11.15 Null Statement

The null statement has the form:

A null statement is useful to carry a label just before the } of a compound statement, for example:
switch (...) { ... case 1: ; }

or to supply a null body to a looping statement such as while, for example:
while (1) ; /* an infinite waiting loop */

3.12 User-defined Functions

Function definitions have the form:

Jfunction-definition:
Sfunction-declarator function-body

function-declarator:
func identifier
proc identifier

Sfunction-body:
{ para-aliasop; local-var-declypt statement-listops }

para-alias:
para identifier-listop; ;

local-var-decl:
auto identifier-listopy ;

identifier-list:

identifier
identifier , identifier-list
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The identifier is declared to be a function using the keywords fune or proe. There is no difference between
func and proc. The word proe is more meaningful when the function serves as a procedure, i.e. a function
which does not return a value.

All parameters are passed by value. The actual parameters forms a list called $ (dollar sign). The first
arguments is $[1], the second argument is $[2], and so forth. For convenience, $[1], $[2], ... can be
replaced by $1, $2, .... para gives nicknames to the parameters. The first identifier in para-alias matches

$1 and so forth. The number of identifiers does not required to match the number of actual parameters. $n can
be referenced by either $n, $ [n] or the nickname given.

See also §3.7.2 and §3.8.8.
3.13 Definitive Statements

3.18.1 Formuia Definition
A formula definition has the form:

Jformula-definition:
identifier is expression ;

It is normally expected that the operators appearing in the expression are “pure” functions, i.e. without side-
effect. The interpreter does not allow the use of assignment operators in the expression, but does not otherwise
detect the use of “impure” functions. It is not advisable to use such functions.
In addition, a formula variable cannot be (directly or indirectly) circularly defined. For example,

f is £ + 1;

is an error because £ is defined in terms of itself, and not logically meaningful. The definitions:

i is j;
j is i;

are syntactically correct, but are conflicting with the restriction. Thus the EDEN interpreter rejects the second
definition, and produces the error message:

j : CYCLIC DEF : ABORTED near line ...
The examples below are valid definitions of formula variables (assuming they are not circularly defined):

f is a + b;
M is max(a,b,c);

The EDEN interpreter controls all the evaluations of formulae. The order of evaluation is not specified by the
language, i.e. can happen in any order. One version of EDEN interpreter may evaluate the formula of £ before
that of M, whenever the value of a, for instance, is changed, but some other versions may do it in the reverse

order. A concurrent EDEN system might do both evaluations in parallel. Therefore, the user should not make
any assumption on the order of evaluation.

3.13.2 Action Specification
An action specification has the form:

action-specification:
function-declarator dependency-list function-body
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dependency-list:
: identifier-list

The function declarator and function body are the same as those of function definition (see §3.12). An
identifier is declared to be an action using the keywords proc or func. There is no difference between proc
and func; but the user is recommended to use proc because an action usually serves as a procedure.

The dependency list is a list of comma-separated identifiers preceded by a colon.

An action is normally a procedure invoked automatically by the system when any object specified in the
dependency list is changed. No parameters will be passed to the procedure; so the argument list $ is always
empty when called by the system. All values returned by the actions are ignored by the system.

The order of invoking actions is controlled by the EDEN interpreter, but the user can invoke an action
explicitly by giving a pair of parenthesis (a null argument list) after the action name (exactly like a
procedure/function call). This is useful for debugging.

Notice that if the identifier list is omitted in the dependency list the action is just an ordinary procedure.

The use of actions (and the use of “impure” functions as operators in formulae) leads to procedural activity
outside the user's direct control when expressions are evaluated. The user should make no assumptions about
the order in which such procedural actions are performed. For instance, no two actions that can be invoked in

the same time should write to the same RWV. EDEN does not provide any facility to detect or prevent such
“interference” between actions.

3.14 Miscellaneous Commands

3.14.1 Dependency Link

An alternative way of defining an action specification is first to declare the action as a procedure/function, and
then specify the dependency link using the command:

dependency-link:
identifier ~> [ identifier-list ] ;

where each identifier in the identifier list refers to an action (procedure) that depends on the value of the object
referred to by identifier. So the action:

proc p : a, b, ¢ { /* action body */ }
is equivalent to

~ i

vV

i

0o
kel ol o]

~

v

Note that the dependency link command adds dependency linkage to actions. If the user wants to remove a
particular linkage, the whole action must be re-specified. For example, to remove c from the specification of
action p above, p must be re-defined as:

proc p : a, b { /* action body */ }
3.14.2 Query

The query command has the form:

? lvalue ;
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The query command prints the definition of the object referred to by lvalue on the stdout of the UNIX
environment.

