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Abstract

This paper outlines an approach to the implementation of CAD systems that makes
use of a programming paradigm based upon definitions ("definitive programming").

It departs from previous research on "pure definitive notations" - special-purpose
notations for interaction - and proposes a general-purpose programming model
based upon definitive principles. This model is examined as a possible basis for the
development of an integrated framework within which to address the broader issues
of a design support environment, including constraint handling and user-interface
management. This gives a new perspective on the use of definitive principles for
interaction in which the emphasis is upon interpreting a family of definitions as one
of many possible "intelligent views" of an interactive system. It also establishes a
closer relationship between the definitive programming approach to CAD and the
study of CAD from an Al perspective than was previously evident.

The design of an appropriate definitive notation for geometric modelling is a
fundamental aspect of the application of definitive principles to CAD software. An

appropriate basis for such a notation is presented in an Appendix.
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This paper - a sequel to [2] - outlines an approach to the implementation of CAD systems that
makes use of a programming paradigm based upon definitions ("definitive programming"). There
are two principal aspects to this research:
(a) the design of an appropriate definitive notation for dealing with the complex geometric
problems that are centrally important in CAD applications;
(b) the development of an integrated framework within which to address the broader issues
of a design support environment.
The paper is in two parts: an extended account - written by the principal author - of the research so

far carried out on (b), and a jointly authored Appendix providing further details of (a).

Of the two aspects, the firstis a direct extension of previous work on pure definitive notations for
interactive graphics [2]. In contrast, the work that has been done under (b) - thou gh consistent with
the view of "dialogue over a definitive notation" as an appropriate intermediate code for
user-computer interaction (cf [2]) - involves a significant development of the definitive
programming paradigm, and introduces considerations far beyond the scope of [2]. These lead in
particular to a new perspective on the use of definitive principles for interaction in which the
emphasis is upon interpreting a family of definitions as one of many possible "intelligent views" of
an interactive system. This appears to establish a much closer relationship between the definitive
programming approach to CAD (cf §5) and the study of CAD from an Al perspective (cf [17]) than
was previously evident. .

The concept of using definitions as a basis for interactive software was advocated in [1], and is
illustrated in the design of the ARCA and DoNaLD graphics systems [3,4]. The merits of using
definitive principles as a basis for software for interactive graphics are described in detail in [2]. In
particular, the advantages in respect of data representation and abstraction over traditional
procedural or purely declarative programming paradigms are explained. It would be misleading to
suggest that the application of these principles to the design of graphics for a CAD system is trivial
however. This is illustrated by the design of an appropriate definitive notation for geometric
modelling, as outlined in §1.2. The problems encountered in this generalisation have such interest
and relevance for the entire project as to merit supplementary consideration in an Appendix.

The framework described in [2] is also limited in several other respects. A key idea behind
definitive notations is that the current status of a user-computer interaction ("the state of dialogue")
is effectively represented by a system of definitions resembling in essence the system of functional
relationships between scalar quantities underlying a naive spreadsheet. Such a view of interaction is
oriented towards a passive use of the computer in which the responsibility for changing the state of
dialogue rests upon the user. In practice, there are many important issues in the design and
implementation of CAD systems that demand a more general framework. Valuable though the
passive use of sophisticated data description is in the early stages of the design process [20], there
is also a very significant role for interaction in which the computer plays an active part (cf [21] p8).
Traditional user-interface management issues come to mind in this context [12,14]: the animation of
a dialogue through appropriate use of windows, menus, graphical displays, and the use of
analogue rather than textual input. Of equal importance are issues such as the monitoring and
maintenance of constraints [8,18,22,25]; an activity in which the computer must itself participate in




- changing the state of dialogue. . . ... .. ..

The purpose of this paper is to argue that the essential concept of definitive programming (viz the
representation of a state of dialogue by means of a set of definitions that is transparent to the user)
can be developed to support the broader concerns raised by the implementation of sophisticated
CAD systems. Some justification for regarding CAD systems based upon definitive principles as
well-suited for the implementation of "intelligent" CAD software is also given. Indeed, the thesis
that computer-aided design systems can be very effectively implemented using definitive principles
in such a way that the user has a powerful abstract view of the stages of the interactive design
process itself suggests a possible interpretation of "intelligent" computer aided "design".

The paper is divided into 5 sections.

§1 reviews some of the principal ideas discussed in [2] and gives a brief outline of a definitive
notation suitable for geometric modelling combining some of the characteristics of both the ARCA
and DoNaLD notations. The aim is to illustrate explicitly how the ideas in [2] can be applied to the
description of geometric objects in many semantically different ways: as abstract complexes of
simplices, as frames comprising finite configurations of simplicial elements, and as realisations of
such frames as geometric objects defined by sets of points in space (cf [9,26]). In effect, the state
of dialogue over such a notation is interpreted as a formal representation of the user's current model
of a geometric object, and the design process is viewed as a process of refinement of this model
associated with a sequnce of transitions through different dialogue states.

§2 focusses on some limitations of this "pure definitive notation paradigm™ for design as a basis for
developing CAD system software.Two principal issues are considered

1) the need in general for a framework of constraints within which the design dialogue must
operate (§3),

2) the relationship between the semantics of the geometric design dialogue and the mechanics
of the interaction between the user and the computer (84). '

Where 2) is concerned, it may be seen that no provision is made within the pure definitive notation
design paradigm for representation of the current state of the device supporting the user-computer
interaction. This is in some sense appropriate, in that the abstract design process has meaning
independent of the ephemeral state of the screen during some specific design transaction; on the
other hand, there is in general a complex interrelationship between the underlying semantics and the
current state of the display interface. A major step towards the solution of this problem is the
introduction of an auxiliary definitive notation within which to specify the screen display at any
stage. The form of the user interface can then be specified as a set of definitions, either by the
system or by the user, and subsequently driven by dialogue actions initiated by the computer.

An underlying principle of definitive programming, relevant to both 1) and 2), is that the way in
which a transition between dialogue states is effected is not of primary significance; what is
crucially important is that the current state of dialogue can be subtly represented, and is at all times
transparent to the user. To exploit this principle fully, a richer programming paradigm is required,
in which - in the conceptually simplest framework - several processes may participate in the design
dialogue (see [5], and compare [16]). To this end, an extended form of definitive programming is
described, incorporating definitions and user-defined functions (as in a pure definitive notation)
together with actions that - in an appropriate dialogue state - are invoked to change this state (§2.2).
§'s 3 and 4 are concerned with the way in which such a computational framework may be used to
handle constraints and aspects of the user-interface management in a unified manner, and indicate
some of the anticipated advantages of a consistent use of definitive principles.

The final section of the paper discusses the potential merits of a definitive programming approach to
the development of an "intelligent” CAD system. A central theme is that the interpretation of a
family of variable definitions as an "intelligent view" of an interactive system is a powerful
abstraction implicit in many "intelligent" CAD systems based on more traditional paradigms.




81. Applving definitive principles to CAD

In this section, the basic principles of definitive programming are briefly reviewed, and the design
of a definitive notation that has been developed for geometric modelling is outlined.

1.1 Basic principles

A general account of the merits of using definitive principles for interactive graphics is given in 2],
to which the interested reader is referred for further background. For convenience, a brief review of

the basic concepts and terminology will be given here.

A definitive notation is specified by an underlying algebra comprising a set A of data types and
a family T of operators that take the form of pure functions mapping between the data types. The

underlying algebra is complemented by variables, whose types are in A, and whose values can be
defined by algebraic expressions in terms of other variables and explicit values via the operators in

3. Programming over a definitive notation consists of introducing a system of definitions of
variables, and thereafter redefining variables or inspecting their current values. Such a style of
programming is particularly well-suited to capturing the semantics of a user-computer dialogue [1].
In that context, the current system of variable definitions is referred to as "the state of the dialogue”,
and the computational step involved in the redefinition of a variable as "a dialogue action”.
Allowing the user to program autonomously using variable definitions to capture the current
dialogue state is the simplest mode of definitive programming, and requires nothing more
sophisticated than a pure definitive notation. In this paper, the same terminology will be adopted for
a more general form of definitive programming, in which changing the dialogue state is not the
prerogative of the user alone.

