Programming as modelling: new concepts and techniques
Meurig Beynon, Steve Russ, Yun Pui Yung
Department of Computer Science, University of Warwick, Coventry CV4 7AL

Abstract

The relationship between programming and modelling is considered.
Fundamental programming concepts are examined from this perspective.
Programming for embedded systems is approached via a method of concurrent
system modelling in which the global behaviour of system can be related to the
activity of its components.

1. Introduction

The demands made by modern computing applications lead us to re-examine the
fundamental nature of programming. Intensional programming has drawn attention to the
importance of developing a conceptual framework for programming that is rich enough to
meet the challenges presented by new technology and uses for computers. The design of
LUCID, for instance, reflects a broad vision about the nature of the programming task
aimed at reconciling the perspectives of the priests, the wizards, the cowboys, the boffins,
the handymen and the mystics [18].

It is widely acknowledged that the conceptual framework that guided the development of
programming languages in the past is inadequate for modern applications. The evidence for
this is particularly strong in applications such as embedded systems that involve concurrent
activity and a high degree of interaction and communication. This is endorsed by analyses
of programming methodology [3] and programming language design [1,2,18].

In this paper, we examine the problems posed by programming embedded systems in the
light of an extensive programme of research into programming methods based upon
representations of state by sets of definitions of variables resembling scripts ("definitive
programming”) [4,5,6,7,8,9]. We are led to adopt a perspective in which programming
embedded systems is regarded as essentially equivalent to developing concurrent systems
models in which the global system behaviour can be related to the activity of its
components. In this approach, the concepts of "state" and "agent" play a fundamental role
in determining the semantics of programs.

A motivating example

In building interactive systems for graphics, we have developed a line-drawing package
that can be viewed as a kind of geometrical spreadsheet [8]. The role of the cells of the
spreadsheet is played by variables whose values represent geometric entities such as points
and lines, rather than scalars. These values can be specified explicitly or implicitly by
formulae expressed in terms of the values of other variables in a non-cyclic fashion.

The representation of a geometrical object in our system is a set of definitions superficially
resembling a functional programming script [10]. The essential difference in our
perspective is that the values of variables in the script are to be interpreted as defining a
state of the object. That is to say, certain changes to the script, such as involve the
redefinition of particular parameters for instance, are to be considered as part of the
geometrical model we have described. This is consistent with the "what if?" semantics of
spreadsheet use, in which different possible states of a system are investigated. »

[

A simple example of a script is the following description of a conventional door, as it might
appear on an architectural plan:

real width = doorwidth
bool open
line door = [hinge, lock] // the line segment joining points hinge and lock

point hinge = Lframe
point lock = hinge + if open then (0, -width) else (width,0)

This description is to be understood with reference to a context in which the position of the
left frame of the door and the width of the door in the enclosing wall is also prescribed. A
simple context might be provided by the following additional definitions:

point NW = (0,0)

point NE = (100,0)

point Lframe = NW + (20,0)

point Rframe = Lframe + (doorwidth,0)
line nl = [NW, Lframe]

line n2 = [Rframe, NE]

real doorwidth =20

The drawing that these scripts together prescribe is so trivial that it can be drawn in two or
three instructions using a basic graphics package. What then is the significance of our
scripts in relation to the task of architectural design?

The scripts have to be interpreted with reference to the possible transformations that can be
performed upon the state through the redefinition of variables. In using the door, there are
essentially two states of interest: the door is either open or closed. When interpreted in
conjunction with the protocol
open -> open = false; not open -> open = true

the door script identifies the possible transformations that the user can perform upon the
state of the door in a very precise manner. That is to say the script prescribes a
transformation of the values of the variables that represent the door that corresponds exactly
to what the door user can perceive to distinguish the door open from the door closed.

The script that represents the context for the door has a different status for the door user. In
conventional use of a door, we do not change its width or the position of the hinge. This is
a valid option for the architect, however, whose privileges to transform the context
surrounding the door are ultimately circumscribed only by whether the door fulfils its
intended function effectively.