The format of printing a RWV is:

value
RWV-name ~> [ identifier-list 1 ;

The format of printing a formula variable is:

formula-variable-name is expression ;
Jormula-variable-name ~> [ identifier-list 1 ;

The format of printing a function definition is:

func function-name
{ function-body }
Sfunction-name ~> [ identifier-list 1 ;

where proc may be printed instead of £unc depends on which word was used by the user.
The format of printing an action specification is:

proc action-name : identifier-list
{ action-body }
action-name ~> [ identifier-list 1 ;

where func may be printed instead of proe depends on which word was used by the user.

The query command is an ad hoc feature in the language and contains bugs in the current implementation of
EDEN interpreters; for instance,

? L[1]);

prints the definition of L instead of L [1].
3.15 Syntax Summary

3.15.1 Expressions

expression:
primary-expression
- expression
! expression
& lvalue
expression #
++ lvalue
Ivalue ++
-- lvalue
Ivalue --
[ expression-listop; ]
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
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primary-expression.
lvalue
( expression )
primary-expression [ expression ]
primary-expression ( expression-listop; )

Ivalue:
identifier
$
Snumber
Ivalue [ expression )
* expression
* expression *
( lvalue )

expression-list:
expression
expression , expression-list

The primary-expression operators
() {1 “
have highest priority and group left-to-right. The unary operators
* & - ! not # ++ -
have priority below the primary operators but higher than any binary operator, and group right-to-left.

Binary priority decreasing as indicated below.

binop:
* / %
+ - //
> < >= <=
== 1=
&& and
|| or
The conditional operator
b

has priority lower than the binary operators, and groups right-to-left.

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
= += -
3.15.2 Statements
Statement:
expression ;

Jfunction-definition

formula-definition

action-specification

dependency-link

query-command

compound-statement

insert lvalue , expression-1 , expression-2 ;
append lvalue , expression ;

delete lvalue , expression ;

shift lvalueyp; ;
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if ( expression ) statement

if ( expression ) statement else statement

while ( expression ) statement

do statement while ( expression ) ;

for ( expressiongps ; expressiongpt ; expressiongpt ) statement
expression ) statement

case constant : statement

default : statement

break ;

continue ;

return expressiongp; ;

7

compound-statement:
{ statement—listop; }

Statement-list:
statement
statement statement-list

3.15.3 Function Definition

Jfunction-definition:

Junction-declarator function-body
Sunction-declarator:

func identifier

proc identifier

Sunction-body:
{ para-aliasop; local-var-declyp statement-listopy }

para-alias:
para identifier-listop; ;

local-var-decl:
auto identifz‘er-listop; H

identifier-list:
identifier
identifier , identifier-list
3.15.4 Action Specification

action-specification:
Junction-declarator dependency-list function-body

dependency-list:
: identifier-list

3.15.5 Dependency Link

dependency-link:
identifier ~> [ identifier ] ;

30

switch (




3.15.6 Query Command

query-command:

? lvalue ;

3.16 Pre-defined Variables

The following is a list of pre-defined read/write variables. The user should not alter the value of these
variables, except autocalc.

stdin
stdout
stderr

autocalc

calc_list

These three variables are pre-defined file pointers equivalent to those file pointers in C.
All of them are of integer type.

If the value of autocalc is set to 0, the mechanism of auto-recalculate of formula
definitions will be switched off, In such a situation, formulae and actions will not be
recalculated or invoked when the values of those variables on which they are dependent
are changed. However, when autocalc is set to a non-zero value, the auto-
recalculation mechanism will be back in action. By default, autocalc is set to 1.

In the earliest version of EDEN interpreter, the pointers pointing to the formula variable
and action specifications are queued in the list variable calc_list. The interpreter
would not update or invoke those queued formula variables and actions when autocalc
is switched “off”. The following action specification can update these queued formulae

and actions automatically when autocalc is on again:

proc _autocalc : autocalc

{
while(calc_list#) {
*calc_list([1]; /* update formula var's */
shift calc_list; /* remove from list */

}
}

Note that this action will only be invoked when the auto-calculate mechanism is on (i.e.
autocalc is non-zero). This action forces the formula variables to be updated by
simply evaluating them (the interpreter always updates the formula variables if they are
evaluated). Although this action does not invoke queued actions, the updating of the
formula variables will cause the related actions to be invoked.

In the new version of EDEN interpreter, all queued formulae and actions would be
updated and invoked as soon as the auto-recalculate mechanism is switched on. The
references to the formula variables and action specifications are stored in an internal
format and hence the variable calc_list is not needed. Thus the user cannot alter the
list. To inspect the formula variable and action specification queues while autocalc is
“off’, the user can call the pre-defined functions, formula list() and
action_list (), which transform the internal information into EDEN's list type. See
the next section for the description of these two functions.