The basic technical problems in designing definitive notations, such as the methods to be used
when defining variables of complex types that may represent values in many different abstract
ways, have been quite fully researched and described elsewhere [2]. An account of the way in
which definitive notations can be used to capture many different kinds of abstraction, as illustrated
by the specific definitive notations for interactive graphics DoNaLD and ARCA, appears in [2]. The
motivation behind the current research on definitive programming is to examine how far the
principles developed in the study of pure definitive notations can be applied more generally. In part,
this involves identifying those aspects of pure definitive notations that have yet to be exploited. For
instance, the introduction of an abstractly defined underlying algebra - incorporating axioms
governing the operators - will make it possible to use symbolic manipulation techniques for
processing and evaluating definitions. Similarly, greater use of traditional functional programming
techniques, such as the introduction of more sophisticated data types, and of higher-order functions
as operators, will enhance the expressive power of definitions. To an extent, this paper will indicate
respects in which such enhancement of a pure definitive notation can support more sophisticated
applications (cf §1.2 below), but it will also be concerned with issues that cannot conveniently be

dealt with within the pure definitive notation paradigm.

Each programming paradigm has its own characteristic approach to achieving computational
abstraction. In functional programming, a program is regarded as being nothing more than the
evaluation of an appropriately defined function, and the user is not encouraged to introspect about
the computational process involved in this evaluation. In definitive programming, functional
relationships between variables are viewed in a very similar manner: when one variable 1s
functionally defined in terms of others, and its value is implicitly altered through a dialogue action,
the mechanism used to update values is deemed to be irrelevant. In effect, any computation that
might be involved in carrying out a transition between dialogue states is outside the programming
model - or more appropriately in the context of this paper, outside the view of the active agent; the
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~ values of variables are at. all-times-assumed-to -be consistent with their definition. Updating-a-—- — -

spreadsheet is the simplest illustration of this principle in action; the user ideally demands an
interface that updates displayed values "instantaneously". In the context of the definitive notation
for geometric modelling described below, such idealisation is clearly much further removed from
realism - it is in general hard to update a display of a parametrised geometric model in real-time! At
some level of abstraction, it is nonetheless appropriate to invoke such idealisation, and possibly to
treat other aspects of the user-computer interaction in which computation is involved in a similar
manner. It is equally necessary to understand how such an abstract perspective can be practically
helpful when building a complete system for geometric modelling, and this concern supplies the
context for the study described in §'s 2,3 and 4 below.

1.2 A definitive notation for geometric modelling

The use of a definitive notation for the representation of geometric models is central to the definitive
programming approach to CAD software. Designing an appropriate notation is a major part of the
conceptual design of the user-interface (cf [12] and §4 below). Pursuing the ideas in [2], it is to be
hoped that definitive principles can in due course support feature-based description in parallel with
geometric description, thereby avoiding the need for feature extraction for process planning (cf
[211,p3). To achieve this, it is not enough to adopt a particular representation for geometric objects;
it is necessary to develop ways of integrating many different characteristics of geometric models
within a single unifying framework. This is a non-trivial task; as observed in [21], surface and
solid models have yet to be successfully integrated in conventional CAD systerns.

The relevant characteristics of geometric models include information about reference and
construction points, labels, skeletal structure, and those geometric operations that are typically used
to synthesise complex objects from simple components. The underlying algebra accordingly
includes several different sorts of data, both combinatorial and geometric, together with a system of
algebraic operators that can be used to establish relationships between these sorts. The variables
over the associated definitiveé notation can then be used to define models of complex geometric
objects, perhaps incorporating components specified using different modelling paradigms, and
possibly incompletely specified.

The data types used to represent geometric objects have also been designed to capture the
distinction between an abstract object, such as "the sphere with centre ¢ and radius r", and a
specific sphere, for which explicit values for ¢ and r are known. The use of a definitive notation
lends itself to the representation of such distinctions between partially instantiated and explicit
objects, but in a2 manner that puts too much onus on the user to establish and maintain functional
relationships. Using techniques resembling those introduced for moding variables in the definitive
notation ARCA [2] it is possible to declare variables to represent objects of a generic form. This
obviates the need for the user to repeatedly set up appropriately contrived systems of variables to
define explicit objects within the same abstract class. In this way, the designer is able to describe an
object in an internally consistent fashion without referring to its location in space, or physical
dimensions. This solution to the problem of representing objects is similar in spirit to the use of
classes in an object-oriented programming framework.

In essence, the underlying algebra incorporates three distinct sorts for describing geometric objects:
complex, frame and object. The complex is a combinatorial structure - resembling the abstract
simplicial complex of polyhedral topology - intended to capture the purely combinatorial ingredients
of a geometric object. These include: reference points, abstract scalars needed to specify lengths
and angles etc, and incidence information expressing the way that the object is abstractly
synthesised from simpler components. To derive a frame from a complex, it is necessary to
specify the dimension of the space in which the complex is to be realised, and to supply specific
coordinates and scalar parameters corresponding to the abstract labels of the complex. An object
is generally determined by a list of frames, together with a function that takes the parameters of
these frames as arguments and returns the extent of the object. (More details of these data types are
given in the Appendix.)




The motivating idea behind the choice of sorts is that an object is to be viewed as the realisation of
a combinatorial structure, as represented by an underlying list of complexes. For instance, a
spline is determined by a wire-frame together with an appropriate set of boundary elements. The
wire-frame has two ingredients: a combinatorial structure, consisting of an array of labelled points
with incidence relationships between them, and an associated array of coordinates. By specifying
how the spline is abstractly defined in terms of the frame and the boundary elements, without
regard for their specific coordinates and scalar values, the spline can be specified as an abstract
object. That is to say, the abstract description of the spline takes the form of a function that takes as
its arguments an appropriately typed list of frames required to specify the wire-frame and its
boundary and returns "the set of points that comprise the spline”. By subsequently supplying
parameters for such a function ie specifying a suitable explicit list of frames, a spline is derived as

an explicit object.

The design of variables for the definitive notation broadly follows the patterns established in ARCA
and DoNaLD [2]. In particular, there is a concept of a variable mode - as introduced in ARCA -
and of a subvariable - as in the DoNaLD openshape. (See the Appendix for more details.) There
are also some significant unprecedented features. For instance, an "abstract object" is effectively a
component of the object data type, so that appropriately moded object variables can be regarded
as representing operators to realise objects from frames.

Specifying the object data type also presents some novel problems. Since there is no reasonable
general method of specifying an object explicitly (ie by enumeration of its points), the extent of an

object is represented by a criterion for membership ie a function vector_of real — boolean. In
practice, the relationship between such specifications of objects and the algorithms used to display
and manipulate objects may be very complicated. For instance, it may not even be obvious how to
apply the criterion for membership of an object in general, and there will be problems of numerical
approximation to address [10,13]. There are several pertinent issues to be considered. It is
anticipated that objects will generally be defined in terms of standard abstract objects (such as
spheres or polyhedra) that are supported by built-in functions for display and manipulation in a
solid-modelling system. There will be an important role for symbolic manipulation and
transformation techniques in relating the abstract definition of a geometric object and its image in
the display interface as conceived in §3 below. At the same time, the approach proposed here offers
some advantages where the traditional problems of evaluation are concerned, since it is based upon
the symbolic representation of objects.

§2 Generalising the definitive programming paradigm

This section examines the limitations of pure definitive notations, and indicates the most promising
direction for generalisation of the definitive programming paradigm.

2.1 Limitations of the pure definitive notation paradigm

The use of a pure definitive notation for user-computer dialogue puts the primary emphasis upon
representing the current state of the interaction by means of a system of definitions. In practice, this
proves to be very effective in as much as the user can readily determine the current state of the
dialogue at any time, and can predict the effect of any dialogue actions. However, the use of
definitions can also be unnatural, since it requires an acyclic system of functional dependencies

between variables.

If the criterion for a good representation of the state of an interaction is "predictability of response
to dialogue actions", the restriction to acyclic systems of functional dependencies is superficially
unnecessary. It is not even necessary to consider complex constraint relationships (cf §3) to
appreciate this. For instance, it may be that two variables x and y are to be assigned the same value
in such a way that if the value of one is changed, then so also is the other. This can be done within
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. ___the definitive programming framework. --for example, - by-introducing-an-auxiliary wvariable t, -
together with the definitions: x =t, y = t - but only in such a way that an attempt to redefine x or y

is construed as a redefinition of t. This solution can seem particularly uncomfortable in the context

of interactive graphics, where it is congenial to use analogue input via the graphics interface, and
direct reference to the internal definitions of variables may not be appropriate. These are the
considerations that suggest that a pure definitive program is best viewed as a form of intermediate
code for interaction [2].

