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Introduction

The development of interactive computing has inspired interest in
+ the use of geometric symbols rather than textual messages
» the presentation of active environments rather than passive documents.
Two fundamental technical problems respectively associated with these concerns are:
+ developing computer representations that reflect the semantics of geometric data
+ constructing comprehensible state-based models for environments.
Our main thesis is that there is a strong connection between these apparently separate
problems. We shall argue that
- the semantics of a geometric object has to be understood with reference to its
potential transformations,
- the effective representation of such transformations requires more powerful and
expressive state-based computer models than have yet been developed.

Modelling the Semantics of Geometric Objects

An association between the semantics of geometric objects and the transformations to
which they can be subjected was first proposed by Felix Klein in his "Erlanger
Program" address (1872). The geometry of a figure is defined by those properties that
are invariant under a specified class of transformations. In order to define the semantics
of a geometric object, we associate with a specified object the class of permissible
transformations that can be performed on it. The technical problem we have to address
is the precise specification of this class of transformations. The validity of our
specification will depend upon whether the possible transformations of symbols we
describe conform to the possible appropriate state changes within the "real-world"
application that the symbols purport to model.

As a familiar example, the icons of a desktop display typically represent accessible
files. The nature of these files (e.g. whether they are executable or are data for a system
application program) is indicated by the form of the icon. The deletion of a file is
associated with removing an icon from the display. A distinguished subset of geometric
transformations that can be performed on a displayed set of icons is in 1-1
correspondence with meaningful operations upon the associated physical files, such as
the deletion or creation of a file or its conversion into a new format. The validity of the
geometric interface depends upon the fact that this set of geometric transformations of
the display corresponds precisely to the set of meaningful operations on physical files.

The transformations of geometric data that symbolically describe file management are
very simple compared with those that might arise in applications where complex
geometric models are used, but the same principles can be applied in general. By way
of further illustration, consider Figure 1. Under one interpretation, the figure denotes a
counter that is currently displaying "89". If we wish to model the behaviour of the
counter faithfully, there will be two appropriate transformations, one associated with
incrementing the counter to display "90", the other with resetting the display to "00".
Such semantically significant transformations of a symbol will be called interpretable.




Figure 1

Under another interpretation Figure 1 is a plan for the furniture layout in a pair of
adjacent rooms. The "8" symbol is a filing cabinet that is currently open, the "9"
symbol the floor plan of a desk. The rooms have doors that are presently closed. In this
case, the interpretable transformations of Figure 1 are of quite another kind, and
correspond to actions an occupant might perform to change the state of a room, such as
opening the door, moving a desk, or closing a filing cabinet.

Figure 1 has many other possible interpretations. The class of interpretable
transformations is typically to be understood with reference to what agent is acting in
the application and what privileges the agent possesses. Privileges express restrictions
on the transformations that can be applied, for example ensuring that a desk does not
intersect a wall. The consideration of agents enables us to express the fact that the same
image can simultaneously have several alternative semantics. For example, reorganising
the icons on a desktop display does not affect the status of the associated physical files,
but is meaningful as a mode of presenting file information to the user.

The transformations of Figure 1 that correspond to updating a counter do not involve
changing the presentation format for the digits. If on the other hand, the agent acting in
the application is a graphical designer, it is necessary to consider transformations that
modify the size and choice of representation for the digits "8" and "9", their relative
position, or the colour of the background display. Similarly, when conceiving Figure 1
as an architectural plan, an architect might wish to modify the dimensions of the room,
or relocate the door.

The above discussion motivates the development of a method of representing a
geometric object so that we can formally describe:

« the set of interpretable transformations that can be applied to it

* the set of agents that can perform such transformations upon it

» the conditions that constrain the performance of these transformations.
Our progress towards this objective is based upon of a new style of programming to be
briefly outlined and illustrated below.

A Programming Paradigm for Graphics

The drawing process is typically viewed as a means to an end: that of describing a
particular static image (such as Figure 1) without regard for constructing a significant
abstract representation. From our perspective, a geometric object cannot be adequately
represented by a static image; to reflect the semantics of the object it is essential to
describe its geometric form in conjunction with appropriate protocols for
transformation. This reflects the distinction between the frozen figure that must be
displayed in a document and the dynamic figure that can be modelled in an interactive
environment.




Traditional programming paradigms for graphics have not been designed with the
formal representation of transformations of geometric objects in mind. A procedural
drawing package supplies a plethora of transformations that can be used to construct an
image, but no framework within which the concept of "interpretable transformations of
an image" can be expressed. Declarative methods e.g. those based upon the use of
constraints give inadequate support to the concepts of state and transformation. A
constraint is effectively an assertion about the form of a static object. Information about
how an object is transformed when maintaining constraints is supplied only in an
implicit manner: via a constraint-satisfaction system.