3.17 Pre-defined Functions

A number of functions are pre-defined by the EDEN interpreter. These pre-defined functions cannot be re-
defined by the users to prevent ruining their definition accidently. The following is a list of pre-defined

functions. The output of the examples are in italic courier typeface.
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3.17.1

write(...)
writeln(...)

I/0O Functions

write and writeln print the arguments on the stdout (standard output file). writeln
appends a newline \n at the end. For example,

for (i = 1; i <= 10; i++) write(i, ' ');
gives
123456782910
writeln("sum of ", 1, '+', 2, " =", 1 + 2);
gives
sum of 1+2 = 3
3.17.2 Type Conversion Functions
type (data)
It returns the type of data as a string:
Data Type String Returned
@ “undefined” "@r
integer "int"
character "char"
string "string"
floating point "float"
list "list"
function "func"
procedure "proc"
pre-defined function "builtin"
pre-binded C function "Cc-func"
For example, type (1) gives "int".
int (data)
If data is an integer, the same value will be returned. If it is a character, the code of the
character will be returned. If it is a string, the string will be assumed as a stream of digits,
and these digits are converted into an integer which will be returned. If it is a floating point,
it will be truncated into an integer before it is returned. If it is a pointer, the address is casted
to an integer which will be returned. The function returns @ otherwise.
char (data)
If data is a character, the same character will be returned. If it is an integer, the character
having the code equals to the integer will be returned. If it is a string, its first character will
be returned. If it is a floating point, it will be truncated into an integer and then cast to a
character before it is returned. The function returns @ otherwise.
str (data)
If data is a string, the same string will be returned. If it is @, the string "@" will be returned.
If it is a character, the character will be converted into a string and returned. If it is an
integer or a floating point, the string of digits corresponding to the value will be returned.
The function returns @ otherwise.
float (data)

If data is a floating point, the same value will be returned. If it is an integer, the floating
point having the same value will be returned. If it is a character, the floating point having
the same value as the code of the character will be returned. If it is a string, the string will be
assumed as a stream of digits, and these digits are converted into a floating point which will
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be returned. If it is a pointer, it will be casted into an integer and then converted to a floating
point before it is returned. The function returns @ otherwise.

3.17.3 String Functions

substr (string string, int from, int to)
substr returns a substring of string. from and to are the starting and ending positions
respectively; they are integer values. If from is greater than fo, the null string will be
returned. from must not be small than 1. If to is greater than the number of characters of
string, spaces will be added. For example,

substr("1234567890", 4, 8)

will evaluated to "45678".

Examples Results
substr("1234567890", 4, 8) "45678"
substr("1234567890", 5, 3) "
substr("1234567890", 7, 12) "7890 "

strcat (string string, ...)
strcat returns the string of the concatenation of its arguments. All arguments must be of
string or character types. Characters are considered as a string of length 1. If it is called with
no arguments, the null string will be returned. For example,

s = strcat("Garden", " of ", "Eden", '.');
s has the value "Garden of Eden.".

nameof (pointer pointer)
nameof returns the name of object to which the first argument (of pointer type) points. The
function returns a string. This function is an ad hoc function. Bugs: If the pointer points to a
character of a string object or an item of a list object, the string or the list object name is
returned. For examples,

Examples Results
nameof (&Object) "Object”
nameof (&A_String[1l]) "A_String”
nameof (&A_List{[5]) "A List"

3.17.4 List Functions

sublist (list list, int from, int to)
sublist returns a sublist of list. from and to are the starting and ending item positions
respectively; they are integer values. If from is greater than fo, the null list [] will be
returned. from must not be small than 1. If 0 is greater than the number of items in lis, @
will be added. For example,

Examples Results
sublist([1,2,3,4,5]1, 2, 4) [2,3,4]
sublist([1,2,3,4,5], 5, 3) []
sublist([1,2,3,4,51, 4, 7) [4,5,8,8]

listcat (list list, ...)
listcat returns the list of the concatenation of its arguments. For example,

listcat([1,2,3],([4,5,6],17,8,91])

gives
[1,2,3,4,5,6,7,8,9]
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array (int n,

3.17.5 Time

time()

ftime()

gettime()

data)
array returns a list consists of »n items that each is data. If data is omitted, @ will be
assumed. data can have any type. For example,