Appropriate definition of variables can sometimes provide an alternative to hidden parametrisation,
but leads in general to a form of over-specification that is somewhat inelegant, and puts an
obligation upon the user to recall - or, to be more precise - to refer to knowledge of the
representation. For instance, in DoNaLD, it is an easy matter to represent a unit square by defining
point variables a,b,c,d to represent its four vertices subject to the relations:
b = a+[{0,1]; ¢ = a+[1,1]; d =a+[1,0].

To translate the square to another location whilst preserving its orientation, it suffices to redefine
the variable a, but this is information that is hidden if the user sees only the display.

Such use of functional relationships contrasts with the use of equational relationships between
variables commonly employed in a constraint-based graphics system. There are many issues to be
examined here (see §3 below): the kind of enhancement of pure definitive notations that can support
constraint-processing; the extent to which constraints can be accommodated within the definitive
programming paradigm; the significance of representing a constraint using functional relationships.

The passivity of the pure definitive notation paradigm has other important ramifications. In practice,
the implementation of an interactive system involves many dynamic elements required for the
animation of the dialogue, such as windows, menus and graphical displays. The definitive notation
for geometric modelling described in §1.2 can capture the stages of the abstract geometric design
process effectively, but does not address the more immediate, if perhaps more ephemeral issues,
concerning the current "state of the interaction” in its broad sense. These include considerations
such as what windows are currently open, what menu options are currently available, and the form
of the responses to input.

There are two aspects to this problem. On the one hand - as is argued in §'s 3 and 4 below - there is
good reason to suppose that a system of definitions can be used to represent the entire suspended
state of the interface during an interaction effectively. On the other hand, the transitions between
dialogue states that are required to model the interface in this manner are very complex, and are in
general to be carried out by the computer rather than by the user. To solve this problem, it is first
necessary to re-examine the principle of "programming with definitions" to determine how several
agents can be allowed to participate in a dialogue. A fuller discussion of the specific implications
for user-interface management within a definitive programming paradigm appears in §4 below.

By implication, the generalisation of definitive programming envisaged differs very radically from
the elementary use of pure definitive notations. Indeed, to handle the issues of user-interface
management within a coherent framework of evolving systems of definitions requires a powerful
and general programming paradigm far removed from the special purpose "definitive notations for
interaction" described in [2]. An important concern in this paper is to motivate the introduction of a
general purpose definitive programming paradigm - after all, other idioms, such as functional or
object-oriented programming, have also been advocated for general purpose programming, and
provide techniques particularly well-suited for operator specification and data abstraction. This
paper argues that the distinctive feature of the definitive programming approach is effective support
for the representation of interaction, whether internal or external to a system.

2.2 Enhancing the pure definitive notation paradigm

The method of enhancing pure definitive notations proposed here is based upon abstraction from a
mixed programming paradigm first introduced in the EDEN interpreter - a software tool designed as
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definitive notation based upon list processing, but can also be programmed to perform traditional
procedural actions that may be synchronised with changes in the dialogue state using triggering
mechanisms resembling those used in object-oriented systems [8]. By translating definitions into
the internal definitive notation, it is easy t0 represent the state of dialogue over any definitive
notation. By using triggered actions, it is easy to make responses contingent upon the current state
of the dialogue eg to ensure that 2 particular screen location in a spreadsheet is to be updated
whenever the corresponding variable value is changed, or to register the presence of error
conditions such as a constraint violation. EDEN has already been successfully used for the rapid
prototyping of software based on definitive principles, including a prototype DoNaLD
implementation [6], and is the practical programming tool that is currently being developed to

support more ambitious CAD implementation.

In effect, EDEN makes it possible to link complex procedural actions and intricate systems of
definitions: a very powerful mixed programming paradigm, but one that can also prove difficult to
use and analyse. There is clearly a need to guarantee that triggered actions do not interfere, for
instance, and to avoid infinite behaviour. For this reason, triggering has primarily been used to
implement actions that have no effect upon the current state of the dialogue as represented by the
internal system of variable definitions. Such limited use does not adequately support the direct
participation of the computer in the user-computer dialogue that is required for general constraint
and user-interface management however. The general definitive programming paradigm to be
introduced to this end (cf §'s 3 and 4 below) can be most succintly explained in terms of an abstract
machine model that can realise the capabilities of the EDEN interpreter without compromising

clarity.

In outline, this abstract machine model consists of three components: a program store P,
comprising a set of entities, a store D of variable definitions, and a store A of actions. Each entity
comprises an abstractly specified block of definitions and actions, perhaps parametrised, that is
superficially analogous to the declaration of a procedure in a conventional procedural language, or
of an object in an object-oriented language. The variables whose definitions appear in D may be
assumed to be of some basic data type, such as integers or lists. At all times, the system of
functional dependencies between the variables in D is acyclic, and the value of each variable is
consistent with its definition. An action takes the form of a guarded sequence of instructions, each
of which either redefines a variable, or invokes the introduction or deletion of a block of new
definitions and actions into the stores D and A through the instantiation or elimination of an entity.

A computation consists of a sequence of parallel executions of appropriate actions. In a single
computational step, the guards of all actions in the action store are evaluated, and the actions
associated with true guards executed in parallel. This in general has the effect of changing the
contents of the stores D and A by modifying the definitions of variables (possibly even those
whose value is implictly defined by a formula), and may also lead to the introduction or deletion of
blocks of definitions and actions. To admit redefinitions involving the evaluation of implicitly
defined variables (as is appropriate for instance when referring to the current value of an attribute of
an implicitly defined object), there is a mechanism for the evaluation of specified expressions in the

same context in which the evaluation of guards is carried out.

In interpreting a user-computer dialogue within the framework of the abstract machine model, the
roles of the user and of the computer are determined by entities that are instantiated according to the
current context (cf §5 below). There will at any time be variables instantiated to represent new
user-input via the keyboard, and to record the present position and status of the mouse, for
instance. The abstract machine model then provides a framework that retains the characteristic
feature of definitive programming viz the representation of the current state of the user-computer
interaction by means of a system of variable definitions, but allows both the user and the computer

to initiate dialogue actions to change this state.

Clarifying the abstract machine model is the first step towards the long-term objective of developing
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_._CAD support systems that-do not rely upon a semantically complicated mixed programming---- -
paradigm. The implications of using the "extended definitive programming idiom" for constraint
and user-interface management in CAD applications are examined in more detail in §'s 3 and 4
below, but some of the motivating ideas behind the design of the abstract machine model above
may be helpful. Definirions are the counterparts at a low-level of abstraction of the high-level
definitions that establish functional relationships between variables that represent - for example -
complexes of labels, geometric objects and screen displays (cf §1.2 and §4). Actions enable
autonomous response on the part of the computer, as - for example - when undoing a user-dialogue
action that leads to the violation of an imposed constraint, or when automatically invoking a new
dialogue context for the user. Entities are introduced to meet the need for systems of variable
definitions and associated actions that are to be temporarily instantiated as a unit. When declaring an
object, an associated family of definitions to describe the associated screen display is required (cf
§4), together with actions that are required eg to ensure that specified constraints upon components
of the object (cf §3) are imposed.

83 Constraints and constraint management in the definitive programming model

Constraints play a very important role in computer-aided design. The designer often needs to work
in a context where a large number of interdependent constraints have to be met. The functional
relationships between variables established using a definitive notation can be very helpful in
imposing particular constraints, but there is a need both for additional techniques and for a better
understanding of how such functional relationships are connected with general constraints. The
purpose of this section is to examine how far constraints and techniques for constraint management
can be accommodated within the abstract definitive programming model.

In the first instance, it will be convenient to consider to what extent constraints and systems of
variables can be directly integrated, and to explore some elementary techniques that can be used to
introduce constraints into the definitive programming model. In general, a dialogue action may have
the effect of changing variable values in such a way as to violate a constraint. Even in the pure
definitive notation paradigm, such violations can be monitored by using by introducing string
variables to flag error conditions. Thus, if C is a constraint condition, then
E =if C then NULL else "C is violated"

defines an appropriate variable E to represent the error status. By displaying E in an appropriate
fashion eg in a pre-determined field of an error monitor window, it is possible to carry out a
rudimentary form of automatic constraint monitoring. In effect, the user is able to observe the
consequences of adverse design decisions in so far as these can be represented using chains of

dependent variables.