The nature of programming

The purpose of our illustration is to draw attention to some fundamental issues about the
nature of programming. The scripts above are most certainly not orthodox programs for
drawing pictures. They differ very significantly from a procedural recipe for drawing the
plan of a door in a wall, where the picture is built up through a sequence of changes of
display state culminating in a static image. It is clear that the way in which a concept of state
is exploited in such a drawing procedure has no connection whatever with the informal
meaning of the image that is to be displayed. In contrast, the state represented by the script
has a quite fundamental and essential relationship to the interpretation of the associated
image. Indeed, if our representation of a drawing does not include such a representation of
state, it is impossible to demonstrate the precise correspondence between transformations

2

of the image and behaviour of the real object being represented through which the intended
meaning of the image is expressed.

It is clear that the approach to graphics that we are advocating has more in common with
modelling than conventional programming for graphics. The difference is underlined by the
fact that conventional graphics systems tend to focus upon developing very sophisticated
methods of describing static images. Though this typically encompasses many
sophisticated techniques for transforming graphical objects (e.g. through grouping or
stretching) this does not provide a framework for specifying the precise set of
transformations of an object that is consistent with its semantics.

What are the advantages of adopting a modelling approach to graphics? In the first instance,
a model of an object can be validated with reference to the application far more easily than a
recipe for describing an image. Models can also be far more conveniently redesigned and
enhanced whilst respecting their semantics. The purpose of this paper is to consider how
the principles that we have applied to graphics can be extended to address other kinds of
programming task.

It will doubtless be remarked that the role of modelling in programming is already served
by existing paradigms. Can't we take the scripts above and recast them into functional
scripts incorporating higher-order definitions as necessary to allow us to encapsulate all the
transformations that we intend to perform upon doors and their contexts? Isn't modelling
applications using objects and transformations exactly what object-oriented programming is
advocating? These issues will be touched on later; they have naturally been significant in
guiding our research, and fuller discussion of them appears elsewhere [8]. Our purpose
here is to emphasise that the way in which different programming paradigms have been
applied is generally inconsistent with a unified view of programming. For instance, impure
functional and logic programming use default techniques for operational interpretation to
generate complex executable programs whose status with respect to the application in no
way resembles that of an abstract model. This is the kind of consideration that motivates
intensional programming [18].

It may also be argued that modelling is only appropriate in programming for certain
applications. In our view, modelling is inconspicuous in many contexts because the
programming problem that is being solved and the computational framework within which
its solution is to be expressed have already been so thoroughly analysed that they do not
have to be explicitly modelled. This becomes clear in applications such as programming for
embedded systems where there are generally no routine generic methods to solve the
algorithmic problems and the architecture of the computational agents themselves can be
freely designed.

Embedded systems and concurrent systems modelling

Modern computing is increasingly concerned with embedded systems. Programmable
devices have to be integrated into a concurrent system that comprises human, mechanical
and electronic components. In developing embedded systems we must take account of all
relevant information about the components of the system whose behaviour cannot be
modified and complement these components with electronic devices programmed to
cooperate effectively to achieve the desired effect. The components in such a system
typically interact in ways that are difficult to conceive outside a state-based framework.
Each component is designed and programmed to respond to changes in state in its
immediate environment and itself reacts by changing the state of other components.

e

Concurrent systems modelling has an essential role in programming embedded systems. A
component cannot be programmed to react appropriately to its environment unless it
incorporates a representation of the state of the system of some description. There are in
fact two complementary aspects of modelling involved in the programming task:
+ inferring the abstract behaviour of the unspecified components of the system from
the explicit form and operation of the prespecified components
» prescribing the explicit form and operation of the programmable devices to
conform with the intended abstract behaviour.
Addressing these issues effectively is essentially equivalent to developing a method of
concurrent system modelling whereby the global behaviour of a system can be related to the
activity of its components.

2. Concurrent systems modelling in programming for embedded systems

The objective of our research is to develop techniques that can model the changes of state
that take place in a concurrent system as faithfully as we can model the effect of opening or
relocating a door. The models we require will necessarily be more complex in nature than
the sets of points and lines with protocols for transformation given above. However, we
believe that they can also be described in terms of possible transformations of state
performed by agents that correspond as faithfully to possible state changes in the
application. These state changes will generally have to be conceptually more complicated.
For instance, they may have to be conceived as transforming an object that presently admits
one set of transformations into an object that allows an entirely different set.

The process of constructing such a model is clearly a complex design task: it involves
analysis of the environment in which the programmable components operate, and synthesis
of the components with reference to how they are responsive to their environment and how
they are programmed to react. The interaction between these two kinds of activity in the
design process is similar to the essential intertwining of requirements specification and
design postulated in [3,17]. Analysis of the application indicates limitations in the design of
devices. When a device is modified, further knowledge about the environment typically has
to be acquired through analysis of the application.