Examples Results

array(3, 0) [0,0,0]

array(4) [e, e e ej
Functions

time returns the current time in seconds since Jan 1, 1970

ftime retumns the current time in terms of the time elapsed since Jan 1, 1970. ftime is
accurate up to milli-seconds. The return value is a list [second, milli] where second = the
number of seconds and milli = the number of milli-seconds in addition to the time elapsed
since Jan 1, 1970.

gettime returns the current time. The return value is a list of seven integers, the meaning
of these integers are respectively:

second 0-59

minute 0-59

hour 0-23

day of month 1-31

month of year 1-12 (different from that of gmtime(3))
year year-1900

day of week 0-6 (0 = Sunday)

3.17.6 Script Functions

apply (func function, list list)

apply calls the function specified in the first argument with the second argument as its
actual argument (i.e. $). Thus the first and second arguments must be of type function and
list respectively. For example,

apply(writeln, [1,2,31);
is equivalent to call

writeln(1,2,3);

execute (string string)

execute executes a string as Eden statements. It returns 0 if no errors occurred in the
execution of the string, non-zero otherwise. The execution terminates as soon as it
encounters a syntax error or run-time error. Note that it is not a macro; the string must be
some valid and complete EDEN statements. Also this function can be executed within a
function body. For example,

proc reset_F { execute("F is A+B;"); }

Every time reset_F is called, F will be defined to be a formula variable contains the
expression "A+B" unless there are run-time errors, such as the circular definition conflict.




todo (string string)

There is inside EDEN two todo lists, one current one and the other is a store for statements
to be executed when the current todo list exhausted. todo is similar to execute except
that the todo-statements will only be executed after the current thread of control terminates.
For example, in one session you enter:

todo("writeln(l);"); writeln("Hello world");
The result will be

Hello world
1

include (string filename)

include works in the same way as execute except it takes in a file instead of a string;
the file is specified by the first argument which is a string expression. If the execution is
successful, include returns 0. The execution terminates as soon as it encounters a syntax
error or run-time error. The file name and line number where the error occurs will be
reported by the interpreter. For example,

include("utility");

executes the file called utility.

exit (int status)

exit terminates the program and returns status, an integer, to the parent process or
operating system. If status is omitted, O is assumed.

forget (string name)

eager ()

forget remove the entry of variable whose name is indicated by the string name. forget
returns O if success, 1 if it can’t find the variable that matches the name, 2 if it refuses to
remove the entry because there are some definitions or actions depends on this variable.

Note: it is very dangerous to remove a variable since there may be some references on the
variable that cannot be detected (e.g. a reference within a function body). In such case, the
system may produce unpredicable result. (This function may be removed or replaced in
future releases).

eager ecagerly evaluate/execute all queued definitions/actions despite of the status of
autocalc.

touch (pointer vpl, vp2, vp3, ...)

wpl, ... are pointers to variables. touch puts the targets of variables, pointed to by vp1, vp2,
wp3, ..., to the evaluation queue.

formula_list ()

formula_list returns the current list of addresses of formula variables queued. This
function is useful to inspect the internal queue of formulae when the autocalc is 0 (off).
Sce §3.16 for the description of autocalc. This function is implemented in the later
versions of the EDEN interpreter.

action_list ()

action_list returns the current list of addresses of action specifications queued. This
function is useful to inspect the internal queue of actions when the autocalc is “off”. See
§3.16 for the description of autocalc. This function is implemented in the later versions
of the EDEN interpreter.




symboltable()
symboltable returns the current internal symbol table of the interpreter as a list. Each
symbol entry is of the form:

[ name, type, text, targets, sources |

where

name the object name (a string)

type a string indicates the type of the variable: "var", "formula", "proc”,
"func”, "builtin", "Real-func", "C-func". Note that these
types are different from the output from type.

text if the object is a function definition, formula variable, or action
specification, then fext stores the definitions in textual form.

targets a list of variable names (strings) by which this object is referenced directly.

sources a list of variable names (strings) to which this object refers directly.

For example, if the following definitions are defined

a is b + c;
b = 3;
f is b * g;

and,
S = symboltable());
then, S is:

[ - [ Ilall, "formula", llb + C;", [], [llbll,llcu] ],
[ “b", "Var", nn’ [uan]’ [] ], e

This function is useful to inspect the internal queue of actions when the autocalc is “off”.
See §3.16 for the description of autocalc. This function is implemented in the new
versions of the EDEN interpreter.

symbols (string type)
symbols returns a list of symbol names which are of the type required. The fype may be:
"@", "int", "char", "string", "float", "list",
"var" — any read/write variable (defined by assignments),
"formula" — any definitive variable (defined by definitions),
"func", "proc" — user-defined functions and procedures,
"builtin" — EDEN functions or procedures,
"Real-func" - Real C functions,
"C-func" - other C functions,
"any" — any symbols

symboldetail (string name)
symboldetail (pointer symbol)

symboldetail returns the information of a particular symbol. The information is in the
same format as that of symboltable.