In the extended definitive programming framework, in which the computer can act to change the
state of the dialogue, it is possible to develop this idea further, and provide constraints, that cannot
be violated by a user action. To achieve this it is only necessary to set up a protocol whereby a user
dialogue action leading to the violation of a specified constraint is automatically revoked. A yet
more ambitious objective is the management of constraints in the spirit of a traditional
constraint-based system: if the user performs an action that violates a specified constraint, then a
predetermined sequence of redefinitions is initiated automatically until the constraint has been

restored.

These techniques will be referred to as monitoring, imposing and maintaining a constraint.
Both imposing and maintaining constraints require a user protocol that restricts the user's capability
for action whilst the constraint is violated. Maintaining constraints of course additionally requires
domain specific knowledge, but can be based around techniques that have been well-studied in
other contexts [8], suitably adapted. As pointed out in [8], constraint maintenance calls both for
declarative information ("what constraint must be met") and procedural information ("how is it to
be maintained"). Though it might superficially appear appropriate to view the functional
relationships established by definitons as a declarative formulation of a constraint, it will emerge
later that they more fruitfully be regarded as concise ways of specifying the methods by which
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The critical reader will recognise that the above discussion fails to make a clear semantic distinction
between general constraints and "functional relationships established through variable definitions”.
This is a naive perspective. As illustrated in §2 above, the specification of functional relationships
that establish a particular constraint may involve an artificial choice of parametrisation that is
aesthetically disturbing. What is more, constraints typically entail more complex relationships
between variable values than can be conveniently expressed using definitions alone. As explained
below, it is probably much more reasonable to regard a system of definitions as encapsulating one
particular agent's view of how a given constraint is maintained (cf the methods considered in [8]
§3.2). The techniques described above then become part of a more sophisticated framework for
constraint management, in which there need be less emphasis upon constraint maintenance.

To illustrate the latter problem, consider a set of variables
pointx,y,z,0;reala,b,c, r

constrained in such a way that o is the centre of the circle of radius r passing through the points X,
y, z with polar coordinates (r, a), (r, b) and (r, ¢) respectively (see Fig 1). In a constraint-based

graphics system, these constraints might be established in such a way that moving the point o
translates the entire Figure parallel to the axes, that modification of r causes the circle to expand or
contract so as to respect similarity and preserve the orientation of the triangle xyz, modification of
the angles a, b and ¢ leads to appropriate relocation of x, y and z on the circle, and relocation of x,
y or z causes relocation of the circumcentre o of the triangle xyz and the associated redefinition of
a, b, ¢ and r. To represent the rich set of functional relationships implicit in these recipes for
constraint maintenance is beyond the scope of an acyclic system of variable definitions. To
adequately represent all the geometric transformations involved requires - for instance - functional
definitions for o, a, b, ¢ and r in terms of X, y and z, and definitions for the inverse relationship.

To describe such an interactive environment within the extended definitive programming
framework requires a more careful appraisal of the significance of "definitions for interaction”, and
introduces new concepts to be elaborated in §'s 4 and 5 below. To appreciate the need for a new
perspective, it must be remembered that the model of interaction required for extended definitive
programming has to take account of several process views. The key idea is that a system of variable
definitions can profitably be regarded as representing an interpretation (or perhaps even an
"intelligent view") of an object, as observed and possibly manipulated by an agent participating in
the dialogue. To be more explicit, the system of functional relationships between a set of variables
perceived by a particular process encodes:

(a) the current state of an object,

(b) knowledge of how it can be modified,

(c) what the effect of such a modification will be.
For the object in Figure 1, there are several process views, corresponding to the various ways in
which the object is modified by different actions on the part of the user. In this sense, the user acts
in the role of several processes - as "the user who points at the centre of the circle" or the user who
points at the point x on the circumference” etc. Within the extended definitive programming
paradigm, this role changing on the part of the user is supported by the user-interface management
system that interprets the screen position addressed by the user as a choice of context for the
subsequent interaction. By pointing to o, the user invokes a state of dialogue comprising a system
of definitions for x, y and z in terms of o, a, b, c and r, and is privileged to change the parameter
0. By pointing to x, the user invokes a state of dialogue comprising a system of definitions for o,
a, b, ¢ and r in terms of x, y and z, and is privileged to change the parameter X.

The concept of "a definitive dialogue state as a profile of an intelligent agent” will be further
examined in §5 below. It should be noted that the simple protocols used for illustration above are
untypical of the context changes that might be programmed in general, and could be enhanced by
using more sophisticated input mechanisms (cf §4). The most pertinent point to remark is that -
despite the impression that naive enhancement of a pure definitive notation to support monitoring,
imposition and perhaps even maintenance of constraints may give - acyclic systems of functional
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_ relationships between variables have a semantics quite different from constraints, and convey. — -
information that is not expressed simply by using a constraint. As the above example shows, there

are many "intelligent views" of Figure 1 that are consistent with the specified constraints, each
corresponding to a different ingredient of the protocol for interactive constraint management.
Another important consideration is that certain of these views conflict, in that the associated
processes will in general interfere if they should execute concurrently. For instance, the order in
which processes are invoked in order to change the parameters r, 0 and a is not significant - they
are non-interfering, but it is not possible to move the centre of the circle and displace a point on the
circumference concurrently.

The above discussion focusses on constraints as relationships that a designer may need to impose
upon a specific object and its attributes. In a constraint-based programming paradigm, the use of
constraints can serve many other purposes. Generic constraints might be used to express algebraic
identities, for instance, or to define implicit functions. Notice that these can be modelled in other
ways within the definitive programming paradigm, and respectively correspond to introducing
axioms and additional operators into the underlying algebra.

84 The user-interface in the definitive programming model

The abstract problem in designing a user-interface is to represent the current context for interaction
to the user in such a way that both the status of the entire system and the options that are available
to the user to change the state of the system are as easy to determine as possible. The work that has
been done on pure definitive notations has focussed on developing such a representation for the
conceptual aspects of the user-computer interaction, but there is no reason why the application of
definitive principles should be restricted to such concermns. The purpose of this section is to indicate
how the use of the extended definitive programming paradigm described above can in principle deal
with all the concerns of the user-interface. Naturally, there are many technical issues to be
addressed before this objective can be attained, but some of the key ideas will be outlined.

Following [12], an exchange of information between the user and the computer is conceived as
having four ingredients: conceptual and functional elements concerned with its meaning, and
sequencing and hardware binding elements concerned with its form. The conceptual elements
of a geometric modelling system might correspond to the algebra underlying the definitive notation
described in §1.2 - or perhaps more realistically to user-defined data types and operators over this
algebra, and the functional elements to particular families of entities that are instantiated during an
interaction implemented using the abstract machine model described in §2.2. To capture the entire
functional design in this machine model, it is necessary to apply definitive principles to the
specification of the display, so that the entities may include definitions of variables that are to be
interpreted as representing the current state of the screen display. For sequencing purposes, the
abstract machine model provides a state machine that has a richer structure than an augmented
transition network, in that each state is represented by a family of definitions, and the state
transitions can be very subtle and complex. The consistent use of a definitive programming
paradigm to deal with interaction at the higher levels of abstraction has the unfortunate effect of
highlighting the discrepancy between the software and hardware models; for this reason, there is
little to say at present about hardware binding, and it can only be conjectured that the principles
used in [14] - for example - may prove relevant.

The design of a definitive notation for screen layout is currently under development (an appropriate
notation dealing with general textual displays has already been described). Such a notation will
serve to address the issues that are conventionally handled using visual element editors, and
provide the basis for the specification of entities that perform the role of the subroutines in the
Interaction Technique Library [12]. The principal components in the underlying algebra include
data types to represent character strings and graphics, boxes within which text strings are to be laid
out or graphics displayed, windows comprising lists of boxes, and displays comprising families of
windows. In effect, the current state of a screen display is abstractly described by a system of
variable definitions, and it becomes possible to deal with issues of presentation and window
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___management (as is appropriate for instance-when implementing the DoNal:D user-interface) without---—---

resorting to the inelegantly mixed paradigm of EDEN (cf §2.2). Perhaps the most exciting
implication of using definitions to describe both the objects of the application domain and the screen
display is that it readily becomes possible to establish relationships between the form of a display
and its content. As a trivial example, the dimensions of a box can be defined to match its contents,
in such a way - if necessary - as to reformat the display when exceptional output is to be displayed.
Similar principles can be applied to provide dynamic functional feedback to the user (cf [12]).