Fundamental principles

The illustrative example above leads us to conclude that in attaching a meaning to computer
representations of objects three interrelated ingredients have a fundamental role:

« a state-based representation

« agents and their privileges to change state

« an exact correspondence between state changes in the application and the model.
If such concepts are relevant to the specification of static images, they must surely be still
more significant in constructing programs that have an explicit dynamic behaviour.

An approach to programming that is "state-based" or "agent-oriented" is sure to be viewed
with suspicion, especially when its mathematical foundations are as yet only informally
described. In fact, as we have remarked above, it is clear that state concepts can operate in
many ways, and that better methods of modelling state-transition systems are essential if
we are to develop models of computation that meet the needs of those designing algorithms
for modern architectures, where there is an essential need to take account of different
measures of complexity. The introduction of agents is conceptually essential when
considering concurrent processing. Some of the difficulties encountered in specifying the
semantics of conventional programming languages also relate to a potentially open-ended
use of tools to generate complex procedural recipes. An overview of our current progress
towards the development of an appropriate programming paradigm is given below, together

4

with a simple illustrative example. More detailed discussion of the principles and
techniques introduced, together with other examples, can be found elsewhere [5,7,8].

Analysis of embedded systems: the role of variables

Analysis of an embedded system is based upon knowledge of the acceptable system states
and responses. It can take the form of experiments that are either physical or imaginary.
The object of such analysis is comprehension of the system that encompasses knowledge
about particular states and responses but is not typically expressed in state-based terms. For
instance, it may take the form of general propositions about the behaviour of the system
and constraints upon the kinds of state that can arise.

The operation of an embedded system is primarily conceived in terms of observations of
characteristic measurable quantities that determine its current state. For example, we can
record the position of a lever, the content of an electronic memory, the temperature of a
thermocouple. As in intensional programming, we shall associate variables with such
quantities (“characteristic variables™): these variables acquire different values as the state of
the system evolves in operation.

The status of the characteristic variables is a key issue in our research. We surely perceive
transitions in a system in terms of entities with a single identity but a value that is subject to
change; such change within identity is a commonplace and essential part of our cognitive
framework. The concept of a variable that can assume different values conflicts with the
traditional notion of a mathematical variable, however [18,15,9]. This conflict is resolved
in intensional programming by introducing variables whose values can be viewed statically
as preconceived "streams of values in time" or dynamically as representing successive state
of a computation. There are acknowledged difficulties in applying such an approach to
embedded systems. One is concerned with how changes in values are synchronised [18],
the other with a methodological issue: to what extent the changes in values of variables can
be preconceived.

Our approach is pragmatic at this point. Like the intensional programmer, we wish to avoid
the anarchic use of variables to which any value can be arbitrarily assigned [18]. Rather
than appeal to a concept of history and future for the values of a variable we prefer to
specify the acceptable transformations of value that the characteristic variables of an
application undergo formally, thereby implicitly describing the possible values they can
attain in any particular simulation of the system. During the process of analysis, the
notional values that can be assigned to variables, corresponding to the acceptable states of
the system, can be changed by altering the set of possible transformations. It is not yet clear
whether this approach to disciplining the changing values of variables is expressive enough
to handle issues such as synchronisation and at the same time can be made mathematically
respectable. Even so, there are promising indications from our current practical experience
and initial steps towards a formal computational model.

States and transitions

Our approach can be motivated by examining the cognitive framework in which embedded
systems are typically conceived. We have remarked that the state of a system is represented
by families of variables. In understanding the significance of these variables, it is important
to recognise the role played by simultaneous observation. As we observe the ways in
which the values of the characteristic variables change as the system changes from state to
state there are certain invariant relationships between values that are preserved through
synchronised change. A central objective of our research is the precise representation of

these changes. ¥

The following discussion concerning the difference between the status of a candle and its

reflections in a mirror, paraphrased from Russell [16], provides useful motivation:
When we examine the changes in [certain] groups of objects: there are those
which affect only some member of the group, and those which make connected
alterations in all the members of the group. If you put a candle in front of a
mirror, and then hang a black cloth over the mirror, you alter only the
reflection of the candle as seen from various places. If you shut your eyes, you
alter its appearance to you, but not its appearance elsewhere ... In [these]
cases, you do not regard the candle itself as having changed; you find that
there are groups of changes connected with a different centre or a number of
different centres. When you shut your eyes [...] the centre of changes that occur
is in your eyes. But when you blow out the candle, its appearance everywhere
is changed; [..] the change has happened to the candle. The changes that happen
to an object are those that affect the whole group of events which centre about
the object.