3.17.7 Unix Functions

getenv (string env)
getenv returns the string of the environment variable env. See getenv(3).
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putenv (string env)
putenv sets the environment variable. env should have the form: "name=value". See
putenv(3).

error (string err_msg)
error generates an EDEN error & print the error message err_msg.

error_no()
error_no returns the last system (not EDEN) error number (an integer).

backgnd (string path, cmd, argl, arg2, ...)
backgnd executes a process at background named by path. backgnd returns the process id
(-1 if fail). Bug: backgnd may returns a +ve id even if it can't execute the command.

pipe (string path, cmd, argl, arg2, ...)
pipe pipes output (stdout) to process named by path. pipe returns the process id
(-1 if fail). Bug: pipe may returns a +ve id even if it can't execute the command.

get_msgq (int key, flag)
get_msgq gets a message queue using key. flag denotes the permission and options (see
msgget(2)). It returns the message queue id (integer), —1 if fail.

remove_msgd (int msqid)
remove_msgg removes a message queue whose id is msgid. It returns —1 if fail. (see
msgctl(2))

send_msg (int msqid, [int msg_type, string msg_text 1, int flag)
send_msg sends a message (text string) to message queue msqid. msg_type denotes the
message type. msg_text is a string (terminated by \0, i.e. at least having length 1.

flag= 0 for wait
04000 (octal)  for no wait
(see msgsnd(2)).

It returns -1 if fail.
receive_msg (int msqid, msg_type, flag)
receive_msg receives message of msg fype from message queue msqid. flag: c.f.

send_msg and msgsnd(2). It returns @ if fail, else [m_fype, m_text] where m_type is the
actual message type received and m_text is the text string received.

3.17.8 Predefined C Functions

The following list of functions are pre-binded C functions. Users should refer to their own reference manual.

Function Description

fclose close a file

fgete get a character from an opened file
fgets get a string from a file

fopen open a file

fprintf print to a file

fputc print a charactoer to a file
fscanf formated read data from a file
gets get a string from stdin

pclose close a pipe

popen open a pipe

putw put a machine word to a file
setbuf set the buffer size of a file
sprintf print to a string

sscanf formated read data from a string
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system execute command in a sub-shell
ungetc unget a character

srand random number generator’
rand random number generator

3.17.9 Functions Defined in “math.h”

Math Lib:

sin cos tan asin acos atan
atan2 sqrt pow log log?2 loglo
exp exp2 expl0

Different releases of the EDEN interpreter support different C function packages, such as CURSES (standard
UNIX windowing package) and SunCore (standard SUN workstation graphics package). The user should
consult to the release notes and the packages’ reference manuals for the descriptions of the functions.

3.17.10 Miscellaneous Functions

debug (int status)

If status is a non-zero integer, debug turns on the debugging mode. When the debugging
mode is on the interpreter prints out some information showing the status of the machine.

Default: off (0). For example,

debug(l);

/* turn on debugging mode */

It is a subroutine for developing the interpreter. It is available to the user only if the

interpreter was compiled with the flag -DDEBUG.

pack(...)

pack allocates a continuous memory space on the heap and stores the data in this memory
block. The values are packed in a machine-dependent fashion, so the function is not portable.

Data is packed as C type:-
integer is considered as  int (4 bytes)
real float ©))
character char ¢))
string/pointer/function/etc char * )

pack returns the address of the beginning of memory block as an integer. Example:

X [0.0, 100.0, 100.0, 0.0]; /* x-coordinates */
A4 [0.0, 0.0, 100.0, 100.0]; /* y-coordinates */
polygon_abs_2 (pack(x), pack(y), 4);
/* will draw a filled square */
/* in fact, you could do:
polygon_abs_2(pack([0.0, 100.0, 100.0, 0.0]),
pack([0.0, 0.0, 100.0, 100.0]),
4);

*/
move_abs_2(0.0, 0.0);

polyline_abs_2 (pack(x), pack(y), 4);
/* will draw a hollow square */

/* c.f. SunCore Reference Manual */

Bugs: It is very ad hoc, and not universal, i.e. cannot handle all struct. It converts real
numbers into "float"s instead of "double"s (so we can call Suncore polyline & polygon
primitives). There should be an "unpack” function.