Amongst the applications for the above method of display are generic methods for dealing with
constraints that are to be monitored in the sense described in §3. It becomes directly possible to link
the contents of particular "monitor" windows to boolean variables indicating the current status of
particular constraints through an appropriate definition. The entities that would be required for this
purpose would be easy to generate automatically in reponse to a declaration that a particular
condition was to be monitored.

In principle, the methods for displaying information described above can also be adapted to cope
with graphical input. As a philosophical poinit, it seems likely that some emphasis on textual rather
than graphical input must be retained however (cf [8], p369), since variable definitions will
presumably be hard to introduce using analogue techniques.

As the analysis of constraint-processing in §3 shows, even the conceptual aspects of the
user-computer interaction are inadequately represented by a naive use of definitive principles. The
user does not in general act within the framework of a single system of functional relationships
between variables, but may "select the system of functional relationships” that is appropriate for an
intended action. Strictly speaking, such a selection can be articulated directly by the user, who
simply needs to preface an action (such as "redefining the parameter 0" in Figure 1) by an
appropriate series of variable redefinitions (such as "redefining the variables x, y and z in terms of
0, a, b and ¢"). Though this illustrates how a pure definitive notation supplies a form of
intermediate code for interaction, it is clearly inconvenient for the user. Within the extended
definitive programming model, subject to introducing auxiliary variables to establish a protocol, the
required transition between dialogue states can be handled automatically. To achieve this, the
concept of the current state of the dialogue must be enhanced to include information about the
user's present intentions, as represented by the definition of a control parameter (such as "the
currently selected element" in Figure 1). As an aside, it is of interest to note the resemblance
between the user's invocation of an appropriate context for an action, and the generally undesirable
use of modes (cf [12] p8). It remains to be seen to what extent the transparent nature of the
interface presented by a system of variable definitions alleviates this problem.

In principle, it is clear that dialogue sequence specification can be represented within the extended
definitive programming paradigm. A system of variable definitions is a more powerful way to
represent state information than an augmented transition network, and - as the above discussion
indicates - there is considerable scope for introducing complex transitions between such systems.
At this stage, there is much research still to be done into the most appropriate programming
techniques for handling control in the abstract machine model of §2.2, but there are several
promising indications. It should be easy to accommodate global commands for instance, to support
undo actions, and to provide a context sensitivity that encompasses many orthogonal concerns.

Naturally, the use of definitive principles to represent user profiles is advocated as the appropriate
approach to developing adaptive interfaces. To achieve this, it will be necessary to establish an
"algebraic framework" within which user responses can be monitored and dynamically represented
by an evolving system of variable definitions. Such definitions might take the form for instance of
numerical data on the proportion of errors made, or commands used, together with boolean
variables indicating skills successfully acquired. Notice in particular that the use of definitions
avoids issues concerned with the order in which goals are accomplished. The appropriate dialogue
context for computer responses can then be determined according to the current status of the user
profile. Such a mechanism naturally complements the user’s selection of a particular dialogue
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__context as described above,-and requires no greater technical virtuosity. - - -« -

§5 Definitive programming for intelligent CAD

It can be argued that the representation of state by systems of variable definitions captures an
important constituent of human intelligence. When contrasted with procedural or functional models,
definitive models appear to abstract relationships that match human conceptual processes more
faithfully. Mechanical systems provide strong evidence for this point of view. As a simple
“ example, it is much more appropriate to model an object such as a door as a parametrised system of
variables representing the hinge, the handle and the catch than to conceive it as determined by a
family of procedural variables that are independently updated in such a way the certain constraints
are necessarily satisfied, or as a mathematical abstraction such as a functional programmer might

employ that incorporates no concept of current state.

The naivety of proposing such pure definitive models for general systems becomes clear when
more complex interactions between objects are involved. As illustrated in §3, systems subject to
complex constraints can only be accurately modelled by implicitly introducing many different
functional relationships between variables, not all of which can be consistent (ie acyclic). To
accommodate this within a definitive framework, it becomes necessary to bind systems to the
agents who can observe and act upon them consistently. Rather than modelling "the state of the
system", it is then appropriate to model the views of a system as perceived by particular agents.
From this perspective, a system of definitions is a way of modelling the view of one agent, who
has (conditional) control over certain explicitly defined parameters, and can predict the effect of
changing these parameters upon the dependent variables that are implicitly defined. It is in this
sense that the definitive programming model of a door is a natural one; it simply expresses the way
in which the door can be expected to interact with an agent.

It is of interest to examine more closely the idea - perhaps fanciful - that the concept of "intelligent
views" can be an ingredient in a formal framework for studying "intelligence”. Guided by analogy
with the notion of "intelligent view", it will be appropriate to suppose that our perception of a
system can be modelled by a family of variables, and that it is possible to observe the behaviour of
the system through changes in the values of these variables with time. In such a context,
intelligence about the system might be construed as "knowledge of universal relationships between
system variables". There then appears to be a significant distinction between the kind of intelligence
that is involved in the perception of comstraints, and that involved in "intelligent views" as
described above. In effect, there is the intelligence of an observer of the system, who perceives
certain invariant constraints between variables (eg as in a system of collinear points A, B and C that
autonomously changes so that at all times the distance between A and B exceeds that between B and
C), and that of an agent, whose intelligence consists in knowing the effect of actions upon the
system (eg if I increase the distance AB by d units the distance BC will increase by the same

amount).

The key to unifying the intelligence of the observer and that of the agent appears to be to consider
more restricted system models, and to confine the system changes that occur to those that can be
brought about by participating agents. It is then no longer possible to speak abstractly of "changes
of values of variables in the system with time", but only of actions performed upon the system by
legitimate agents. The intelligence of the observer takes the form of consequential knowledge of
global constraints upon the system behaviour.

The extended definitive programming model described in this paper seems to offer a most
appropriate way to give formal expression to these ideas. A system will be represented by a set of
variables that are perceived by various agents to satisfy functional relationships expressed in the
form of an acyclic system of variable definitions. The system will evolve from state to state through
changes made to parameters - subject to appropriate pre-conditions being met - by the participlating
agents. The possibility of concurrent action of two or more agents is not discounted, but there will
in general be a need to constrain the behaviour of agents to ensure non-interference, ruling out




14

concurrent action by two agents that would lead to inconsistent changes in the value.of a variable... .
The global constraints on the system are the invariant relationships between variables - those that
cannot be violated by the action of any agents. For convenience, such a system model will be
termed a definitive model; it may be regarded as describing one possible intelligent interpretation
of the system. The nature of the abstraction that is being made in definitive programming (cf §1)
also becomes clearer in this perspective; it is not strictly necessary that the maintenance of
functional relationships within an agent's intelligent view should be instantaneously updated, but
only that these relationships can be guaranteed to persist as postconditions of any legitimate action

on the part of the agent, and cannot be subject to interference through the concurrent action of
another agent.

There are strong analogies to be made here with the scientific method. "Opening the door" is an
experiment that confirms the thesis that the relationship between the essential parameters of the door
is correctly perceived. The "intelligent view" of the agent formally represents an assumption that is
properly seen as an article of faith, confirmed by experience but unproveable; it may be the case that
one day the system will confound the agent's expectation, as when the door comes off its hinges.

The quantum theoretic principle that every observer is necessarily an agent [7] also comes to mind.

To illustrate and elaborate the above ideas, it will be helpful to examine a simple example. To this
end, suppose that the variables X, y, z,0,T, a, b and ¢ in Figure 1 supply the basis for a system
model. In §2, one possible definitive model consistent with Figure 1 was described. Within that
model, the "intelligent views" of the agents were the systems of functional relationships between
variables corresponding to the different expectations of the user on selecting different parameters
for change. In that model it was coincidentally the case that the variables X, ¥, Z, 0, T, 2, bandc
were always subject to the constraining relationship graphically depicted in Figure 1.

Of course, there are all kinds of alternative definitive models that might be used to interpret Figure
1. It might be the case that the points and scalar parameters in Figure 1 happened to have the values
depicted: in the view of any agent, all the variables would be explicitly defined, and there would be
no functional relationships between the variables. This is very much the kind of mental model that
underlies conventional procedural programming, and that the discipline of introducing invariants -
or object-oriented programming methods - adapts for use in other contexts where there are

constraints between variable values to be met.

There are also a number of interesting mechanical interpretations of Figure 1 that might be
considered. It may be that ox, oy and oz are the spokes of a wheel; that they indicate the positions
of the hour, minute and second hands of a clock; that ox and oy are diametrically opposite points
on a wheel, and oz is the point of contact with the ground. To each of these there corresponds a
definitive model that describes the effect of agents lifting or rotating the wheel, moving or resetting

the clock.