The synchronised changes of values of characteristic variables are modelled in our
framework in a manner consistent with Russell's account. The variables whose values
define the reflection of a candle, for instance, would have values that are functionally
defined in terms of the position of the candle, so that when the candle is moved the
reflection also moves in one indivisible transition. Only certain variables have values that
can be independently changed - those that in Russell's classification lie at a centre of
change. The reflection of the candle can only be changed through moving the candle.

Representing indivisible groups of changes

To describe such groups of associated state changes formally we make use of definitive - ie
definition-based - state transition (DST) models [7]. In a DST model, the values of a
system of variables are defined either explicitly or implicitly in terms of other variables in a
non-cyclic fashion. The defining formulae make use of data types and operators from an
underlying algebra of values chosen to suit the application. A simple reflection might be
defined by a set of points and lines that is a geometric transformation of a set of points and
lines defining an object for instance. A transition from one state to another is specified by
redefining the value of variable: such redefinition could represent relocation of the object
with an associated change in its reflection.

The concepts that underlie DST models bear closer examination. They include the functions
that are used to describe the dependencies between variable values. Notice that - as in a
spreadsheet - it is inappropriate to think of computation being involved in maintaining
functional relationships between characteristic variables: this accords well with a declarative
programming ethos. We do not have referentially transparent programming framework on
the other hand; in DST models, scripts are used to represent state information. This has
similar practical consequences to the introduction of intensional variables - there is
apparently no longer an essential need for higher-order functions.

There is an important distinction between our use of definitions and constraints: a pure
constraint is a universal statement about a class of valuations of a set of variables, whereas
a definition serves to express specific transformations between one valuation and another
[9]. The state-based representation we adopt can also be contrasted with an object-oriented
modelling approach, in which state-changes are distributed between objects representing
generic pieces of local state. An OOP approach does not assist the representation of centres
of change in Russell's sense, since propagation of state-change is modelled by message-
passing.

Agents and privileges

DST representations are the means by which we represent the admissible transformations
of systems of characteristic variables. They establish the link between analysis and
synthesis, and have an ambiguous declarative / procedural quality. For example, a system
of definitions can be used to express known relationships between entities whose values
are as yet undefined (as in a traditional use of a spreadsheet). On the other hand, when the
values of all variables are fully defined, a DST model can be directly interpreted in
computational terms.

As developed above, our approach deals only with the description of groups of state-
changes that - in Russell's terminology - are associated with a single centre of change. The
use of DST models in this mode is associated with a restricted kind of user-computer
interaction in which the computer records the state of the model and the user acts to change
the state through a sequence of redefinitions, as in our initial illustrative example [8]. In
typical applications, the transitions in a system are associated with several simultaneous
groups of state-changes about several distinct centres. Such concurrent activity is described
in DST models by introducing parallel redefinition of variables. It is also possible for there
to be interference between actions performed at different centres of state-change, as when a
seesaw is simultaneously depressed at both ends.

In the analysis of an embedded system, concurrency is conceived as simultaneous action of
one or more agents. The introduction of agents is commonplace in requirements
specification [11] and echoes a Newtonian perspective whereby change occurs only
through the action of agents. (It is a curious fact that the quotation from Russell above is
taken from a discussion that disputes the usefulness of the concept of agent in physical
theories.) In our development, the agent concept has a fundamental role in characterising
the transformations of variable values that are deemed acceptable. One agent may be
privileged to blow out the candle, another to move the candle, yet to another to move the
mirror; in general such privileges are predicated upon enabling conditions pertaining to the
current state. In formulating the protocols by which agents can act to change system state,
we find it useful to identify those aspects of the system (represented by characteristic
variables) to which the agent can respond and those which it can conditionally manipulate.

The notation we introduce for this purpose is called LSD. For each agent, an LSD
specification records the variables to which the agent can respond (oracle), those variables
that it can conditionally change (state), and those variables whose values are defined by
functional relationships (derivate). It also includes a protocol specifying the redefinitions
that the agent is permitted to perform and the associated enabling conditions that must be
met.