4. Advanced Topics

4.1 Adding C library functions to EDEN interpreter

Although the EDEN interpreter has a number of pre-defined functions, such as substr or writeln, and allows
the user to define his own functions within the EDEN environment, the user may find restrictions in special
purpose applications, such as a graphics application. The user may find some useful functions which are
already written in C. Unfortunately, with the current implementation, there are no ways for the EDEN user to
call C (or other languages) functions without recompiling the interpreter.

Some efforts had been done to minimise the difficulties of interfacing with C functions so that the user can call
a C function directly from the EDEN environment. A built-in EDEN/C interface can bind a C function to an
EDEN name. However, due to some technical problems and the differences in the method of argument
passing, not all C functions can be called by the EDEN interpreter through the EDEN/C interface.

The limitations are:

o The EDEN/C interface assumes that all C functions return values of integer type. So, the C
functions must return integers or characters since C automatically casts characters to integers.
Functions which return pointers, including character pointers, are accepted only if the pointers
are compatible with integers (i.e. they occupy the same amount of memory). Functions which
return floating points or structures are not allowed by the current implementation.

o The interface cannot handle macros (e.g. getchar()) unless they are rewritten as true C functions.

o Arguments of integer, character, string and pointer type can be passed to the C functions. If the
argument is of string type, the character pointer which points to the first character of the string is
passed. Arguments cannot contain values of list type. All arguments are cast to integers before
they are passed to the C functions. If data types are integer-incompatible, i.e. require a different
amount of storage, then they may cause problems. Since the compatibility of data types varies
from compiler to compiler, the user should check it out themselves.

0 Only the first 10 arguments can be passed. (floating point number counts two)

Despite these limitations, the EDEN/C interface can handle a large number of existing C functions.
Sometimes, the user can write a simple C function to “bridge” with a C function excluded by the limitations.
For instance, the user can write a C function, e.g. BridgeFunc, to interface with the actual C function, e.g.
ActualFunc, which requires a structure as its argument:

struct point { BridgeFunc(x, y)

int x; intx,y;

inty; {
b struct point p;

pX=X;

ActualFunc(p) PY=Y;
struct point p; return ActualFunc(p);
..} }

Then the bridge function is bound instead of the actual function.
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To bind a C function:

¢y

@

3

The user must edit the header file,: SPUBLIC/tkeden/Misc/customlib.h, to add the C function
declarations which must be enclosed in the two lmes

#if INCLUDE = 'H'
#endif

For example,

#f INCLUDE = 'H'

extern system();

extern fprintf();

extern char * fgets();

extern double sin();

extern double cos();
#endif

In the same file, customlib.h, add the binding information entry of the form:
{ "EDEN_name", (int(*)())C_function_name },

where EDEN_name is a valid EDEN identifier and C_function_name is the C function name
declared in (1). The two names can be different. “(int(*)())” is used to cast the C function to an
integer function. Don't forget the commas at the end.

The binding information must enclosed in

#f INCLUDE =='T"
#endif

For example:

#if INCLUDE =='T"
{ "system", system },
{ "fprintf", fprintf },
{ "fgetS" (lnt(*)O)fgets b
/*.. .-
#endif

If the function returns a double precision floating point, the binding information shall be
enclosed in

#if INCLUDE == 'R
#endif

For example:

#if INCLUDE = 'R’
{ "sin", sin },
{"cos", cos },
/*...etc.. ¥
#endif

Recompile EDEN following instructions in the file $PUBLIC/tkeden/INSTALL. Don’t forget to

add the links in Imakefile (or Makefile as appropriate) if the new functions added require links to
object libraries other than what have already included.
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A set of macros is defined, at the beginning of customlib.h, to reduce the complexity of binding C functions to
EDEN names. These macros are SameFunc, Function, SameReal, RealFunc, and SpecialF:

SameFunc(Name) .
Bind a C function named as Name to the EDEN name identical to Name. The value returned
by the C function must be of integer type.

Function(Ename,Cname)
Bind a C function named as Cname to the EDEN name Ename. The value returned by the C
function must be of integer type.

SpecialF(Ename,Type,Cname)
Bind a C function named as Cname to the EDEN name Ename. Type specifies the type of
value returned by the C function.

RealFunc(Ename,Cname)
Bind a C function named as Cname to the EDEN name Ename. The C function must be a
double precision floating point function.

SameReal(Name)
Bind a C function named as Name to the EDEN name identical to Name. The C function
must be a double precision floating point function.

These macros reduces the two-part information into a single macro. To specify a binding, just append the
macros at the end of customlib.h. For example:

/* customlib.h */

SameFunc(system)
SameFunc(fprintf)
SpecialF(fopen,FILE *,fopen)
Function(getchar,my_getchar)
RealFunc(sin,sin)
SameReal(cos)

Warning: No white space is allowed in the macros (except in Type), and no other punctuations (including
commas and semi-colons, but excluding comments) can follow these macros. The listing of the macros is
given in Listing 4-2. Note that some C preprocessors may not work properly with these macros.