Characteristic of the original model of Figure 1 (as discussed in detail in §2) is the richness of the
functional relationships invoked by agerits; something that is in general difficult to realise in a
mechanical model. This probably accounts for the particular difficulties of programming a
user-interface for interactive graphics and CAD software. There can nonetheless be a role in a
mechanical system for "switching between different intelligent views" through a simple action
similar to the selection of a point on the screen. Suppose for instance, that Figure 1 represents a
wheel in which the spokes are bolted together but detached from the rim. Unbolting the spokes has
the effect of radically changing the context for an agent who is privileged to be able to move a
spoke. What is more, if there were to be an agent for each spoke, the effect would be to eliminate
the interference between these agents. It is in the representation of such "intelligent" interactions
that definitive principles offer most promise.

The approach to knowledge representation proposed above may be contrasted with the
predominantly inference-based techniques commonly used in AI (cf [17]). This relationship has yet
to be explored, but promises to be useful both for evaluating and extending the above ideas.
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Concluding remarks

The work described in this paper has been motivated by three distinct concerns:

1) a pragmatic concern for developing and implementing sophisticated definitive
notations as the basis for CAD software. This aspect of the work is for the present
primarily concerned with finding better ways to describe the programming methods that
have been used with considerable success for a prototype implementation of the DoNalLD
notation (cf [6]).

2) a mathematical interest in developing an abstract programming paradigm that
incorporates the principles used in pure definitive notations, but can be applied to more
general problems. The abstract machine model described in §2.2 is what appears to be the
most appropriate generalisation, in the light of experience with related work on EDEN [6]
and LSD [5].

3) a semantic concern with fundamental principles of interaction, and the significance
of definitive principles as a way of representing knowledge about systems in a
psychologically convincing way. Where pure definitive notations are concerned, some of
the most important issues have been already addressed (cf [2]), but the perspective
presented in this paper suggests further potential within a less restricted programming
model.

Respectively associated with these concerns, there are three broad objectives: implementing large
software systems that exploit definitive principles, describing a satisfactory semantics for definitive
programming, and developing new applications.

The implications of these three strands of research are at present only partially understood. The
machine model described in §2.2 has as yet been little developed, for instance, and considerably
more research is required before the methods currently being used for implementation can be recast
in an abstract form. Work is in progress on the development of the definitive notation for geometric
modelling (cf §1.2 and the Appendix), and on a definitive notation for describing presentation
issues in the display interface (cf §4). The problems posed by concurrency, and the programming
techniques needed to deal with synchronisation issues are also a particular focus of current concern.
What is now clear is that there is no satisfactory way to compromise in the use of definitive
principles; whatever the shortcomings of the extended definitive programming framework outlined
in this paper, there is a strong motivation to fulfil the objectives set out above. As a footnote, it may
be worth observing that the computational model that is perhaps most appropriate at the primitive
hardware level, where the output of a gate is directly determined as a function of its inputs, closely
resembles a definitive program!

The extended definitive programming framework described in this paper has something in common
with both functional and object-oriented programming methods. The specification and
augmentation of the data types and operators of the underlying algebra offers much scope for
functional programming techniques such as are to be found for instance in [24]. There are clear
connections between the methods for constraint processing and user-interface management
discussed in §'s 3 and 4 and the application of object-oriented principles as described in [8].
Characteristic of the definitive programming approach is the explicit identification of relationships
between variables as viewed by an agent; a significant form of abstraction that cannot be made
explicit in object-oriented models but is often implicit in an object-oriented implementation. The use
of trigger constraints by which "responses are keyed to particular message selectors to be received
by specific instances " (identified as a powerful feature of the BALSA animation system in [8]
p369) is one example of an implementation technique that provides convenient support for such
relationships. It is of particular interest to see that variants of definitive programming have been
implemented in many different programming paradigms: cf the data-base language ISBL [23] (in a
PL1 environment), The Analytic Spreadsheet [11] (in an object-oriented environment), and the
geometric design tool RELATOR [19] (in a Prolog environment). This may be construed as further
evidence that the use of variable definitions to represent relationships is of significant interest, but
outside the immediate scope of traditional paradigms.
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Figure 1: A system of constraints
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. _APPENDIX: A definitive notation for geometric modelling - e

In this appendix, we give more details of the definitive (definition-based) notation for the
description and manipulation of geometric objects in 3-dimensional space outlined in §1.2.

Background

There have been many different ways to approach the computer representation of complex
geometric objects. It may be most natural to represent an object using solid-modelling techniques
for instance, expressing it as the result of applying a sequence of set-theoretic operations to a family
of standard objects, such as spheres and cuboids. Alternatively, we might wish to synthesise an
object from a combinatorial structure, such as a wire frame, using surface modelling techniques for
realisation of the complete object. To an extent, the disparate views of geometric structure may be
seen as the consequence of a natural development in modes of computer use, reflecting the
historical progress of computer-aided design, and the nature of the computing resources available
[9]. The usual approach to modelling has been to adopt a single consistent paradigm for the
description of objects, according to the nature of the geometric model required. Developing the
ideas proposed in [2], we should like to construct an underlying algebra for our definitive notation
that enables us to make many "orthogonal abstractions" from a geometric object, and aim to
integrate several different kinds of geometric model within a single framework.

A simple illustrative example may be helpful at this point. Suppose that our task is to model a
simple table lamp, comprising a base consisting of a spherical section, attached to a rectangular
block supporting a hinged jointed arm, linked by a flange to a parabolic reflector. It might be most
appropriate to model the base as the set-theoretic intersection of a sphere and a half-plane, and to
incorporate the rectangular block by forming a set-theoretic union. To represent the jointed arm of
the lamp in such a way that its different possible positions could be conveniently depicted, and in
such a way that the implications of choosing arm segments of differing lengths could be examined,
it would perhaps be simplest to synthesise the arm from a combinatorial description giving
parametrised positions for the hinges at the base, the midpoint and the flange. The flange might be
best described by smooth surfaces realised from an appropriate system of construction points
within a wire frame model, and the reflector as the surface of rotation obtained from an appropriate

parabolic arc.

Within our underlying algebra, there will be elements of several different sorts. A variable of type
object might represent a geometric object as the result of applying an algebraic operator to realise a
surface from a frame (a combinatorial complex resembling a wire frame model), and the incidence
structure of such a frame might in turn be abstractly defined as the result of combining elementary
components. The complete lamp might be represented by a variable L of type object defined as the
union of 6 variables of type object respectively representing the reflector, the flange, the two
jointed segments of the arm, the rectangular block and the base. The reflector (for instance) might
then be represented by a variable R defined by an algebraic expression identifying it as the Jocus of
rotation of a planar curve C about an appropriate axis A, where C and A are again variables of type
object, and C is defined as a quadratic spline based upon a system of construction points specified
using a variable of type frame. The explicit set of points associated with the object variable R
would depend upon the position of the plane defined by the curve C and by the point of intersection
between C and A, which in turn would be defined relative to the flange. The position of the flange
F would be determined with reference to the location of the uppermost hinge of the arm, and the
position of the arm itself specified in terms of free parameters indicating the lengths of its jointed
segments, and the angles of aperture at each of its joints.

The development of a complete representation for the table lamp in such terms is left to the reader's
imagination. It should be clear that such a representation can be defined in such a way that
relocation of the lamp, as in rotating and translating the base, leads directly to the relocation of all
the constituent parts. What is more, we are free to mix geometric components defined using quite
different modelling paradigms, and to build in complex systems of parametrisation.




An overview of the definitive notation

A definitive notation is specified by first identifying an underlying algebra of sorts and operators.
For our purposes, this must be a rich algebra, making it possible to describe many different
structural aspects of a geometric object. The complete specification of the syntax and semantics for
the operators in such an algebra is a very formidable task, and our emphasis will be upon providing
the conceptual framework for the sorts and operators we shall require, rather than upon a detailed
and comprehensive description. This is in no way to evade the main issues; the formal description
of operators that are simply pure partial functions between various sorts is a routine exercise once
an appropriate classification of sorts and operators has been established. (The difficulties are
non-trivial only in so far as it matters to the user how these operators are syntactically represented:
Iverson's remarkable syntax for linear operators in APL [15] illustrates how significant this

representation can be.)