Faithful state-transition models for embedded systems

We connect the use of DST representations with a form of modelling that establishes a
precise correspondence between states and transitions in the application and states and
transitions in the model. When the candle is moved, there is conceptually no point in time at
which the reflection of candle has yet to move; this fact is captured using a DST model. In
conventional approaches to simulation such faithful state-transition models are unusual.
There are typically intermediate states in the model that are inconsistent with an external
interpretation. Such inconsistencies account for many of the difficulties encountered when
debugging procedural programs: they are also part of the motivation behind the use of
invariants and assertions in program development. Identifying the states of the model that

E

are meaningful in the application is a crucial aspect of the validation process that is
commonly left to the programmer to infer through informal insight.

The critical reader will be under no illusions about the difficulty of developing a faithful
model of a complex embedded system; this goal is certainly beyond the scope of our
current methods in many cases. We argue only that any solution to this modelling problem
demands that proper consideration must be given to all the respects in which application-
oriented information influences the form and nature of the model. Three primary concerns
are significant here:
+ indivisible actions have to be accurately characterised and described
+ the manner in which the agents in the system act in relation to their view of the
system must be expressed and represented
+ the way in which the concurrent action of agents is constrained by environmental
factors (such as the speed of response, action and communication, and other
relevant physical characteristics of the entities in the system) must be taken into
account.

On present evidence, DST models will prove to be an effective way to represent indivisible
actions. LSD specifications can be used to describe how an agent acts in isolation. An
important characteristic of our modelling method is that one and the same action on the part
of an agent can be associated with distinct indivisible state-changes in the system,
depending upon context. We believe this to be a significant feature when composing
models; for example, it enables us to specify that an agent can pull a lever prior to
specifying what mechanism is thereby engaged.

In the use of LSD, it is tempting to introduce idealised forms of communication between
agents that enforce synchronisation of actions as if this were directly imposed by the
sensory input and protocols observed by the agents. This kind of modelling may be useful
as a mathematical description of intended behaviour, but does not provide a satisfactory
basis for prescribing programmable components, since it makes inappropriate engineering
assumptions. If we avoid such abuse, LSD specifications are not generally executable in a
meaningful way; they only capture that part of the synchronisation between actions that is
based upon how agents respond to changes in their immediate environment. Without
knowledge of how fast agents respond, how fast values are communicated, there will
generally be many inappropriate ways in which agent actions can be synchronised [4,7].

Simulation and the abstract definitive machine

In their present state of development, our methods can be used only as the basis of
simulations of system behaviour subject to environmental assumptions that are introduced
in an explicit manner. In effect, the LSD specification of a system can be interpreted
operationally provided that we take account of knowledge of each agent's particular
characteristics. For instance, the interval of time between a door bell ringing and the door
being opened - if indeed it is opened at all, is determined by quite different considerations
from the interval between a diver jumping off a board and entering the water. Similarly,
though two agents may be privileged to press the door bell, it may very well be physically
impossible for them to do so at one and the same time.

Our simulations make use of a new machine model - the abstract definitive machine
(ADM). In the ADM, the computational state is represented by means of a set of
definitions. An ADM program is abstractly described by a system of entities, each of which
comprises a set of definitions and actions. Each action consists of a guarded sequence of
redefinitions and instructions to instantiate or delete instantiated entities. In the execution of
a machine program, the computational state, as represented by the instantiated definitions,

8

is repeatedly modified through the parallel execution of actions whose guards evaluate to
true in the current state.

Simulation of an LSD specification in the ADM involves the translation of LSD agent
protocols into ADM entities incorporating parameters to reflect execution delays and the
generally non-deterministic response of agents. In our present prototypes, these parameters
are specified probabilistically in accordance with the expected characteristics of agents and
their environment.

Simulation in the ADM computational model has many unusual characteristics [5,7].
Because the representation of state is readily interpreted in application-oriented terms, it is
relatively easy for the user (the concurrent systems designer) to intervene in execution as
appropriate, effectively exercising the privileges of.an omnipotent and omniscient super-
agent. Certain kinds of interference, such as that arising in the seesaw example mentioned
above, can be detected within the ADM and referred to the designer for arbitration. In
general, we attach importance to modelling systems faithfully to the point of admitting
conflicts that can arise in practice; only in this way can the relationship between the
behaviour of the system and the activity of the agents be fully understood.