Listing 4-2: Macros definitions for binding C functions to EDEN names
Note that some C preprocessors may not work properly with these macros

#if INCLUDE == 'H'

#define SameFunc (Name) extern Name();

#define Function(Ename,Cname) extern Cname();
#define SpecialF (Ename, Type,Cname) extern Type Cname();
#define RealFunc (Ename, Cname) extern double Cname();
#define SameReal (Name) extern double Name();
#endif

#if INCLUDE == 'T'

#define SameFunc (Name) {"Name" ,Name},

#define Function (Ename, Cname) {"Ename", Cname},

#define SpecialF (Ename, Type,Cname) {"Ename", (int (*) () )Cname},
#define RealFunc (Ename,Cname)

#define SameReal (Name)

#endif
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#if INCLUDE == 'R’

#define SameFunc (Name)

#define Function (Ename,Cname)
#define SpecialF (Ename, Type,Cname)

#define RealFunc (Ename,Cname) {"Ename",Cname},
#define SameReal (Name) {"Name" ,Name},
#endif

4.2 Programming Notes

4.2.1 Memory Allocation

Memory allocation is automatically handled by the EDEN interpreter. The string and list data types are
assigned by copy (i.e. each string has its own copy instead of sharing the same string through pointers as in
C). For example,

S1="1234567890";
S2=S1;

S2 is now the string "1234567890". If we now do
S2{1]="X";

then S2 becomes "X234567890", but S1 is still "1234567890".

Also the EDEN interpreter
allocates the exact amount of
memory for the string. Reference st I il I I N I G I S AL
beyond the string's or list's memory
block (probably through C function 1 l 2 I 3 I 4 [5 I 6 I 7 | 8 I 9 | 0 I\O‘
calls) may have unpredictable
result. A string is actually a
pointer pointing to a Change to ' X' when
If we pass a string as an argument block of memory that S2[1] = 'X';
to an EDEN function, the string is contains the string.
copied, i.e. passed by value. But if In EDEN, the assignment operator duplicates the content of the string
we pass a string to a C function, instead of simply assigns the pointer to point to the string.
only the address of the memory is
passed, i.e. passed by reference.
So, the user should be careful in
calling C functions.
For instance, if we want to use the g1 112131alstel7]18l9]10]\0
C function gets to read in a string
from stdin, we must first allocate In C language,
some memory to a string variable S2 S2 = S1;
before we call gets: set the pointer ofS2 to point to the content of S1

S = substr("", 1, 255);
gets(S);
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Here we call the function substr
to assign 256 spaces (strings are
terminated by an invisible NUL
character) to S. Then we call
gets to read a string into the
memory allocated to S. By doing
so, we not only allocate memory
for gets to used, but also set the
data type of S to the string type.

gets (S) passes the address of this memory block togets.

gets fills the

S = substr("", 1, 255)
creates a 256 char memory block (255
blanks and a NUL char)

memory with text.

4.2.2 Stack, Heap and Frame Stack

Stack

The pseduo machine of the EDEN interpreter is a simple stack machine. A stack holds the values of

computing.

When the machine calls a
function, the parameters are
pushed on the top of the stack.
Actually, the parameters are
merged to form a single list
datum. If the function requires
any local variable, the machine
allocates space for their values.
When the function returns, the
allocated local variables and the
arguments stored on the stack
are poped; then the value is
returned by pushing it onto the
stack. (See the figure on the
right.)

Since the stack is a fixed size
memory block, a deep function
call may cause the “stack
overflow” error.

Heap

stack
pointer

Stack

Before a function
is called.

stack
inter
po stack
pointer
Stack Stack

When calling a function, When the function
the arguments are pushed returns, the arguments
on the stack. Also each and local variables are
local variable consumes a poped and the answer
space on stack. is push on the stack.

To reduce the frequency of copying the contents of strings and lists, we add another data structure, called the
heap, to hold the contents of temporary strings or lists during the string/list operations. The overhead for
allocating/deallocating memory on the heap is less than that of malloc/free.

The heap is a large memory block. Memory is allocated within this block. A pointer keeps track the top of
heap similar to the stack pointer of the stack. The pseduo machine instruction, freeheap, release all the
memory allocated by previous computation. The heap is not affected by the return of function call. Frecheap
instructions are automatically inserted by the interpreter at the points that it thinks safe to free memory.
However, if a computation involves long strings, lists or too deep function called, the machine may not have
the chance to free the memory and thus causes the “heap overflow” error.