1. Data types in the underlving algebra

In developing the underlying algebra for our definitive notation, we shall distinguish three
essentially different ways in which a geometric object can be viewed: these will be respectively
associated with the sorts complex, frame and object. In describing these, we shall assume that
our algebra incorporates some primitive auxiliary types and operators to support lists, character
strings, scalar and vector variables.

A complex comprises a list of labels (character string identifiers), together with a list of subsets of
this set of labels. The labels are to be viewed as references to abstract points that lie in an Euclidean
space of dimension d>1; this means in particular that labels may refer simply to abstract scalars.
The non-negative integer d is then the dimension of the complex, but is not specified as part of the
data type. Our notion of complex corresponds closely to the "abstract simplicial complex" of
polyhedral topology, but we shall not wish to confine the interpretations of our simplices to objects
that are topologically equivalent to simplices. The intention is rather to use complexes to capture the
purely combinatorial ingredients of a geometric object. Such in gredients include: reference points
and dimensions, and incidence information expressing the way that the object is abstractly
synthesised from simpler components. In particular, the reference points that appear in the
underlying complex of a geometric object will be significant when accessing an object through the
graphics interface. Note that there is no coordinate information in a complex: physical locations of
points are not represented at this level of abstraction.

To give more geometric substance to a complex, we may specify its dimension, thereby obtaining
a d-complex. The reason for introducing these two very similar data types is that combinatorial
operators are most naturally specified on complexes, but the specification of frames and objects
typically requires knowledge of the dimension of the underlying complexes. A frame consists of
a d-complex together with a list of coordinate vectors of the appropriate dimension whose role is
to supply locations for the vertices. Even in this form, a frame remains an abstraction from an
object; though there is a canonical way to realise a frame as an object, the intention is that a
frame supplies a finite set of parameters that can be used to represent the essential reference and
construction points from which an object is synthesised. It will be convenient to regard the
d-complex associated with a frame as supplying a type for the frame; in general the operators
that are specified on frames will act only upon frames of specified types.

The most sophisticated of the basic data types is the object. Our idea is to represent an object
abstractly, not as specified by its extent (ie the set of points deemed to be within the object) alone,
but by the ingredients from which this extent is in general determined, viz: the combinatorial
information needed to obtain an abstract criterion for membership of the object, together with the
specific values for relevant vector and scalar parameters. As a simple example, a solid sphere can
be regarded as determined by two parameters: its centre ¢ and its radius r. The abstract criterion for
membership of the solid sphere can be expressed as "Ix-¢l < 1% assigning specific valuesto c and r
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" will determine a specific solid sphere. .

The above discussion motivates the following specifications for our basic data types:

complex = list_of label x list_of list_of label
- where each list of labels in the second component is a sublist of the list of labels

specified in the first component.

d-complex = complex X int
- where the integer parameter supplies the dimension of the Euclidean space in which

the specified complex is to be realised.

frame = list_of vector_of real x d-complex

- where the vectors associate coordinates with the labels of the d-complex, and all
the points within a frame are in a Euclidean space of the specified dimension. (The
d-complex then supplies the type of the frame.)

object = list_of frame X (list_of frame — (vector_of real — boolean))
_ where the first argument supplies appropriately typed parameters for the function
defined on the list of frames, and both lists may be empty.

As explained above, it is useful to be able to distinguish between abstract objects that are formally
specified in terms of an underlying combinatorial structure, and explicit objects that correspond to a
particular set of points in an Euclidean space. An appropriate data type to represent an abstract
object might be:
(abstract) object = list_of frame — (vector_of real — boolean)

- though the methods of variable moding and definition that we introduce make it possible to
describe generic objects of a wide variety of kinds, of which such an abstract object is just one.
Our definition of objects directly supports a mapping from explicit to abstract objects in an
obvious way, making it possible to associate an abstractly defined object with each fully
instantiated object.

A d-complex can be viewed as a generic frame of the appropriate type. In effect, there is an
implicit function mapping frames to d-complexes that forgets the coordinate structure. When
specifying an abstract object, it is convenient to think of "writing a boolean condition for a point to
be within the object in terms of the abstract points referenced by the labels in a list of
d-complexes". For instance, the sphere with centre ¢ and radius r is defined as an abstract object
by the boolean condition {x | Ix-cl<r} parametrised by the pair of d-complexes that specify its
centre as an abstract point of dimension 3 and its radius as a abstract scalar. The list of
d-complexes that is required for such specification of an object will be viewed as its type; this is a
way of expressing the fact that - for instance - the abstract object "sphere" is a function whose
parameters must consist of a centre and a radius.

There are several reasons for requiring a list of frames for specifying objects in general. When
specifying a spline, for instance, it is helpful to be able to distinguish between the underlying frame
and the set of boundary points. It is also important to distinguish between parameters that supply
scalar and coordinate information. An object may also be built up by synthesising components from
subcomplexes using a variety of operators eg realising some simplices rectilinearly, and others as

circular or spherical components.

It at first seems paradoxical that we provide techniques for declaring variables in such a way that
they can represent "parametrised objects”. After all, definitive notations are very well-suited to the
direct representation of such parametric relationships, and it is certainly possible to achieve the
effect of having a parametrised object by giving appropriate definitions to variables of type object.
The merit of the approach we have adopted is that it becomes possible to specify generic
parametrisations, as will be {llustrated below. (To clarify the issues involved, it may be helpful to
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notation such as DoNaLD by explicitly setting up a family of point and line variables to represent
triangles, and defining the vertices of these triangles in such a way that they coincide in the

appropriate manner.)

To complete the underlying algebra, we introduce an additional data type. The view we shall take is
that an object is analogous to a DoNaLD point or line (indeed these can be viewed as subclasses
of object in the sense introduced here), and there will be an analogue of the DoNaL.D shape in the
form of a suite of objects. As will be explained in more detail below, variables of type suite will
be treated in the same way as DoNaLD variables of type shape, whilst variables of type complex,
frame and object will be treated in much the same fashion as ARCA variables, and ascribed a
mode using a technique for incremental declaration.

L. Operators in the underlying algebra

The underlying algebra for our definitive notation is based around the following categories of
operators: combinatorial operators that are used to synthesise new complexes from old, geometric
operators that assist the specification of coordinates for frames, operators that combine objects as in
traditional solid modelling, and operators to specify objects, frames and complexes in terms of each

other.

Combinatorial operators on complexes

Since complexes are synthesised from lists and strings, the underlying algebra will include the
traditional operators for list and string processing. In all cases, it is intended that operators are
specified as pure functions; typical functions served by such operators are: concatenation of lists
and strings, extraction of elements from lists using head(), tail() and perhaps more general
projection operators, and auxiliary higher order functions such as maplist() that will modify a list
by applying a specific operator to each of its elements. Combinatorial operators on complexes can
readily be derived from these basic operators, though it may be important to incorporate certain
special operators as built-in functions in the interests of efficiency. This reflects the philosophy
behind our approach; it is impossible to anticipate the many ways in which the combinatorial
structure of objects may be specified or related, and a toolkit of basic operators is supplied.

There are many ways in which it will be useful to combine or modify complexes. Forming the
union or intersection of complexes, restricting a complex to a subset of the set of vertex labels,
forming the n-dimensional skeleton, or extracting the boundary are typical of the standard operators
that can be readily specified formally. The underlying algebra will also include operators of mixed
type, such as those that return the abstract dimension of a simplex, the number of vertices in a
complex, and the list of vertex labels. Operators that modify the list of vertex labels by relabelling

may also be required.

It is important to note that the operators acting on complexes must require only combinatorial input:
ie they should not be specified in terms of any metric or geometric information. For instance, the
location of vertices (eg coincidence, collinearity, coplanarity of vertices) should be irrelevant.
Operators whose arguments require such geometric information will apply to frames rather than

complexes.

Operators on frames

A frame differs from a complex in that it associates coordinate information with the vertex labels.
The operators associated with frames can be classified according to their effect on sorts:

(1) constructors and selectors to put together and unpick frames into parts;

(2) operators defined within the constituent parts: all the incidence operators for complexes,
and appropriate geometric operators for constructing a vector_of real;

(3) operators that require as arguments both combinatorial and geometric information and
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(4) operators that require as arguments both combinatorial and geometric information and
return an object.

The operators under (1) and (2) are easy to conceive, and will not be considered in detail here: the
combinatorial operators have been described, and the specification of coordinate vectors can
broadly follow the patterns established by ARCA and DoNaLD [2,3,4].