The fundamental technical problem to be addressed is the formal specification of the set
of interpretable transformations of an image. In conventional state-based computer
models, such as are provided by a procedural graphics package, it is possible to
describe transformations of a geometric object in an informal way but not to distinguish
between interpretable and uninterpretable transformations. For example, a basic
drawing package will provide a sequence of updating operations to modify the counter
in Figure 1 so that the display "89" is transformed into "90", but this might take the
form of introducing and deleting line segments in such a way that the counter
temporarily displayed "88","80" and "90" in sequence. What is required is a method of
expressing the indivisible nature of the transition from the state of displaying "89" to
that of displaying "90".

A full discussion of the programming principles we apply to the solution of this
problem is beyond the scope of this abstract. Our approach is based upon the
representation of state by means of a set of interrelated definitions of variables, where
each definition either specifies the value of a variable explicitly or defines it as the value
of a formula that references other variables (without cyclic definition). The redefinition
of a single variable changes the values of all variables whose value is dependent upon it
in a conceptually indivisible fashion. The principle is similar to that applied when
updating the cells of a spreadsheet.

The nature of the formulae used in the definitions depends upon the application. It is
determined by choosing an underlying algebra of data types and operators over which
to evaluate expressions. Figure 2 specifies Figure 1 as a room layout using the
definitive (definition-based) notation DoNaLD [3] in which the underlying algebra
consists of points, lines and shapes comprising sets of points and lines. The basic
transformations - such as that corresponding to opening the door - are described by the
redefinition of a single variable. As an example, Figure 2 shows two files of DoNaLD
definitions to describe the symbol "8" in Figure 1. In that on the right, the symbol "8"
is transformed to "9" by incrementing the variable digit; on the left, the open filing
cabinet represented by the symbol "8" is closed by setting the variable open to false.
The protocols below prescribe the interpretable transformations.

In our research, similar principles have been applied to the description of a variety of
geometric models; these include Cayley diagrams (finite automata introduced as
graphical representations of groups) [2] and more complex geometrical objects
appropriate for 3-dimensional modelling [5]. Their application is not confined to
graphics, however: our methods have been applied to general screen layout and to
concurrent systems modelling [6]. In each of these domains, the essential principle that
makes the spreadsheet such a valuable computational tool can be observed: the state
transformations that occur faithfully reflect perceived state changes in the application
domain.




openshape cabinet openshape led

within cabinet { within led {
int width, length Int digit
point NW, NE, SW, SE point p1, p2, p3, p4, p5, p6
line N,S,EW line L1, L2,L3, L4,L5,L6,L7
boolean on1, on2, on3, on4, ons,
N =[NW, NE] oneé, on7
S =[SW, SE]
E = [NE, SE] digit =8
W =[NW, SW]
p1 = {100, 800}
width, length = 300, 300 p2 = {100, 500}
p3 = {100, 200}
SW = {100, 200} p4 = {400, 800}
SE = SW + {width, 0} p5 = {400, 500}
NW = SW + {0, length} p6 = {400, 200}

NE = NW + {width, 0}
ont = digit = 1 A digit = 4

openshape drawer on2 = digit != 0 A digit I= 1 A digit 1= 7
within drawer { on3 = digit != 1 A digit = 4 A digit '= 7
boolean open on4 = (digit == 0 v digit >=4) A
int length digit I=7
line N, S, E,W on5 = digit == 0 vdigit==2 v
digit == 6 v digit ==
length = If open then ~/iength oné6 = digit I=5 A digit 1= 6
else 0 on7 = digit 1= 2
open = true
11 = Iif on1 then [p1, p4] else [p1, p1]
N = [~/NW + {0, length}, 12 = If on2 then [p2, p5] else [p2, p2]
~/NE + {0, length}] I3 = If on3 then [p3, p6] else [p3, p3]
S = [~/NW. ~/NE] 14 = If on4 then [p1, p2] else [p1, p1]
W = [~/NW + {0, length}, ~/NW] 15 = If on5 then [p2, p3] else [p2, p2]
E = [~/NE + {0, length} , ~/NE] I6 = if on6 then [p4, p5] else [p4, p4]
} I7 = If on7 then [p5, p6] else [p5, p5]
} }
protocol { protocol {
open -> open = false true > digit = | digit | + 1
1 open A ! locked -> open = true true -> digit = 0
locked -> locked = false }

}

1 open A ! locked -> locked = true

Figure 2
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