An illustrative example

Our approach will be illustrated by means of a simple example. An electronic cat-flap is a
device that is designed to keep out unauthorised cats and to give the owner control over
when authorised cats are able to come in and go out. It takes the form of a cat-door large
enough for a single cat to pass through that can operate in two modes, as an electronic
device or manually, at the discretion of the owner. When the flap is electronically active the
cat door opens to the inside only in response to a ferrite key attached to the cat's collar. The
owner has additional control in the form of a locking device that can be used in conjunction
with either the electronic or the manual mode of operation; this can be set to prevent the cat-
door from opening inwards, outwards, or in either direction.

An LSD specification for the electronic cat-flap is given in Figure 1. The protocols for the
man and cat agents reflect the different ways in which they can interact with the flap. The
man is able to switch the flap between electronic and manual mode of operation and to alter
the position of the 4-way lock. In entering or leaving the house, the cat expresses its
intentions through putting pressure on the cat-flap. The cat flap responds according to its
state. When it is not obstructed, the cat-flap returns to a closed position autonomously.

In identifying these possible system behaviours from the LSD specification, each agent is
conceived as repeatedly monitoring the guards in its protocol before committing itself to
performing the sequence of actions associated with one of its true guards. The choice of
which action to perform is non-deterministic: the cat’s intention is subject to change at any
moment for example. For an intelligent operational interpretation, informal knowledge
about the way in which agents operate is required. The cat-flap may return to its closed
position either under the influence of gravity or through the action of spring: in either event,
this response should occur immediately whenever the flap is open and unobstructed, and
should be consistently fast in execution. In contrast, there will be few occasions on which
the man chooses to exercise the privilege to change the status of the 4-way lock. It is also
worth noting how the privileges of the man agent may capture rules for intelligent operation
of the cat-flap (cf the concerns raised by Pylyshyn in [14]).

Other issues concern the speed with which oracles are updated or consulted. There are
scenarios consistent with the privileges of the agents that lead to inappropriate system
states. The 4-way lock might just be set whilst the flap is open. It is feasible (presumab;y

#

9

even in practical use) for two cats to come through the cat flap head to tail as if they were
one cat. The parameters adopted for simulation of the specification in the ADM are chosen
to reflect reasonable assumptions about the relative speed at which agents operate and
signals are received. In the specification, the synchronisation between sensory input to the
electronic cat-flap and the state of the electronic lock is deemed to be exact, and is
represented by a derivate.

3. Concluding remarks

We have described and illustrated the fundamental concepts underlying a new style of
programming that has been under development for several years. The motivating ideas
behind this work reflect the strong influence of intensional programming: our approach
represents an alternative way to address the problem of using variables to describe state-
changes without resorting to a totally undisciplined use of assignment. At the present time,
our methods are best suited for informal and experimental use, but we hope that this can be
remedied through extension of the fundamental concepts, more precisely specified
mathematical models and techniques, and the development of better practical software
prototypes.

We believe that our research indicates the importance of developing a programming
paradigm that takes full account of the exceedingly rich cognitive input required in the
construction of embedded systems. This imposes a discipline upon the programmer that
has at least as much in common with experimental science and engineering as it has with
mathematics. If this is the correct perception of the programming task, it suggests rather
different priorities from those that have so far been the dominant influence on the theory of
programming language design.

References

[1] Backus J Can programming be liberated from the von Neumann style? Turing Award
Lecture 1977, CACM 21, 8 (August) 1978, 613-641

[2] Baldwin D Why we can't program multiprocessors the way we're trying to do it now,
Tech Rep 224, CS Dept, Univ of Rochester 1987

[3] Balzer R, Goldman N Principles of good software specification and their implications
for specification languages, Software Specification Techniques, International CS
Series, Addison-Wesley 1985, 25-39

[4] Beynon W M, Norris M T, Slade M D Definitions for modelling and simulating
concurrent systems, Applied Simulation and Modelling, Proc IASTED ASM'88, Acta
Press 1988, 94-98

[5] Beynon W M, Slade M D, Yung YW Parallel computation in definitive models,
CONPAR 88, BCS Workshop Series CUP 1989, 359-366

[6] Beynon W M, Parallelism in a definitive programming framework, Proc Parallel
Computing 89, Leiden Sept 1989, to appear