The user may have to modify their program to minimise the load of stack and heap to avoid memory overflow
errors. For instance, an iterative function has less demand on stack and heap than its recursive equivalent.




Frame Stack

In returning from a function call,
the machine has to stored the
previous machine status, e.g. stack
pointer, (pseduo machine) program
counter, number of local variables
(since local variables were put on

the stack), etc. A frame stack holds temp. space
these information. used by £2
stack ptr
temp. space
When a function is called, the used by £1
current machine status, a frame, is
pushed on the frame stack. For
example, if f1() calls f2(); the status
of stack, heap and frame stack is
shown in the figure on the right. 7 %/
A frame is poped 'whcn a function Stack Frame Heap
returns. The machine status resume .
to the previous state. The frame stack keeps track the stack and heap pointers. Areeheap

instruction (generated by the EDEN interpreter) causes the top-of-heap
to return to the bottom pointed to by the top-most frame (e.g£2). On

Since  the o stack s the other hand, the stack-pointer is lowered only if the function returns.

implemented as a small stack, about
64 entries, the number of level of
nested function call is 64 approx. This maximum limit is enough for general use, but if a function nested too
deep, the machine will generate a “nested too deep” error.

Avoid Memory Overflow

Since the EDEN interpreter passes list "by value", i.e. copies the entire list on heap, it is very eay to overflow
the heap if you pass long lists as parameters of a recursive function. To get round this problem, you may
consider the use of iterative loops instead of recursive functions, or you may pass the "pointer” of that list to
the function, and let the function to copy that list to its local variable. For example, instead of:

func foo /* (list) */

{
.t:c;o($ 1);

do:

func foo /* (list *) */

{
auto list;
list = *$1; /* copy the list to local variable */
list = ...; /* do the calculation here */
foo(&list); /* pass the pointer of that list */
}

Also not that the interpreter will try to free the heap space at the end of each statement. Therefore, it would be
helpful space-wise to break a long expression into smaller expressions and use temperary variables to hold
intermediate computation results. For instance:




a = expression;

foo(a);
uses less heap space than
foo(expression);

The machine uses malloc to allocate space for strings and lists rather than claiming space from the heap. So
the use of strings and lists would not normally causes memory overflow.

4.2.3 Autocalc

The autocalc variable controls the evaluation scheme of the EDEN interpreter. When it is 1 (default) or non-
zero, the interpreter will try to evaluate all definitions (if they are evaluable, i.e. all their source variables are
defined); otherwise (autocalc is zero) the interpreter puts the suspended definitions in a queue.

Before the interpreter evaluates a definition, it tests whether all its source variables are defined, i.e. their
UpToDate flags are true. However, the interpreter is not intelligent enough to identify variables referenced by
a definition indirectly. For instance,

func F { para N; return N+ Z; }
Y is F(1);

Function F references the (global) variable Z, but the interpreter does not know about that. When Y is defined,
the interpreter thinks that Y depends on F only, and proceeds to evaluate Y and thus evaluate F. However, F
finds that Z is undefined. In this example, F returns the sum of Z and the first parameter which produces @
when Z is @. However, some operators and most of the statements produce an error when the expected data
types are not met.

Of course, if we defined Z before the introduction of Y, it may not cause an error. However, if we introduce Z
after that of Y, we are in the risk. Hence, the result of computation seems to be sensitive to the order of
definitions. Despite of this ordering problem, redefining Z would not cause Y to be updated. This may not be
the intended behaviour sometimes.

There are two ways to get around it:

»  Set autocalc to 0 before the introduction of all definitions. After all definitions are defined, set
autocalc to 1 again. By doing so, the evaluation of definitions is delayed. For instance,

autocalc = 0;

/* ... other statements ... */

func F { para N; return N+ Z; }
Y is F(1);

Zis 10;

/* ... other statements ... */
autocalc = 1;

However, this method does not solve the re-evaluation problem.
»  Explicitly give the dependency of Z to F. For example,
func F { paraN; return N+ Z; }
proc touch_F : Z { touch(&F); }

Y is F(1);
Zis 10;
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Because now change of Z will induce a change to F, Y is indirectly dependent upon Z, and Y
can’t be evaluated until Z is defined. Also Y will be re-evaluated when Z is re-defined. This point
is not true for the former solution. In fact, the interpreter should generate such dependency for
function specifications. o
Note that such attempt as:

funcF: Z { paraN; return N+ Z; }

or

func F { paraN; return N + Z; }
Z~>[F]

to impose dependency would not work because in both cases a change of Z will call the function
F (as if it is an action). This is an error because a parameter is needed to calculate F.