Under (3), there are operators such as "form the convex hull” which are meaningful only when the
locations of vertices are specified, and whose effect can be interpreted unambiguously in terms of
frames (ie as deterministically modifying the incidence structure under consideration). Subdivision
of a frame using midpoints, and extraction of visible components also fall into this class. Other
operators that might be introduced include generalisations of the operators on complexes such as
forming the union of two frames, forming the frame comprising the boundary of a given frame,
or returning a frame comprising the centre and radius of the circumscribing sphere associated with
an embedded simplex.

A full treatment of the operators under (4) properly belongs to the section on operators that return
objects below, but these include some standard operators for the realisation of an object from a
frame. For instance, the simplices of a frame comprising simplices of dimension < 3 may be
directly interpreted as rectilinear objects, or realised as circles or spheres according to their
dimension. Splines also provide a generic method of realising appropriate frames as geometric
objects. As explained in more detail below, operators to realise objects will commonly require a list
of frames as input; for instance, a spline will generally require additional information concerning
boundary conditions.

Specifying the dimension of the space in which the coordinates for frames lie is an important issue.
It is important to be able to do local geometry within any affine subspace when defining objects: for
this reason, it is convenient to have a way of specifying the basis of the vector space within which
coordinates are given. To this end, the coordinates of points may be most appropriately specified in
homogeneous coordinates, relative to a specified basis vectors. The expression "(a,b,c)@(x.y,z)"
would then be interpreted as "ax+by-+cz relative to the basis vectors x,y,z" - a point in the plane
spanned by triple of points X,y and Z. Adopting this technique from classical affine geometry
makes it possible to refer to "points at infinity", and offers several computational advantages. These
include: convenient use of a basis as a parameter for the specification of coordinates; simple ways
of specifying geometric transformations; provision for essentially the same frame to be used as a
blueprint for an object in several different subspaces. Note that in this context the explicit values of
vectors will be specified in world coordinates.

As will be explained below, providing a basis as a parameter is one of several techniques for
parametrising frames that can be exploited when defining frame variables to ensure that a frame
satisfies required constraints. In general, moding of frame variables will permit the description of
many different generic classes of frame.

Operators on objects

There are essentially two types of operators associated with objects: those that can be used to
specify objects, and those that permit objects to be manipulated and composed. Within these
categories, there is a further distinction between built-in and user-defined operators.

Abstract objects provide simple examples of operators that can be used to specify explicit objects.
As explained above, an abstract object can be viewed as a function of the following type:

list_of frame — (vector_of real — boolean),

where the list of frames is typed to match an appropriate list of d-complexes. By definition,
supplying an suitable list of frames as a parameter for such a function creates an object, so that in
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list_of frame — object.
As operators specifying objects, abstract objects may be contrasted with generic operators whose
range is not restricted to lists of frames of a particular type.

The most primitive generic operator for realising a frame as an object is the rectilinear realisation
of a frame. This is an operator of the sort:
frame — object, :

that is polymorphic with respect to the type of frame supplied as a parameter. That is, given a
frame it is possible to derive a boolean function, expressed solely in terms of the vertices of the
associated d-complex, that specifies the conditions that a point must satisfy in order to be within
the rectilinear realisation of the frame. Other examples of generic operators can also be contrived;
for instance, it would be easy to introduce an Operator to realise frames comprising simplices of
dimension at most 3 by interpreting each constituent simplex as a solid sphere or a circular disk
according to its dimension, and perhaps to provide for the realisation of boundaries of such
simplices within a complex as spherical surfaces, or circular rings. Splines offer a more
complicated example of a class of operators sharing a common formy; in this case, each particular
type of spline would be associated with a family of operators of the sort:

list_of frame — object,
where the list of frames matches a list of d-complexes of the appropriate types. Similar
considerations apply to objects specified as loci eg as volumes or surfaces of rotation.

The basic operators for constructing objects will in general be used in conjunction with standard
- operators for synthesising objects. These include: forming the intersection, union or boolean

sum of a family of objects. The specification of these operators is quite straightforward: and will

be illustrated in the case of the union operator only. Suppose then that A and A" are ob jects, and

A=<[FBICY) >, A'=<[F'],B'(C'])>
where [F] denotes a list of frames of type consistent with the list of d-complexes [C], and
B([C)) denotes a boolean criterion for membership of A etc. The union of A and A' would then be
U = < [F]++H[F'], B or BY([C]++ [C']) >
where "++" denotes a list concatenation. (Note that the labels within the lists of complexes [C] and
[C'] are assumed disjoint: some syntactic ingenuity is needed to ensure this.) The union operator
not only serves to form the union of two objects viewed as point sets, but can also be used simply
to introduce extra points and components that can be referenced.

II. Variables in the definitive notation

Our definitive notation will include variables to represent geometric objects both of type frame and
type object, together with variables of type suite that represent families of objects in much the
same way that DoNaL.D shapes represent families of points and lines. :

The declaration of variables of type suite follows the conventions established for shape variables
in DoNaLD: each suite comprises objects and subsuites, and the value of a suite variable is
either defined via an expression of type suite, or defined component by component using
appropriate definitions to give values to its constituent objects and subsuites. The ideas already
developed for the DoNaLD shapes also provide a suitable environment for handling such suite
variables; for instance, each suite will be associated with a context window that includes the
definitions pertaining to the variables within its scope. Since there is no essential novelty in the
generalisation from shape to suite, the reader is referred to [2] and [4] for fuller details.

Where variables of type frame and object are concerned, different conventions are required. We
have already identified the need to specify ob jects both abstractly and as fully instantiated sets of
points in Euclidean space. In general, a high degree of control over the nature of the abstraction of
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variable moding first introduced in the definitive notation ARCA [2]. According to this pattern, the
declaration of a variable of type frame determines the way that it is used to represent a value of
type frame. The simplest declaration we can make takes the form:

mode F = abst frame;

this indicates that the variable F is to be defined in its entirety by an algebraic expression of type
frame. If the form of the frame to be represented by the variable F is to be specified through its
components, an alternative declaration must be used. Developing the ideas introduced in §3, we
propose to extend the range of such mode declarations to make it possible to specify generic
constraints between the components of variables of a given mode. This can be done using one of
three techniques, through:

1) explicit parametrisation of objects in such a way as to satisfy constraints

2) imposition of constraints so that a dialogue action leading to a violation is revoked

3) monitoring of constraints so that all violations of constraints are registered as and when

they pertain to the current dialogue context.

The most general template for such the declaration of a frame variable is then:

; mode F = frame on <complex>
where <labelled points are appropriately defined>
subject to <specified imposed and/or monitored constraints>.

Semantically: the variable F represents a frame with labelled vertices and combinatorial
components as specified in the <complex>, satisfying the relationships between vertices defined in
the in the where-clause, subject to constraints whose nature and form is as specified.

Similar considerations apply to the declaration of variables of type object, where the mode must
be in general be specified according to the template:
mode frame_1 = .... ; mode frame 2 =....; ........ ; mode frame N = ... ;

mode O = object on |
frame 1, frame_2, ..., frame N

where <labelled points are appropriately defined>
subject to <specified imposed and/or monitored constraints>

with extent <parametrised boolean condition>.

In this mode declaration, there need be no where, subject to, or with extent clauses. Nor is it
necessary to specify the mode of the component variable to represent the extent of the object.
Note also that an object variable can be declared so that it represents an abstract object.

Outstanding issues and further directions

The aim of this Appendix has been to demonstrate the viability of a definitive notation for geometric
modelling that is not restricted to a single modelling paradigm. Our objective has been to address
the main conceptual problems that have to be solved; many technical issues remain to be
considered. The design of an appropriate syntax is important, and must be guided by the intended
use. At this stage, it is not clear how frequently the user will need to specify the extent of an object
by introducing an explicit boolean condition, nor how far such specification could be supported
algorithmically. For instance, we could introduce an expression to represent the intersection of a
sphere, and a surface of rotation, but it might be very complicated to determine whether or not a
particular line intersected the corresponding patch of surface (cf [10]). We do not pretend that our
approach in itself provides new solutions to the formidable algebraic and numeric problems of
geometric design, but believe that it can offer full support to existing techniques. Moreover, our
symbolic representation of objects potentially has considerable advantages over an explicit
representation, and it is to be hoped that appropriate techniques for transformation and symbolic
manipulation can be introduced to address the significant issues of computation and display.