[7] Beynon W M, Norris M T, Orr R A, Slade M D Definitive specification of concurrent
systems, UKIT'90, Southampton March 1990, to appear

[8] Beynon W M Evaluating definitive principles for interactive graphics, New Advances in
Computer Graphics, Springer-Verlag 1989, 291-303

[9] Beynon W M, Russ S B Variables in Mathematics and Computer Science, RR#141,
Dept of Computer Science, University of Warwick, 1989

[10] Bird R, Wadler P Introduction to Functional Programming, Prentice-Hall 1989

[11] Davis A M A comparison of techniques for the specification of external system
behaviour, CACM(31) 1988, 1098-1115

[12] Hoare,C A R Communicating Sequential Processes, Prentice-Hall 1985

10

[13] Johnson W L Deriving Specifications from Requirements, Proc 10th Int Conf on
Software Engineering, Singapore, 428-438, 1988

[14] Pylyshyn Z W Computation and Cognition: Toward a Foundation for Cognitive
Science, MIT Press 1984

[15] Revesz, G E Lambda-calculus, Combinators and Functional Programming,
Cambridge Tracts in Theoretical Computer Science, Vol 4

[16] Russell B ABC of Relativity, 3rd Edition, Allen and Unwin 1969

[17] Sartout W, Balzer R On the inevitable intertwining of specification and implementation
CACM, 2§ (7) (July), 438-440

[18] Wadge W W, Ashcroft E A Lucid, the dataflow programming language, Academic
Press, 1985

11

A Comparative Case-Study: the Electronic Cat-Flap

Observations that have been extracted from two different - but closely
related — LSD specifications of an electronic catflap are attached. Study
these carefully, then attempt the exercises below.

Observations for Simon Yung model for catflap (1990)
with helpful annotations by WMB in italics

agent flap() {
(int) Iflap // length of flap
(analog) angle // how open is the flap?
(bool) switch // is the electronic switch operating?
(int) fourWay Lock // inrange 1.4
(int) radius // range of detector of electronic lock
(bool) pushOut, pushln // is cat pushing out or in?
(int) pos
(bool) elecLock // is the catflap locked?

(bool) canPushOut, canPushin // can catflap be pushed out or in?
}

agent man() { /[should be "agent manorwoman()" - wmb

(bool) switch

(int) fourWayLock

(int) angle ‘

(real) smell /| interpretation to be supplied

}
agent cat() { /| nb cat = tomorshecat
(int) height / / height of cat
(int) pos / / position of cat
// pos >0 -out
// pos <0 -in
(int) intention // 1 - going out
// 0 - staying put
// -1 - coming in

/Inb discrete cat, without a real intention
(int) Iflap, angle
(bool) obstructOut // cat is obstructed by flap
(bool) obstructIn // cat is obstructed by flap
(bool) pushOut
(bool) pushin
(real) smell /| tomcat only

Observations for lan Bridge model for catflap (1991)
with helpful annotations by WMB in italics

type flapPosTyp = ENUM (fpOut, fpVert, fpln)
lockPosTyp = SET OF ENUM (IpOut, 1pIn)
catintTyp = ENUM (ciGoOut, ciStayPut, ciGoln)
pushDirTyp = ENUM (pdOut, pdIn)
/I flap clearly designed for cat with very high IQ: ci = cat intention

agent flap() {

lockPos : lockPosTyp
flapPos : flapPosTyp
pushDir : pushDirTyp /| NB not pushDirtyP

)
agent man() { /| apparently needs a man to handle this catflap

flapPos : flapPosTyp
lockPos : lockPosTyp

}
agent cat() {

catInt : catIntTyp

catPos :int // >0 :outside, < 0 : inside /| how about = 0?
pushDir : pushDirTyp

flapPos : flapPosTyp

catEngag : boolean // cat is engaging with the flap
catObstr : boolean // cat is obstructed by the flap

)

Simon Yung's model has yet to be implemented on the system.
lan Bridge’s has been prototyped but has yet to be field tested.

Questions:
1) can you decide how to classify the above observations:
state, oracle, handle, derivate
— possibly more than one classification for same agent sometimes
2) both specifications assume that the 4-way-lock is rotated only if the
flap is closed — how would you specify this?
3) is the length of the cat significant? if so, is it invariant?

Ex: Supply the missing protocols and briefly explain your specfication.

